User’s Manual NEC

CC78K4 Ver.2.30 or Later

C Compiler

Language

Target Devices:
78K/IV Series

Document No. U15556EJ1VOUMOO (1st edition)
Date Published November 2001 N CP(K)

© NEC Corporation 2001
Printed in Japan

[MEMO]

2 User's Manual U15556EJ1VOUM

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

PC/AT is a trademark of International Business Machines Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.
SPARCstation is a trademark of SPARC International, Inc.

HP9000 series 700 is a trademark of Hewlett-Packard Company.

¢ The information in this document is current as of July, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

* Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

MSE 00.4

User's Manual U15556EJ1VOUM 3

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

e Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

» Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User's Manual U15556EJ1VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

J01.2

INTRODUCTION

The CC78K4 C Compiler (hereafter referred to as this C compiler) was developed based on CHAPTER 2
ENVIRONMENT and CHAPTER 3 LANGUAGE in the Draft Proposed American National Standard for
Information Systems - Programming Language C (December 7, 1988). Therefore, by compiling C source
programs conforming to the ANSI standard with this C compiler, 78K/IV Series application products can be
developed.

The CC78K4 C Compiler Language (this manual) has been prepared to give those who develop software by
using this C compiler a correct understanding of the basic functions and language specifications of this C compiler.

This manual does not cover how to operate this C compiler. Therefore, after you have comprehended the
contents of this manual, read the CC78K4 C Compiler Operation User’s Manual (U15557E).

For the architecture of 78K/IV Series, refer to the user’s manual of each product of 78K/IV Series.

User's Manual U15556EJ1VOUM 5

[Target Devices]
Software for the 78K/IV Series microcontrollers can be developed with this C compiler.
Note that the device file (sold separately) corresponding to the target device is necessary.

[Target Readers]

Although this manual is intended for those who have read the user's manual of the microcontroller subject to software
development and have experience in software programming, the reader need not necessarily have knowledge of C
compilers or C language. Discussions in this manual assume that readers are familiar with software terminology.

[Organization]
This manual consists of the following 13 chapters and appendixes.

CHAPTER 1 GENERAL

Outlines the general functions of C compilers and the performance characteristics and features of this

C compiler.
CHAPTER 2 CONSTRUCTS OF C LANGUAGE

Explains the constituent elements of a C source module file.
CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

Explains the data types and storage classes used in C and how to declare the type and storage class

of a data object or function.
CHAPTER 4 TYPE CONVERSIONS

Explains the conversions of data types to be automatically carried out by this C compiler.
CHAPTER 5 OPERATORS AND EXPRESSIONS

Describes the operators and expressions that can be used in C and the priority of operators.
CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

Explains the program control structures of C and the statements to be executed in C.
CHAPTER 7 STRUCTURES AND UNIONS

Explains the concept of structures and unions and how to refer to structure and union members.
CHAPTER 8 EXTERNAL DEFINITIONS

Describes the types of external definitions and how to use external declarations.
CHAPTER 9 PREPROCESSING DIRECTIVES

Details the types of preprocessing directives and how to use each preprocessing directive.
CHAPTER 10 LIBRARY FUNCTIONS

Details the types of C library functions and how to use each library function.
CHAPTER 11 EXTENDED FUNCTIONS

Explains the extended functions of this C compiler provided to make the most of the target device.
CHAPTER 12 REFERENCING BETWEEN C AND ASSEMBLER

Describes the method of linking a C source program with a program written in assembly language.
CHAPTER 13 EFFECTIVE UTILIZATION

Outlines how to effectively use this C compiler.

APPENDIXES A through E

Contain a list of labels for saddr area, a list of segment names, a list of runtime libraries, a list of library
stack consumption, and an index for quick reference.

6 User's Manual U15556EJ1VOUM

[How to Read This Manual]

* For those who are not familiar with C compilers or C language:

Read from CHAPTER 1, as this manual covers from the program control structures of C to the extended functions
of this C compiler. In CHAPTER 1, an example of C source program is used to show where in the manual details

can be referenced.

* For those who are familiar with C compilers or C language:

The language specifications of this C compiler conform to ANSI Standard C. Therefore, you may start from
CHAPTER 11, which explains the extended functions unique to this C compiler. When reading CHAPTER 11,
also refer to the user's manual supplied with the target device in the 78K/IV Series, if necessary.

[Related Documents]

Document Name

Document No.

CC78K4 C Compiler Operation User’s Manual

U15557E

[Reference]

Draft Proposed American National Standard for Information Systems - Programming Language C (December

7, 1988)

[Terms]

RTOS = 78K/IV Series Real-time OS RX78K/IV

[Conventions]

The following conventions are used in this manual.

Symbol Meaning

Continuation (repetition) of data in the same format

This part of the program description is omitted.

/ Delimiter
\ Backslash
[1] Parameters in square brackets may be omitted.

User's Manual U15556EJ1VOUM

Characters enclosed in a pair of double quotes must be input as is.
Characters enclosed in a pair of single quotes must be input as is.

CONTENTS

CHAPTER 1 GENERAL ..ot cccceeiiirininssssssssss s nssssssssmss s s s s nssssssssmmsss s s essssssssmmssssssnsssssnnnmnsnsssnsssssnnnns 19
1.1 C Language and Assembly LANQUAQEccccrurmrissammissmsmssnsissmsmssssssssessssmssssasssssmssssanssas 19
1.2 Program Development Procedure by C Compiler.......cccccrrnirmmmmnissemsmmnnsssssmsnsssssssssssssnns 21
1.3 Basic Structure of C SoOUrce Program.........cccceceiismmissmsmsssmssssinssmssssssssssssssssssssssssassssssssas 23

1.83.1 Program fOrMAat...........cooiiiiiiiii e e 23
1.4 Reminders Before Program Development..........cccvmmmnnmsmmmnssssmmmnssssmmss s sssssssses 26
1.5 Features of This C COMPIIELceiiiiciiiiiiimiininr s s s 28

O3 oY 1L 7 o 11 0 q o1 o) o 1=, 28

<2> RegiSter VariabIesc.cooiiiiii e e e s 28

<3> USING the SAAAF @rea.........coooiiiiiiiiiiie e 29

SA> SIF ArCA .. e e e e e b e e e nae 29

<85> NOAULO FUNCHIONS ...ttt sn e san e e nan e snreennnes 29

RS I 1 VoY (=Y oY (=Y | (0 0T 1[0 o =N 29

<7> bit type variables and boolean/_ _boolean type variablesccceviiiiiiniiiiiieneee 29

<8> booleant type Variables..........coooiiiiiiie e 29

<O> ASM SEAEEMENTS. ...ttt ettt p e sr e nr e nans 29

<10> INEEITUPE FUNCHIONS ... e e e e e e e s rnn e e e e ebreeennee 29

<11> Interrupt fUNCHION QUATITIETeeeee et e e s e e eneeeeenee 29

<125 INEEITUPE FUNCHION ...t e et e e e e e sane e e e ebreeeenes 30

<13> CPU CONErOl INSIIUCTIONScoitiiiiie ettt nnn e saneenanis 30

<14> callf/_ _Callf FUNCHONeei et e e e e e e ee e e e e e e e esabeeeeaeeeees 30

<15> Usage of 16 MB €XPaANSION SPACEueeeiiiiireiiiieeeasiiieeeaeeeeeessseeeesnseeeeessseeesaseeeesanseeeeanseeesaanes 30

<16> LOCAION FUNCHON.ciiiiiiie et e e e e s sane e e e ebreeeenes 30

<17> Absolute address aCCeSS FUNCHONciiiuiiiiiieiii et 30

<18> Bit field deCIarationcoooiiiiiii e 30

<19> Function to change compiler output SECHON NAMEcooiiiiiiiiiii e 30

<20> Binary constant description fUNCHONc.uiiiiiiiiiiee e 30

<21> Module name change fUNCONSouiiiiii e e e e e e e e e 30

<22> ROAIE FUNCHION... ..ottt e st e e e et e e s nee e e e sabeeeeabreeeenes 30

202 P\ 11111 o] o= o o I8 1119 Yo 1 o] o ISR 30

<24> DIVISION TUNCHON.iiiiiiee e e e e e et e e s s e e e s sane e e e ebreeeenes 30

<25> Data inSertion fUNCHONcoiiiiiie ettt sr e s sn e 31

<26> Interrupt handler for RTOS ... et e e e e e e 31

<27> Interrupt handler qualifier for RTOScoo i e e e e e 31

<28> Task function fOr RTOS ...ttt s e e sb e e e anbe e e e 31

<29> Changing function Call INTEIMACE..........ocuiiiiii i 31

<30> Change of calculation method of offset of arrays and pointers...........cccocuvveiriii e 31

<31> Pascal function (L _PaSCal)..........ccciiiiiiiiiiiiii e e e 31

<32> Automatic pascal functionization of function call interface.............cccoveeiiiiicii e, 31

<33> Flash area allocation Method............oooiiiiiiii e e 31

<34> Flash area branCh tableoi i 31

<35> Function call function from boot area to flash area............ccccoovevriiiiiii 31

<36> Firmware ROM fUNCHIONcooiiiiiiiiiiie ettt e e e e sbe e e e e 31

<37> Limiting int expansion of argument/return Value.............ocoviiiiiiii e 32

<38> Memory manipulation fUNCHONooiiiii e 32

8 User's Manual U15556EJ1V0UM

<39> callf two-step branch fUNCHONcceiiiii e 32

<40> Automatic callf functionization of function call interface...........cccccoovieiiiiii i 32

<41> Three-byte address reference/generation function............cccceeeiiiiiiccii e 32

<42> Absolute address allocation SPECIfiCatiON.........cc.uiiiiiiiiiiiie e 32
CHAPTER 2 CONSTRUCTS OF C LANGUAGE.......cccccomiiinininmmmmnrsnsssssssssssmsssssssssssssssssssssssssssssns 33
2.1 Character Sets.......ccciiiiniiiiiiiiir s an e 34
(1) CharaCer SEES .. .eeeeiiiiie et e et e e s e e e a et e e e s b e e e b e e nne s 34

(2) ESCAPE SEUENCESeeeitiieuiie ettt ettt ettt et ettt s st e e sa bt e st e e sab e e s bt e st e e e bt e st e e e ne e et et e aneeebeeennneennne 35

() I T =T o] g JE=T=To [=T g o= PO P PP PTPPP 35

PR (- AT g o 36
(1) ANSI KEYWOIASeeeeiitiie ettt e ettt e e e aa bt e e eab et e e sbe e e e e abe e e eannr e e e aabeeeeeanbneeesanees 36

(2) Keywords added for the COTBKAooiiiiiiieiiee ettt 36

P2 N o (= o (=T 37
2.3.1 SCOPE Of IABNEIFIEIS .. .eiiiiieiieee e e naneas 37

(1) FUNCHON SCOPE ...ttt b e e s ab e e snn e e e e sannee s 38

() FlE SCOPE ...ttt ettt ettt b et 38

() I = o To (qE =Tt o 1= OO U PP OPPRPT 38

(4) FUNCLION ProtOtYPE SCOPEccuvieiuriiitie ettt ettt ettt ettt e st st ene e sbeeenee e 38

2.3.2 Linkage of identifiers ..o s 39

(1) EXTErNal INKAGE ... eeeeei ettt ettt se e s e s sabeeeaneean 39

(2) INEErNAl INKAGE ...ttt e e e nnb e s e e e e s nneee s 39

[0 T (o 1191 To = SO PO PP PP OUPOPPPOPPOPR 39

2.3.3 Name space for identifiers.........cooiiii i s 39

2.3.4 Storage duration Of ODJECESooiueiiiiiiiiiei s 39

(1) Static storage dUrationooi i 39

(2) Automatic storage durationc.oceeeieiirieeiii e e 40

P ST B - - 1 Y] L= T PP PPPPP PRI 40

[TR == 11T 4/ o 1= 4

(2 I O g F- U= Lo (T a1/ o 1= PP PSP PPPR TR 44

(B) INCOMPIELE TYPES ...ttt ettt ene s 45

[I B =Y 11 = To I Y o1 SO OO PPSUPPPP T 45

() SCaIAI tYPES.. ..ttt b et e e ae e e 45

2.3.6 Compatible type and COMPOSILE TYPEceiiiiiiiiiiiiii e 46

(1) CoMPALIDIE TYPE ...t 46

(2) COMPOSITE TYPE ettt ettt e s b e e et e e ne e e e e s 46

P2 S 0o 1= - Ty | 46
241 Floating-point CONSTANTccciiiii i e 47

P | 01 (=T o =T g ot a1 = 1 o | PP PPPRPPN 47

(1) DeCimal CONSIANT.......eiiiiiieiiiie e e e e e e s saneee s 47

(2) OCHal CONSIANT ...ttt ettt e sab e e s e e enneesabeeeaneena 47

() Hexadecimal CONSIANTcccoiiiiiiii e 47

2.4.3 ENUMEration CONSTANTS.......cciiiiiiiiiiii e e e e s 48

2.4.4 Character CONSTANTSccuueiiiiiiie ettt e e s e e e b b e e seanr e e e s nnneeeas 48

2.5 SHriNG LIteralsccocuiieiiiiiniis st ies s s s s s s s e mn e 49
P2 O T 0T - 1 (o 49
P70 N 0 1= 113 1 (-] 49
PR N o [T Lo [T gl 1 F- T T 50

User's Manual U15556EJ1VOUM

P28 TR 0o T3 15 =T o 50
CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES........ccccvrsmmmmnscrrrsssanennns 51
3.1 Storage Class SPECIfiersccciuiremriiiscmnininrinsss s s s s e 52
[7/ 1o L= T S PSP PSP PPTRR 52

P2 T =4 (=1 ¢ o PO O PPV PP PP PR 52

(B) SEALIC ettt h b b e b b e e bt be e e b et s e nar e eneenars 52

[T 1V | (o T PPV PRSPPI 52

5 I (Yo =) (=Y TSSOSO PPPTRN 52

3.2 TYPe SPECITIErS..ciiiiriiiiieriiisnr s e 53
3.2.1 Structure specifier and UNION SPECITIETccuiiiiiiiie it 55

(1) SHUCIUIE SPECITIET ..cei ittt e e ee e 55

(2) UNION SPECITIETeeiiitii ettt b e e s nane e 55

[0 TR =1 811 [« SO RPUROPRRPRN 56

3.2.2 ENUMEration SPECIfIEISeiiiiiiiii ettt st 56

T T =T L= OO PP URTOTROPROTRN 57

3.3 Type QUANIFIEIS ..cccerieirieriiiin s s s s e s s s s n e amn e 58
B 0 T - - | o) 59
3.4.1 POINEr AECIAIALOrScoeeieieieie e e e e e e s enr e e s e e ean 59

B.4.2 Array AECIATATONSeiieiiiiie e e e e ean 59

3.4.3 Function declarators (including prototype declarations)...........ccccceiieeriiiinieiniiecee e 60

BT I V7o T 1 F- 1T 60
3.6 typedef Declarations........ccccceeimiiimeminimnmis s 60
R R [) 1 F= 112 L1 o o 62
(1) Initialization of objects which have a static storage duration............cc.cceeviirieenie e 62

(2) Initialization of objects that have an automatic storage duration............cccccooviiiiiiieiie e, 62

(3) Initialization Of ChAraCter @ITAYS.........ueiiuiiiiie e 62

(4) Initialization of aggregate or union type ODJECESc.ueiiiiiiiiiiiee e 63
CHAPTER 4 TYPE CONVERSIONScccocicmmmmniinissssssnssnsssssssssmsssssnsssssssssmssssssssssssnssmsssssnssssssnnnns 65
4.1 Arithmetic Operands........ccccuceecerircremriissesr s ssss e ms s s ms s s sms s s s sme s e s samn s sassamn s snssmmnns 67
(1) Characters and integers (general integral Promotion)coovueeeiiriiiie e 67

(2) Signed integers and UNSIGNE INTEETSuiiiiiiiiieeiie ettt 67

(3) Usual arithmetiC type CONVEISIONSuiiiiiiiii ettt e e e e e 68

4.2 Other OPerands........cccccceceriicsamrisssssrrsssmsrssssmssssssmssssssmssssssmmssssssmmssssssnmssesssmmssssssnmsnsssannens 69
(1) Left-side values and fuNCtion [0CATOrSciiiiiiiiiiiie e e 69

P2 T o 1o PSPPSR PSPPI 69

(0] T o011 01 (=1 = PRSP PUPPRP 69
CHAPTER 5 OPERATORS AND EXPRESSIONScccciimiiiiissnsmmsnnnisssssssssssssssssssssssssssssnssssssssnas 70
5.1 Primary EXPreSSiONS.....cccciiiirmrrriismssrissnmssnsssnss s nssssss s nassmss s ssssmss s sassmsssssssmss nesssmss e samssnnnsannnns 73
Lo oo T= Q0 o T=T - 1 o] 73
(G DS T8 o T-TeT] o] ao] o= =1 (o] £ SO PO P PP PS PP 74

(2) FUNCHON CAll OPEIATOISeeiiiiiie ettt e e e e s rann e e s b b e e et e e e eaneeas 75

(3) Structure and UNION MEMDETcocuiiiiieiii e e e 76

(4) Postfix Increment/Decrement OPEIratOrSuiiiieiiie it 78

5.3 UNAry OPeratorscccciciriiimsiississssisssssssssssss s s sss s sasss s sas s s s sas s ssss sasms sassnssnsmssasansssans 79
(1) Prefix Increment and Decrement OPEratorS........c..eiiiiiiiiiiiiiie et 80

10

User's Manual U15556EJ1VOUM

(2) Address and INAIreCtion OPEIAtOrScceeiiiiiiiiieiie ettt eee 81

(3) Unary Arithmetic Operators (+ — ~ 1) eeii i 82

G =T V4= To o o 1T = (o] £ T TP PP PRPPPPPN 83

Lo 07 1= G0 T o 1= - | o) 84
5.5 Arithmetic Operators ... s sams s sam s s mn s e mne e mnnes 85
(1) MURIPIICAIVE OPEIATOIS.eiiiieieee et e e sbr e e e aab e e e sane s 86

(2) AAItIVE OPEIATOIS ..ottt ettt st b e b et be e bt eane e e b e e e e e b e e nne e e 87

5.6 Bitwise Shift Operatorscccceciriirssrrinissnrinisr s s s an s e ans s nnnnnns 88
5.7 Relational Operators..........cccuceemrinssssrisssmsrisssmssssssms s ssssms s ssssms s sssssmsssssssmssssssamssssssnmsssnssnnes 20
(1) RelatioNal OPEIrATOrSoooeeeee ettt e e et s e e e e s b e e e e anbn e e e sane s 91

(2) EQUAIILY OPEIATONS ...coeiieieieeiiie ettt ettt et b et be e bt e a et et e e b e e e 92

5.8 Bitwise Logical Operators.......ccccuurmerinssmmrinsssssissssmssissssssssssssssssssssssssssssssssssassssasssnsssnssanes 93
(1) BitwiSe AND OPEIATOISeeiitiieiiietet ettt ettt ettt ettt rb e et e e be e st eane e st e e e neesb e e eaneeeneee 94

(2) BitwiSe XOR OPEIATOISeeeieiitiee ettt e et s st e st e e e bt e e ssne e e e sabe e e e enreee e nanees 95

(3) Bitwise INCIUSIVE OR OPEIALOrSceiieiiiiiiiiiieiee ettt esne e ne e e 96

5.9 LOQICal OPEIratOrsSc.ciuieemrrisssamsrisssnssisssnssissssssssssnssssssssssssssssss s assssns s ssssnnsssassansssassnnsssnssanes 97
(1) LOGICAl AND OPEIATOISeeeiuiieitieitee et et ettt ettt ettt e bt e et e bt e st ene e et e e e neeebeeennneennee 98

(02 I Moo [[o2= T @ n WeT o 1=1 =1 (o] £ T PP PP PP PPOP 929

5.10 Conditional OPEratorsc.ccccrirrremrrrsssmsrsssssmsrsssssmsssssssmsssssssssesssssnssssssanssssssansssessansensassn 100
5.11 ASSIigNMENt OPEratorscciiiieemriiismrriiiserrisssss s s s s s s e ss s e s ss s s eassannnsansn 101
(1) Simple assSigNMENTt OPEIALOrScccueiiiiiiiiii ettt sbe e e b e sneeennee e 102

(2) Compound asSigNMENt OPEIATOISciiuiiieiiiiiee ettt et e e e s ene e s sane e e e snreeenans 103

L P 0T o T T F= 0 T Y= - 1 o 104
5.13 Constant EXPreSSiONSccccuriiismrriissssrisissssisssssssissnsssnsssnnennnse 105
(1) General integral CONSTANT EXPrESSIONceiiiiiiiiiie ettt ettt se e ennee e 105

(2) Arithmetic CONSTANT EXPrESSIONuviiiiiiee ettt e e e e e 105

(3) AdAress CONSIANT EXPIESSIONcccueteiiiieriie e etee bt e ettt e et sae e e ss bt e sareesabeesbeesbeesneeesbeesaneeans 105
CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGEcccciiiemrriecrnnsemensssssmsnsssssmennes 106
6.1 Labeled Statementsccccciiiiimminisrr s 108
(1) CASE IADEL ...t b e bt n e e e 109

P2 o 1= = U0 =T o 1= OSSP PR OUPPPURPT 111

6.2 Compound Statements Or BIOCKSccceuvemmrissssmrisssssssrsssssssssssmsssssssssssssssssssssssmssssssas 112
6.3 Expression Statements and Null Statements...........cccocccirriiiciinnnnscnn . 112
6.4 Conditional Statements...........ccciiremiiriinni e ————————————— 113
(1) ifandif ... €ISe StAEMENTS. e 114

(2) SWILCH SEAIEMENT......eiiii e 115

6.5 Iteration Statements..........ccciiiiiininr i ——————————————— 116
L T L1 SR 2= =Y .0 =T o | R 117

P2 I o (o IR £= 1 (=T o 0 =T o | OO PT PP OPPPPPRPR 118

() I (o] = = 1 (=Y .1 =Y o | TP PP PRPUPPOPPOPPN 119

6.6 Branch Statementscccciiiiccmiininmrinnrr s ———————— 120
[TR o[(o = €= U (=4 1= o) USSR 121

(2) cONtINUE STAIEMENTo e e et e s enr e e snn e e e snreeenan 122

(B) Dreak StatEMENT.oo it 123

(4) return STAIEMENT ..o et e e e e 124

User's Manual U15556EJ1VOUM

11

CHAPTER 7 STRUCTURES AND UNIONS........ccccoomimnamnanmssnmsssnssssss s ssss s sssssssmsssasssssssssnsenas 125

70 T 1T T = 126
(1) Declaration of structure and structure variable..............ccceeriiiiiiiriii e 126

(2) Structure declaration liSt............ooiueeiiiiie e 127

(B) Arrays @Nnd POINTEISoiiueiitiieiie ettt ettt ettt et s e e b e e st e e e be e st e e e aae e e beeenneeennneennnee e 128

(4) How to refer to StruCture MEMDEISeiiiiiiii e 129

7% ¥ 41T o Y o L= 130
(1) Declaration of union and unioN Variablecc.eeiiiiiiiiiiii e 130

(2) UNION deClaration liSt..........ueiiieeiiiiitie ettt 130

(B) Union arrays and POINTEISeiiiiueeieiiiiie ettt et e et e e s e e e aa b e e e s ebee e e s ebneeesabreeenae 131

(4) How to refer to UNiON MEMDEScccuiiiiiiiiee e 132
CHAPTER 8 EXTERNAL DEFINITIONSccciiiiimrmnnsmsrnssssmsssssssmsssssssmsssssssmmssssssmmssssssnmsssassnmenes 133
8.1 Function DefinitioN.......ccciuiieiiiiirriies s s s s s e s 134
8.2 External Object Definitionsccccceiiiimiiminsssinr s 136
CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)ccccovissammrrsssncennas 137
9.1 Conditional Translation DireCtives.......ccccurecmriisrssrmiisssnninsssr s s ssssss s snssans 137
(1) I AIFECHIVE ettt sb e e b e e nae e e sbn e e sne e e sbneennne e 138

P2 =111 o 11 (=T (V= T O PP PP PP PPP PRSP 139

(B) HFAET AIFECHIVE ..ottt et e ne e bneesnee e 140

(G T)i oo (=) o [T (=T (V= T O PSP PP PP PPP PRSP 141

(G5 I = TN =T = TP PR PP P OPPOURPRIN 142

(B) HENAIT AIFECHIVE ...eoieeeiie ittt e e e et e e s abe e e e sbne e e e abreeenne 143

9.2 Source File INCluSioN DireCtiVecccciiieriiismmiimsissnssss s s sses s s sas s s 144
(G T 10T (3T [T PP P PP PP PPP PRSP 145

P2 T 14 T [0 T L= TP PPPTOPROPRROPRR 146

(3) #include preprocessing tOKEN STHNGeiiiiiiiii e 147

9.3 Macro Replacement DireCtivesccccccciiiiiiiiiiimmir i 148
(1) Actual argument rePlaCEMENT..........oiiiiiiiiiiie et st e e e e e sbeeeeeaee 148

(P2 T o] o<1 - L (o] GO PSSR PPOPPTOURRPRIN 148

) I 0] o 1= - L (o SO O P PP PP PPPPRPRN 148

(4) Re-scanning and further replacementcooiii et 149

(5) Scope of MACIO AEfiNItIONeiiiiiiiie e 149

() HAEFINE IrECHIVEeiiuiii ittt e b et e sae e e seb e e snn e e nnneennne e e 150

(7) #AEfiNE() AIFECHVEeiiiieiee e e e bre e e s abre e e nae 151

(8) HUNAES AIFECHIVE ...eeeeie ettt sttt e e a e st e ne e e nbeeennne e 152

9.4 Line Control DIreCtiVeccciiiiemriiiissrrissems s issss s ssssss s s s s ssms s s ams s snsamn s snssans 153
(1) To change the liNE NUMDETcooiiiiiii et e e 153

(2) To change the line number and the file NAME ... 153

(3) To change using preprocessing toKeN StrNG........cceoiiiiiiieniie e 153

9.5 #error Preprocessing DireCtive.......ccccucecrinissmninisssinness s ssssss s s s sssssssnsssnns 154
9.6 #pPragma DIreCtiVeScccciiriiremrriirmrrrsss s s e e 155
L A 1[0 T =Y o 155
9.8 Compiler-Defined Macro NamMEeS.........ccccuirrremrrisssmrrisssssssssssmssssssamsssssssmssssssmssssssamssssssnns 156

12

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONScccusmimminnissnrssemssmnsssnssssssssssss s ssssssssssnsssssssssmsssasssssasnns 158

10.1 Interface Between FUNCLIONScocccmiiiiiminines i snses s s s s 159
B O O Y o 04 T=T o€ PSPPSR 159
10.1.2 RETUIM VAIUES ...ttt e st e e e ab et e e e e e e e s bb e e e e anneee e sanees 160
10.1.3 Saving registers to be used by individual librariesccccceriiiiiiiiii e 160

(1) When -ZR option iS NOt SPECIfIEdc.eeiiiiiiiiiiie e 160
(2) When -ZR option is SPECIfIEdeeiiiiiiieiiie e e 162

O =T T o 163
[I <117/ 1= F T PSP P O P PP OUPUPPOPROPPN 163
P2 1= 1001 o2 o OO PP OPPPPPPRR 163
(03 IE=1 (o - 1 (o T o KO TP PSP PRPUPPOPRPPPN 163
[TR (o[o I I OO PP PP UPPRRR 164
(65 IE=1 (o |11 1 o TP PP PTPUPUPPOPRPPPN 164
() TR 10 To o PO PP PPOPPPPPRPP 165
(74 T = 1 () 41 I TSP O PP OP P PUPUPPOPROPPN 165
€S T =Y 1 0 Lo 1 o PO PP OUPPPPRPP 165
(€S T 111411 =7 o PP PP PP PUPUPPOPROPPN 165
[0 T3 (o[1= 18 o P USRS 166
(G B T 4= {2 Y o I T ST PTOU PO T PR PPUPPOPPPPPN 166
[23 R (o= L o0 o P PO PPPPOUPPPPRPT 167
() =TT o Y o PP PP PP PUPUPPOPRPPPN 169

10.3 Re-entrantability.......ccccocciiiiiicmiininii s 169
(1) Functions that cannot be re-entranCed............o.cei it 169
(2) Functions that use the area secured in the startup routinecccocceeei i 169
(3) Functions that deal with floating-point NUMDErScccoiiiiiiiii e 169

10.4 Standard Library FUNCHIONSccoiiiiniicnn s s 170

10.5 Batch Files for Update of Startup Routine and Library Functionsccccccccecmniiuncenn. 279
10.5.1 USING DAICH fIlES ... e e 280

CHAPTER 11 EXTENDED FUNCTIONS.......cccctitiiiiiissmmsenssssssssssssmsssssssssssssssmsssssssssssssnsmnsssssnssssnnns 283

L T 11 = o o = T T 284

N =T Ao T o L 284
(1) FUNCHONS ...ttt e e st e st e e e bt e st e e e b e e sabeeeabeeebeeeneeens 285
P2 V- T = o o PP PP OPPPPPRRR 286

L T 111 = 3 o 287
(1) MEMOTY MOGEL ...tttk e e bt e e s be e e e e asbe e e s aneeeesnneeeabreeenans 287
(2) REGISTEIr DANKeeiieeiiet et b e b e e b e be e 287
() I Moo=\ (o] o T (¥ o1 o] o U OO T PP OUPPPPRR 287
(4) MEIMOIY SPACEcueeeutie ittt ettt ettt et s bt e e bt e s bt e st e s bt e e bt e et e e eabe e eabeeeabeeebeesbeeebeeeneeen 288

11.4 #pragma direCliVeScccciiiiimiriirer e s 289

11.5 How to Use Extended FUNCHIONSccoviimmiiiiimmimnimss s ssms s s ssmsens 291
(1) CAIE FUNCHONS ...ttt rae e e e et e e e s are e e s sane e e e anreeenaas 292
(2) ReQIStEr VAHADIES.ei ittt bbb 295
(B) HOW tO USE the SAAAN @rEaeeeieiiiie et nne e e b e e e 301
(4) HOW t0 USE the ST @rBacccuviiiiiiiiiieie et 309
(5) NOAULO FUNCHION ..ottt s e et e e e e e s rane e e e anreeeean 312
() I o] (e {3 g o1 o o H PP PP PUPUPPOPPOPPN 318
(7) DIt EYPE VANADIES ...t s e e e e e nr e 326

User's Manual U15556EJ1VOUM

13

14

11.6
11.7

(8) _ _boolean type Variables...........c.oo it 331
(9) ASM STAIEMENTS ...ttt e e a et e et e e et e e s e e e ab e e e nae 336
(10) INEEITUPT FUNCHIONS ...ttt ettt ab e e nne e e sbneennne e 340
(11) Interrupt function qualifier (_ _interrupt, _ _interrupt_brk)cccccooriiieiiii e 346
(12) INTEITUPT FUNCHIONS ...ttt e sae e e ab e e nnn e e sbeeennee e e 349
(13) CPU CONrol INSIIUCHONeiiiiiiii et e s e s abn e e e eae 352
(14) CAllf FUNCHIONSceiueeeit ittt b e b e b et e abe e e s bee e san e e sabeeneeesnneennnee e 356
(15) 16 MB expansion Space ULIlIZAtiONcccuiiiiiiiiiei e 358
(16) AIOCALION FUNCHION ...ttt b e et rae e et esne e e sbeeennne e 361
(17) Absolute address acCess FUNCHONcoiiiiiiiii e 363
(18) Bit field dECIArAtIONccueiiiii ettt ettt ettt sae e se b e e san e e nbneennne e e 367
(19) Changing compiler OUIPUL SECHION NAMEoiiiiiiiiii i 375
(20) BINAIY CONSTANT.eiitiiiiie ettt s b et e bt e sae e e sh e e e san e e sabeesnneeabneennnee e 389
(21) Module name changing fUNCHON.occuii i 391
(22) ROLAE FUNCHION .ottt ettt b e sae e e sene e san e e sbneennne e e 392
(23) MuUltiplication FUNCHONooiiiie e e e e e e b e e nae 395
(24) DiVISION FUNCHON ..ottt st e b e bt e aae e e sbeeennneesbneennne e e 398
(25) Data inSertion fUNCHONcoiiiie e e e e sane e e anreeenae 400
(26) Interrupt handler for real-time OS (RTOS)......ccociiiieiiieeiee e 402
(27) Interrupt handler qualifier for real-time OS (RTOS)ooiiiiiiiiiiie e 408
(28) Task function for real-time OS (RTOS).......ccciiiiiiiieeii e 410
(29) Changing function call INTErfaceoccuiiiiiiiiii e 413
(30) Changing the method of calculating the offset of arrays and pointers............cccoovevieiiiieenieens 414
N I = T Ter- L (0] i o o O PP PPP PRSP 421
(32) Automatic pascal functionization of the function call interfacecccceceviveinieiiie e 424
(33) Flash area allocation MEthOdcooiiiiiiiii e 425
(34) Flash area branch tablecooiiiiiiiii e 426
(35) Function call function from the boot area to the flash area...........cccoceeiiiiii e 430
(36) Firmware ROM fUNCHONieiiieiiieitee ettt sttt et ne e e b e e nnne e 433
(37) Method of int expansion limitation of argument/return value ... 434
(38) Memory manipulation FUNCHIONcueiiiii ettt 436
(39) callf two-step branch fUNCHONooiiii e 441
(40) Automatic callf functionization of function call interfacecccoeeeiiiiiiii e 444
(41) Three-byte address reference/generation fuNCHON...........ccciiiiiiiiiiiiii e 445
(42) Absolute address allocation SPECIfiCatioN..........ccocueiiiiiiiiieiie e 448
Modifications Of C SOUICEe.......icccciriiiicmriinmnr s e s e e 452
Function Call INnterface..........ccucomiieminisiminsinsnnss s s s s san s s 453
11.7.1 REIEUIM VAIUE ... et e et e e st e e e e e e e b e e senbe e e e sanneas 454
11.7.2 Ordinary function Call INtErfaCEcoiiiiiieiiiee e s 455

(1) PasSiNg @rgUmMENTSccociiiiiiiiiii e e e 455

(2) Location and order of StOring arguMENS..........eeeiueeiiiieeneeerieerie et 456

(3) Location and order of storing automatic variables............c.cccccviiiieiiii e 458
11.7.3 noauto function Call INtErfaCEcocii i 460

(1) PasSiNg @rgUmMENTSccocuiiiiiiiiii e e 460

(2) Location and order of StOriNg arguMENS..........eeirueeiiiieereeerireerie e 460

(3) Location and order of storing automatic variables............c.ccccccviiiiiiiiin e 461
11.7.4 norec funCtion Call INTEIACE..........oiiiiiiiie e 463

(1) PasSiNg @rgUmMENTSccociiiiiiiiie e e et sre e s 463

User's Manual U15556EJ1VOUM

(2) Location and order of Storing arguMEeNts............cccooiiiiiiiiiii e 463

(3) Location and order of storing automatic variables.............c.ccooviiiiiiiiiiiee e 465

11.7.5 Pascal function Call INTErfACE..........coiviiiiiiiiee e 467
CHAPTER 12 REFERENCING THE ASSEMBLER.........cccoiiieerierrnecersseme s sems s ssmms s sssmme s 470
12.1 Accessing Arguments/Automatic Variablescccciiiresmmminiscmrnnnnmnnnnss e 471
12.2 Storing Return ValUuesccccciiiiminimisnins s ssssssssses s sssss s s sss s sasssasmssnsanssses 474
12.3 Calling an Assembly Language Routine from C..........ccecmmiiiesmmminnmmnnnsemssnnsessnnnssnns 475

(1) Calling an assembly language routine function (C SOUICE)ccccueeiieerieriieeeiie e 475

(2) Saving and restoring the information of assembly language routine (assembler source)......... 476

12.4 Calling C Language Routine from Assembly Language Routinecccccoviimmniccnrnnaen. 479

(1) Calling a C language function from assembly language (assembler Source)...........cccceevvveeennne 479

12.5 Referencing Variables Defined by Other Languagesccccurrrissmmmnssmsssmsnsssssssessssans 481

(1) How to refer to C-defined variablescoo i e 481

(2) How to refer to assembler-defined variables from Ccccoviiiiiiiiiieiie e 482

12.6 Other Important Hints........cccciiiimiiinicrimr s s 483

(G I (V4L [T 4= e o =) TP PP PRPUPPOPPOPPN 483

(2) Placement of arguments 0N the STACKc.eiiiiiiiiiiii e 483
CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER.......cccccmiiiiiiinmeemnnnnnsssssssmssssssnsssssssnnes 484
13.1 Efficient COAiNg.....ccociiiiiiiiiiiiimiins s ses s s s an s s s s e 484

(1) Using external Variablesooi ittt st e e e e sbeee e 485

23 T o1 e = ¢ R 485

(B) FUNCHON AEfiNITIONSeiiiieeiei it e s e e e s sane e e e snreeenaa 486

(GO ® o] 114 TF-2=ViTe] s Ie] o1 i o] o PP OO P TOPROPPOPPPPPN 486

(5) Using extended fUNCHONSoiiiiiiiii e e e e 487
APPENDIX A LIST OF LABELS FOR saddr AREA............ccoooommmmiinissnnsmnsnnsssssssssssssssnssssssssnes 490
A.1 Arguments of NOrec FUNCHIONS.......ccouivmiiiniimsrrinsms s s nenas 490
A.2 Automatic variables of Norec FUNCLIONScccvccmiiiismmininsnrnnss s 491
A.3 Register Variables.........ccuceiriimimmiimsrrissrnnss s s e 491
APPENDIX B LIST OF SEGMENT NAMES........cccoooiiirrmmrinssmersssmmsnssssmmssssssmmssssssmsssssssmssssssamssnas 492
B.1 List of Segment Namesccciuiiemiiiiimriinimrinss s snsess s s s ssss s ssms s s samnn s 494
B.1.1 Program area and data @reaccueeiiiiiie et 494

B.1.2 Flash MEeMOIY Greacooiiiiiiiiiiii ettt e s e e e e ee e 498

B.2 Location of SEgment ... 500
B.3 EXample Of C SOUICEciiiiiemriiiimmriissensnissmssnssssss s ssms s s smss s smss s ssms s s ssmms s sassamnssnssannns 501

B.4 Example of Output Assembler Module...........ccciiiieemmincsemrnnnsmrrssme s s ssmesneas 502
APPENDIX C LIST OF RUNTIME LIBRARIES........ccccccoesmrrnnmerrsssmsnnssssmssssssmsssssssmssssssmssssssamens 505
APPENDIX D LIST OF LIBRARY STACK CONSUMPTIONcccoiiiimmrrnsmmersssmmesssssmmsnssssmmennas 510
APPENDIX E INDEX.....ciiiiceemiiiiiiiiimmmnnsirissssssmssn s s sessssssmmss s s e s s mmmmn s e e e e smmsn s s e e e aa s mnmmn e e s enannnnn 517

User's Manual U15556EJ1VOUM

15

LIST OF FIGURES

Figure No. Title Page
1-1 FIOW Of COMPIIALION ...ttt e e et e e s b e e e e aabe e e e sntee e e aaneeeeabreeennes 20
1-2 Program Development Procedure by This C COMPIIET.........ccuiiiiiiiiieiiieeee e 22
4-1 Usual ArithmetiC TYPE CONVEISIONS........cciuiiiiieeiieiitee ettt e sttt ettt e sre e st e sseesbe e s ene e st eeenneeesbeeenneee e 68
6-1 Control Flows of Conditional Statements............coiiiiiiiiiiie s 113
6-2 Control Flows of Iteration Statements..........cooeiii i 116
6-3 Control Flows of Branch StatemMentsc.eoiiiiiiiiiiii e e 120
10-1 Stack Area When Function Is Called (N0 —ZR Specified)cccouviiiieiiiiiiiieee e 161
10-2 Stack Area When Function Is Called (—ZR SPecCified)cueeviiiiiiiiiiiiiiiee e 162
10-3 Syntax of FOrmat COMMANTSeiiiiiiiie ittt b e sb e san e e nnn e snneenans 181
10-4 Syntax of Input FOrmat COMMANGSuiiiiieii et ebe e e 185
11-1 Bit Allocation by Bit Field Declaration (EXample 1)........oooiiiiiiiiiiee e 369
11-2 Bit Allocation by Bit Field Declaration (EXample 2)cociiiiiiiiieiiii e 370
11-3 Bit Allocation by Bit Field Declaration (EXample 3)cooiiiiiiiiiiieeiieee e 372
12-1 SEACK Area AFLEI Call ...ttt e e e e st e s e e st e e b e nnneas 475
12-2 STACK Ara AfLEr REIUIN ..ttt a e r e ea e st e e et esan e e nar e enneenans 478
12-3 Calling Assembly Language Routine from Cociiiiiiiiiiiiii s 478
12-4 Placing Arguments Of STACK.........coiiiiiiiii e 480
12-5 Placement of Arguments 0N STACKccciiiiiiiiii i e e 483
16 User's Manual U15556EJ1V0UM

LIST OF TABLES (1/2)

Table No. Title Page
1-1 Maximum Performance Characteristics of This C COMPIIETcoiiiuiiiiiiiiiiee e 26
2-1 LiSt Of ESCAPE SEOUENCEScuetieeiteie ettt ettt ettt e s et e e e st et e s aabe e e e sbe e e e e anbe e e e enreeesanneeeas 35
2-2 List Of TrQraph SEQUENCEeiiiiiiiieeet ettt ettt ettt san e s eear e sa bt e eaneenaneas 35
2-3 LiSt Of BASIC DAtA TYPES ... ueeeeiiutiieieiiite ettt ettt e et e et e e e st bt e e e bt e e e sabe e e e eabne e e enneeeeanneee s 42
2-4 EXponent RelationNShipsS.oo e 43
2-5 List of Operation EXCEPHONScoiiiiiiiiiiiiie ettt st e e e e et e e s ene e e e s anneee s 44
4-1 List of Conversions BEIWEEN TYPES ...ccouueiiiiiiiie ettt e e b e nnre e e nnneee s 66
4-2 Conversions from Signed Integral Type to Unsigned Integral TYPe........cccceviiiirieiiiieniee e 67
5-1 Evaluation Precedence Of OPEratOrs.c.uiiiiiiitiiiiiee ittt e b e nnee e 72
5-2 Signs of Division/Remainder Division Operation Result............ccccooeiiiiiiiiniei e 85
5-3 S 01119 @] o T=T = Vi) o =T TP PSPPSR PPPURRI 88
5-4 BitwiSE AND OPEIALIONeeiiieiiiie ettt et e e s bb e e s aan e e e e s b e e e e e nbn e e e enr e e e e aareee s 94
5-5 BitWiS© XOR OPEIAtION.ccutiiitieitieet ettt ettt b et ae e b et sae e e sa et e sar e e sab e e s areesnbeeenneenaneas 95
5-6 BitWiSE OR OPEIAtIONcciiiiiieitiiee ettt e e e st e s e e e e s bt e s aaee e e e sbe e e e e br e e e eneeeeeanreee s 96
5-7 LOGICal AND OPEIAtION.....coiuiiiiiiieitiieitee ettt ettt e bt e et e e be e e b e e e abe e e be e e e areesnreeenreenaneas 98
5-8 LOGiCal OR OPEIatiONccitiiiiieitii ettt sttt s et e s e sb e e e b e e e s an e e san e e saneenane s 99
10-1 List of Passing FirSt ArQUMENT..........ccooiiiii it 159
10-2 List Of StOriNg REIUIMN VAIUE.......coiiiiiiiiiit ettt sbe e e e 160
10-3 Batch Files for Updating Library FUNCHONSoccuiiiiiiiii e 279
11-1 List Of ADAEd KEYWOIAS........eeiiiiiiie ettt b e e et e e sne e e e e b e e e e ansne e e sanns 285
11-2 L= 0T VAN 1Y oo 1= PR PPR R 287
11-3 ULilization Of MEMOIY SPACE........coi ittt s b e e s annre e e 288
11-4 List Of #Pragma DIFECHVESeiiiiiiiieiit ettt b e sb e ne e sbe e e nneeeneee 290
11-5 Number of callt Attribute Functions That Can Be Used When —QL Option Is Specified........................ 293
11-6 Restriction on callt FUNCLON USAQGE.........ccoiiiiiiiiiic e e 293
11-7 Registers to Allocate Register Variablesocooiiiiiiiiii e 296
11-8 Restrictions on Register Variables USAgEccuiiiiiiieiiiiiieeeiee e 297
11-9 Restrictions on sreg Variable USAgEccociiiiiiiiii e e 302

User's Manual U15556EJ1VOUM

17

LIST OF TABLES (2/2)

Table No. Title Page
11-10 Variables Allocated to saddr2 Area by -RD OpPtioN.......coocuiiiiiiiiieiiiie e 304
11-11 Variables Allocated to saddr2 Area by -RS OptioNcoiuiiiiiiiiiiiiee et 305
11-12 Restrictions on sreg1 Variable USAgecoociiiiiiiiiii e 307
11-13 Registers Used for noauto Function Arguments (With -ZO)c.coiiiiiiiiiii e 312
11-14 Registers Used for noauto Function Arguments (Without -ZO)cocoiiiiiiiiiiiee e 313
11-15 Restrictions on noauto Function Arguments (With -ZO) ..o 315
11-16 Restrictions on noauto Function Arguments and Automatic Variables (Without -ZO)ccccceevnneee. 315
11-17 Registers Used for norec Function Arguments: Passing Side (Without -ZO)ccccceviiiiiiiniienieee 319
11-18 Registers Used for norec Function Arguments: Receiving Side (Without -ZO)c.cccoeviiiieiiiiieeen. 320
11-19 Restrictions on norec Function Arguments (When -ZO Is Specified)ccccoveereiiieeniiieiieeneeeeee 321
11-20 Restrictions on norec Function Arguments (When -ZO Is Not Specified).........cccoiveeiiiiiiiiniieecinieee, 322
11-21 Restrictions on norec Function Automatic Variables (When -ZO Is Not Specified)cccocevivienneenne 323
11-22 Operators That Use Only Constants 0 or 1 (When Using Bit Type Variable)ccccocoviiniiiiinienn. 327
11-23 Number of Usable bit Type Variablesc.cooiiiiiiiiiiie e e 328
11-24 Operators That Use Only Constants 0 or 1 (When Using Bit Type Variables)ccccoccoveiviieiinineenn. 332
11-25 Number of Usable _ _boolean1 Type Variablesccouiuiiiiiiiiieiiiie et 333
11-26 Save/Restore Area When Interrupt FUNCEION IS USEd..........coiiiiiiiiiiiiii e 341
11-27 Storage Location of REIUIMN VAIUES.........cccueiiiiiiiii ittt 454
11-28 Location Where First Argument Is Passed (On Function Call Side)..........cccocveeiiiiiiiiiiiiieiecc e 455
11-29 List of Storing Arguments (On Function Definition Side, When -ZO Is Not Specified)...........ccccveveene 456
11-30 List of Storing Arguments (On Function Definition Side, When -ZO Is Specified)cccccevveeviinnnennn. 457
11-31 List of Registers Passing/Receiving norec Arguments (When -ZO Is Not Specified)..........ccccocvvevnenne 464
12-1 Passing Arguments (FUNCLION Call SIAE)uiiiuiiiiiiiiiiie ittt e 471
12-2 List of Storing Arguments/Automatic Variables (Inside Called Function)ccccoooiiiiiiiiinincnenn. 472
12-3 Storage Location of REIUIMN ValIUES........c..oiiiiiiiie it 474
C-1 List Of RUNEIME LIDIAMESc.eiiiiiiiiet ettt st r e e nnee e 505
D-1 List of Standard Library Stack CONSUMPLIONcicuiiiiiiiiieiiie et 510
D-2 List of Runtime Library Stack CONSUMPIONoiiiiiiiiiiiiie e 514
18 User's Manual U15556EJ1V0UM

CHAPTER 1 GENERAL

The CC78K4 C Compiler is a language processing program that converts a source program written in the C
language for the 78K/IV Series or ANSI-C into machine language. By the CC78K4 C compiler, object files or
assembler source files for the 78K/IV Series can be obtained.

1.1 C Language and Assembly Language

To have a microcontroller do its job, programs and data are necessary. These programs and data must be written
by a human being (programmer) and stored in the memory section of the microcontroller. Programs and data that
can be handled by the microcontroller are nothing but a set or combination of binary numbers that is called machine
language.

An assembly language is a symbolic language characterized by one-to-one correspondence of its symbolic
(mnemonic) statements with machine language instructions. Because of this one-to-one correspondence, the
assembly language can provide the computer with detailed instructions (for example, to improve I/O processing
speed). However, this means that the programmer must instruct each and every operation of the computer. For this
reason, it is difficult for him or her to understand the logic structure of the program at a glance, increasing the
likelihood of to make errors in coding.

High-level languages were developed as substitutes for such assembly languages. The high-level languages
include a language called C that allows the programmer to write a program without regard to the architecture of the
computer.

Compared with assembly language programs, it can be said that programs written in C have an easy-to-
understand logic structure.

C has a rich set of parts called functions for use in creating programs. In other words, the programmer can write a
program by combining these functions.

User's Manual U15556EJ1VOUM 19

CHAPTER 1 GENERAL

C is characterized by its ease of understanding by human beings. However, understanding of languages by the
microcontroller cannot be extended up to a program written in C. Therefore, to have the computer understand the C
language program, another program is required to translate C language statements into the corresponding machine
language instructions. A program that translates the C language into machine language is called a C compiler.

This C compiler accepts C source modules as inputs and generates object modules or assembler source modules
as outputs. Therefore, the programmer can write a program in C and if he or she wishes to instruct the computer up
to details of program execution, the C source program can be modified in assembly language. The flow of translation
by this C compiler is illustrated in Figure 1-1.

Figure 1-1. Flow of Compilation

Program written Program coded in a set
in C language of binary numbers
) ol o) o)

Translation program

|:| (Compiler) |:|

(C source module file) (Object module file)

(Assembler source
module file)

Program coded in a set
of binary numbers

Translation program

(Assembler) |:|

(Object module file)

20 User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

1.2 Program Development Procedure by C Compiler

Product (program) development by the C compiler requires a linker, which unites together object module files
created by the compiler, a librarian, which creates library files, and a debugger, which locates and corrects bugs
(errors or mistakes) in each created C source program.

The software required in connection with this C compiler is shown below.

o Editor...ccooiiiiiie for source module file creation
* RA78K4 assembler package

Assemblerccccooiiiiiiiiiienn. for converting assembly language into machine language
Object converter.........cccceeevuneeen. for conversion to HEX-format object module files
[Y for linking object module files
Librarianccccoevvvciiiiiicens for creating library files
e Debugger (for 78K/IV) for debugging C source module files

The product development procedure by the C compiler is as shown below.
<1> Divides the product into functions.
<2> Creates a C source module for each function.
<3> Translates each C source module.
<4> Registers the modules to be used frequently in the library.
<5> Links object module files.
<6> Debugs each module.
<7> Converts object modules into HEX-format object files.

As mentioned earlier, this C compiler translates (compiles) a C source module file and creates an object module
file or assembler source module file. By manually optimizing the created assembler source module file and
embedding it into the C source, efficient object modules can be created. This is useful when high-speed processing
is a must or when modules must be made compact.

User's Manual U15556EJ1VOUM 21

CHAPTER 1 GENERAL

Figure 1-2. Program Development Procedure by This C Compiler

C source

E Structured H
0] Include file

assembler source
| C compiler H

| Structured assembler |

S
]

Assembler -
source \ Assembler

source
Real-time OS

Object module file Library file -
I H
| Librarian |

Assemble list Library
0] H file
/ I:.

Load module file

1

simulator

List converter .
Object converter
Integrated debugger

Absolute J
assemble list - HEX-format
l] object -
l]

0
|
v

Dedicated parallel
interface/RS-232-C

A
|
\J

RS-232-C

PROM programmer

22 User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

1.3 Basic Structure of C Source Program

1.3.1 Program format

A C language program is a collection of functions. These functions must be created so that they have
independent special-purpose or characteristic actions. All C language programs must have a function main () which
becomes the main routine in C and is the first function that is called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which
consists of declarations and statements. The format of C programs is shown below.

Definition of variables/constants —— Definition of each data, variable, and macro instruction
main (arguments) — Header of function main ()
{ _
statement1;
statement2;
function1 (arguments); — Body of function main ()

function2 (arguments);

}

function1 (arguments)

{

statementi; — Function 1
statement2;

}

function2 (arguments)

{

statementi; —— Function 2
statement2;

User's Manual U15556EJ1VOUM 23

CHAPTER 1 GENERAL

An actual C source program looks like this.

#define TRUE 1

#define FALSE 0 #define XXX XXX .ovevvureeeiiiiiennnne <6> Preprocessing (macrodefinition)
#define SIZE 200

void printf (char *, int) ,-:I— XXX XXXX (XXXy XXX) teeneveerannnnnenns <7> Function prototype declarator
void putchar (char);

char mark[SIZE+1]; charxxx ... <1> Type declarator, <56> External definition

main () XX [XX] e
{
int i,prime, k, count; T INEXXX e
count = 0; XX = XX eeeiiiieieieeeeeeas
for (i = 0; 1 <= SIZE;i++) :,— for (XXXX;XX) XXX ;
mark [i] = TRUE;
for (i = 0; i <= SIZE ; i++) {
if (mark([i])
prime = i + 1 + 3; XXX = XXX + XXX + XXX...
printf (“%64”, prime); XXX (XXX)} e eneeeeeenenenennnnes
count++;
if ((count%8) = = 0) putchar ('\n');
....................... if {XXX) XXX ;o
for (k = i + prime ; k <= SIZE ; k += prime)
mark [k] = FALSE;
}
}
printf (“\n%d primes found. ”, count); XXX (XXX) ;
}
void printf (char *s, int i)
{
int j;
char *ss;
J = 1;
ss = s;
}
void putchar (char c)

char d;
d = ¢c;

...................... <2> Operator

........... <1> Type declarator
...................... <2> Operator
.......... <3> Control structure

............. <2> Operator
............. <2> Operator

<3> Control structure

<2> Operator

24

User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

<1>

<2>

<3>

<4>

<5>

<6>

<7>

Declaration of type and storage class

The data type and storage class of an identifier that indicates a data object are declared. For details, see
CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES.

Operator and expression

These are the statements that instruct the compiler to perform an arithmetic operation, logical operation,
assignment, etc. For details, see CHAPTER 5 OPERATORS AND EXPRESSIONS.

Control structure

This is a statement that specifies the program flow. C has several instructions for each of the control
structures such as Conditional control, Iteration, and Branch. For details, sese CHAPTER 6 CONTROL
STRUCTURES OF C LANGUAGE.

Structure or union

A structure or union is declared. A structure is a data object that contains several subobjects or members
that may have different types. A union is defined when two or more variables share the same memory. For
details, see CHAPTER 7 STRUCTURES AND UNIONS.

External definition

A function or external object is declared. A function is one element when a C language program is divided
by a special-purpose or characteristic action. A C program is a collection of these functions. For details,
see CHAPTER 8 EXTERNAL DEFINITIONS.

Preprocessing

This is an instruction for the compiler. #define instructs the compiler to replace a parameter that is the same
as the first operand with the second operand if the parameter appears in the program. For details, see
CHAPTER 9 PREPROCESSINGS (COMPILER DIRECTIVES).

Declaration of function prototype

The return value and argument type of a function are declared.

User's Manual U15556EJ1VOUM 25

CHAPTER 1 GENERAL

1.4 Reminders Before Program Development

Before commencing program development, keep in mind the points (limit values or minimum guaranteed values)

summarized in Table 1-1 below.

26

Table 1-1. Maximum Performance Characteristics of This C Compiler

Limit Value/Min.
No. Item
Guaranteed Value
1 Nesting of compound statements, looping statements, or conditional | 45 levels
control statements
2 Nesting of conditional translations 255 levels
3 Number of arithmetic types, structure types, pointer to qualify union | 12 levels
types or incomplete types, arrays, and function declarators in a
declaration (or any combination of these)
4 Nesting of parentheses per expression 32 levels
5 Number of characters that have a meaning as a macro name 256 characters
6 Number of characters that have a meaning as an internal or external | 249 characters
symbol name
7 Number of symbols per source module file 1,024 symbols™™’
8 Number of symbols that have block scope within a block 255 symbols™*"
9 Number of macros per source module file 10,000 macrosM*°?
10 Number of parameters per function definition or function call 39 parameters
11 Number of parameters per macro definition or macro call 31 parameters
12 Number of characters per logical source line 2048 characters
13 Number of characters within a string literal after linkage 509 characters
14 Size of one data object 65,535 bytes
15 Nesting of #include directives 8 levels
16 Number of case labels per switch statement 257 labels
17 Number of source lines per translation unit Approx. 30,000 lines
18 Number of source lines that can be translated without temporary file | Approx. 300 lines
creation
19 Nesting of function calls 40 levels
20 Number of labels within a function 33 labels

User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

Limit Value/Min.

No. ftem Guaranteed Value
21 Total size of code, data, and stack segments per object module 65,535 bytes"**
22 Number of members per structure or union 256 members
23 Number of enum constants per enumeration 255 constants
24 Nesting of structures, unions inside a structure or union 15 levels
25 Nesting of initializer elements 15 levels
26 Number of function definitions in 1 source module file 1,000
27 Level of the nest of declarator enclosed with parentheses inside a | 591

complete declarator.
28 Nesting of macros 200 levels
29 Number of —I include file path specifications 64

Notes 1. This value applies when symbols can be processed with the available memory space alone without using
any temporary file. When a temporary file is used because of insufficient memory space, this value must
be changed according to the file size.

2.
3.

This value includes the reserved macro definitions of the C compiler.
The large model provides 1,024 KB of code segments and 16 MB of data and stack segments altogether
(when the =ML option is specified). The medium model provides 1,024 KB of code segments and 64 KB

of data and stack segments altogether (when the —MM option is specified).

(—CSO0 or —CS15) can be specified for both models (the default is large model, location OFH).

User's Manual U15556EJ1VOUM

The

location

27

CHAPTER 1 GENERAL

1.5 Features of This C Compiler

This C compiler has extended functions for CPU code generation that are not supported by ANSI (American
National Standards Institute) Standard C. The extended functions of the C compiler allow the special function
registers for the 78K/IV Series to be described at the C language level and thus help shorten object code and
improve program execution speed. For details of these extended functions, sce CHAPTER 11 EXTENDED
FUNCTIONS in this manual.

Outlined here are the following extended functions that help shorten object code and improve execution speed.

e callt/__callt functions Functions can be called using the callt table area.

* Register variablescccocnnnee Variables can be allocated to registers.

* sreg/__sreg/_ _sreg1 variablesVariables can be allocated to the saddr area.

e sfrarea ..., sfr names can be used.

e noauto functions.........cccccceeveinnnes Functions that do not output code for stack frame formation can be
norec/_ _leaf functions.................. created.

e ASM statements...........ccceeeereinens An assembly language program can be described in a C source

program.
* bit type variables,.........cccccccerennne. Accessing the saddr or sfr area can be made on a bit-by-bit basis.

boolean/_ _boolean type variables,
_ _boolean1 type variables

e callf/_ _callf functions A function body can be stored in the callf area.

* Bit field declarationc...c....... A bit field can be specified with unsigned char type.

e Multiplication function..................... The code to multiply can be directly output with inline expansion.

¢ Division function.........cccccceevvinnnes The code to divide can be directly output with inline expansion.

¢ Rotate function............ccccceeiiiiniis The code to rotate can be directly output with inline expansion.

¢ Absolute address function.............. Specific addresses in the memory space can be accessed.

¢ Data insertion function Specific data and instructions can be directly embedded in the code
area.

e _ _pascal functioncccceeeuerennns The used stack is corrected on the called function side.

¢ Memory manipulation function memcopy and memset can be directly output with inline expansion.

¢ callf two-step branch function A two-step branch function is performed in the callf area.

e Three-byte address
reference/generation function Three-byte address reference/generation is performed.

An outline of the extended functions of this compiler is shown below. For details of each extended function, refer
to CHAPTER 11.

<1> callt/_ _callt functions
Functions can be called by using the callt table area. The address of each function to be called (this
function is called a callt function) is stored in the callt table from which it can be called later. This makes
code shorter than the ordinary call instruction and helps shorten object code.

<2> Register variables
Variables declared with the register storage class specifier are allocated to the register or saddr area.
Instructions to the variables allocated to a register or saddr area are shorter in code length than those to
memory. This helps shorten object and improves program execution speed as well.

28 User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

<3>

<4>

<5>

<6>

<7>

<8>

<9>

Using the saddr area

Variables declared with the keyword sreg can be allocated to the saddr area. Instructions to these sreg
variables are shorter in code length than those to memory. This helps shorten object code and also
improves program execution speed. Variables can be allocated to the saddr area also by option (only to the
saddr2 area).

sfr area
By declaring use of sfr names, manipulations on the sfr area can be described at the C source file.

noauto functions

Functions declared as noauto do not output code for preprocessing and postprocessing (stack frame
formation). By calling a noauto function, arguments are passed via registers. This helps shorten object
code and improve program execution speed as well. This function has restrictions on arguments/automatic
variables. For the details, refer to 11.5 (5) noauto function.

norec/_ _leaf functions

Functions declared as norec/_ _leaf do not output code for preprocessing and postprocessing (stack frame
formation). By calling a norec/_ _leaf function, arguments are passed via registers as much as possible.
Automatic variables to be used inside a norec/_ _leaf function are allocated to register or the saddr area.
This helps shorten object code and also improve program execution speed. This function has restrictions on
arguments/automatic variables and is not allowed to call a function. For the details, refer to 11.5 (6) norec
function.

bit type variables and boolean/_ _boolean type variables

Variables with a 1-bit storage area are generated. By using the bit type variable or boolean/_ _ boolean
type variable, the saddr2 area can be accessed in bit units.

The boolean/_ _boolean type variable is the same as the bit type variable in terms of both function and
usage.

boolean1 type variables

Variables with a 1-bit storage area are generated. By using the _ _ boolean1 type variable, the saddr1 area
can be accessed in bit units.

The _ _boolean1 type variable is the same as the bit type variable in terms of both function and usage.

ASM statements
The assembler source program described by the user can be embedded in an assembler source file to be
output by this C compiler.

<10> Interrupt functions

A vector table and an object code corresponding to the interrupt are output. This allows programming of
interrupt functions at the C source level.

<11> Interrupt function qualifier

This qualifier allows the setting of a vector table and interrupt function definitions to be described in a
separate file.

User's Manual U15556EJ1VOUM 29

CHAPTER 1 GENERAL

30

<12> Interrupt function
An interrupt disable instruction and an interrupt enable instruction are embedded in an object.

<13> CPU control instructions
Each of the following instructions is embedded in an object.
Instruction to set the value for halt to the STBC register
Instruction to set the value for stop to the STBC register
brk instruction
nop instruction

<14> callf/_ _callf function
The callf instruction stores the body of a function in the callf entry area and allows the calling of the function
with a code shorter than that with the call instruction. This improves executing speed and shortens the
object code.

<15> Usage of 16 MB expansion space
Object files that linearly access the 16 MB expansion space are generated by an option.

<16> Location function
The location of the saddr area can be changed by an option if the memory model is large or medium.

<17> Absolute address access function
Codes that access the ordinary memory space are created with direct inline expansion without resort to a
function call, and an object file is created.

<18> Bit field declaration
By specifying a bit field to be unsigned char type, the memory can be saved, object code can be shortened,
and execution speed can be improved.

<19> Function to change compiler output section name
By changing the compiler section output name, the section can be independently allocated with a linker.

<20> Binary constant description function
Binary can be described in the C source.

<21> Module name change functions
Object module names can be freely changed in the C source.

<22> Rotate function
The code to rotate the value of an expression to the object can be directly output with inline expansion.

<23> Multiplication function
The code to multiply the value of an expression to the object can be directly output with inline expansion.
This function can shorten the object code and improve the execution speed.

<24> Division function
The code to divide the value of an expression to the object can be directly output with inline expansion. This
function can shorten the object code and improve the execution speed.

User's Manual U15556EJ1VOUM

CHAPTER 1 GENERAL

<25> Data insertion function
Constant data is inserted in the current address. Specific data and instructions can be embedded in the
code area without using assembler description.

<26> Interrupt handler for RTOS
Interrupt handlers for the RX78K/IV (real-time OS) can be described. Vectors can be set (settings of
interrupt request name, function name for handlers, and stack switching) by the #pragma directive.

<27> Interrupt handler qualifier for RTOS
This qualifier allows the interrupt handler description and the vector setting for the RX78K/IV (real-time OS)
to be made in separate files.

<28> Task function for RTOS
Specified functions are interpreted as the tasks for the RX78K/IV (real-time OS) by the #pragma directive.
This allows the description of task function for RTOS with better code-efficiency at the C source level.

<29> Changing function call interface
Arguments can be passed by the previous function interface specification (using the stack only, with
CC78K4 Ver.1.00 compatibles) by specifying the -ZO option during compilation.

<30> Change of calculation method of offset of arrays and pointers
The code efficiency is improved by performing an unsigned index calculation for the offset of the arrays and
pointers (distance from the start of the array or pointer).

<31> Pascal function (_ _pascal)
The stack correction used to place arguments during the function call is performed on the called function
side, not on the side calling the function. This shortens the object code when there are function calls in
many places.

<32> Automatic pascal functionization of function call interface
_ _pascal attributes are added to all functions that can be pascal functionized.

<33> Flash area allocation method
Object files to be allocated to the flash area are generated.

<34> Flash area branch table
Startup routines and interrupt functions can be allocated to the flash area.

A function can be called from the boot area to the flash area.

<35> Function call function from boot area to flash area
A function in the flash area can be called from the boot area.

<36> Firmware ROM function
Manipulations regarding the firmware ROM function can be described at the C source level.

User's Manual U15556EJ1VOUM 31

CHAPTER 1 GENERAL

32

<37> Limiting int expansion of argument/return value
When the argument/return value of a function has the char/unsigned type, object files that do not perform
int expansion are generated. This method can shorten the object code and improve the execution speed.

<38> Memory manipulation function
Memory manipulation functions can be output to an object directly with inline expansion. This function can
shorten the object code and improve the execution speed.

<39> callf two-step branch function
Compared when a function body is allocated in the callf area, the callf/_ _callf attribute can be added to
many more functions. Therefore, this function can shorten the object code if many functions that include call
function are frequently used.

<40> Automatic callf functionization of function call interface
The _ _callf attribute is added to all functions except for the callt/_ _callt/_ _interrupt/_ _interrupt_brk/_
_rtos_interrupt functions.

<41> Three-byte address reference/generation function
Three-byte address reference/generation can be performed with a short code without using a complex cast
description.

<42> Absolute address allocation specification

The external variable that declared _ _directmap and a static variable in a function can be allocated to any
address, and multiple variables can be allocated in duplicate to the same address.

User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

This chapter explains the constituent elements of a C source module file.

A C source module file consists of the following tokens (distinguishable units in a sequence of characters).

Keywords Identifiers Constants
String literal Operators Delimiters
Header name No. of preprocesses Comment

The tokens used in a C program description example are shown below.

#include “expand. h”

extern void testb (void); EXEIN et Keyword
extern void chgb (void) ;
extern bit datal;
extern bit data2; datal, data2cccccceeeeeiiii Identifiers
void main () VOI et Keyword
{
datal = 1 ; T e Constant
data2 = 0 ; Constant
while (datal) { WHIIE . Keyword
datal = data2 ; e Delimiter
testb() ; TP PRSPPI Operator
}
if (datal && data2) { 1RSSR Keyword
chgb () ; B Operator
} (D TS Operator
}
void lprintf (char *s, int I) IPFINt e Identifier
{ CRAL, TN Keywords
int j; TS PRSP RRRRRE Identifiers
char *ss; PP TR Operator
jo=1i;
ss = S;
}
User’'s Manual U15556EJ1VOUM 33

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.1 Character Sets

(1) Character sets
Character sets to be used in C programs include a source character set to be used to describe a source file and
an execution character set to be interpreted in the execution environment.
The value of each character in the execution character set is represented by JIS code.
The following characters can be used in the source character set and execution character set.

26 uppercase letters
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

26 lowercase letters
a b ¢ d e £ g h i j k¥ 1 m

n o] P q

N
0]
o
<
=

~
N

10 decimal numbers
0o 1 2 3 4 5 6 7 8 9

29 graphic characters
L T - G R 4

; < = > ? [¥ 1] - { | } ~

and nonprintable control characters which indicate space, horizontal tab, vertical tab, form feed, etc.

Remark In character constants, string literals, and comment statements, characters other than the above may
also be used.

34 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(2) Escape sequences
Nongraphic characters used for control characters such as alert, form feed are represented by escape

sequences. Each escape sequence consists of a backslash (\) and a letter.

Nongraphic characters represented by escape sequences are shown below.

Table 2-1. List of Escape Sequences

Escape Sequence Meaning Character Code
\a Alert 07H
\b Backspace 08H
\f Form feed OCH
\n Line feed 0AH
\r Carriage return ODH
\t Horizontal tab 09H
\v Vertical tab 0BH

(3) Trigraph sequences
When a source file includes a list of the three characters (called “trigraph sequence”) shown in the left column of
the table below, the list of the three characters is converted into the corresponding single character shown in the

right column.

Table 2-2. List of Trigraph Sequence

Trigraph Sequence

Meaning

7=

#

22(

??

27)

7

?27<

77>

??-

User's Manual U15556EJ1VOUM

35

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.2 Keywords

(1) ANSI keywords
The following tokens are used by the C compiler as keywords and thus cannot be used as labels or variable

names.
auto break case char const continue
default do double else enum extern for
float goto if int long register return
short signed sizeof static struct switch
typedef union unsigned void volatile while

(2) Keywords added for the CC78K4
In this C compiler the following tokens have been added as keywords to implement its expanded functions. As
with ANSI keywords, hese tokens cannot be used as labels or variable names (when an uppercase character is
included, the token is not regarded as a keyword).
Keywords that do not start with “_ _” can be made invalid by specifying the option that enables only ANSI-C
language specification (=ZA).

__callt/callt ., Declaration of callt function
_callf/callf ., Declaration of callf function
_ SYeg/STeJ . Declaration of sreg variable

U STETL i Declaration of sreg1 variable
NOAULO..eevir e Declaration of noauto function

_leaf/norec....... Declaration of norec function
DIT tiiiiiieeeiee e Declaration of bit type variable
__boolean/boolean......cccccerernunnen. Declaration of boolean type variable
_ _booleanl....iiiiiniinieeee Declaration of boolean1 type variable
_ Interrupt ., Hardware interrupt function
_ _interrupt brk.....inn. Software interrupt function

BUSMe i asm statement

Interrupt handler for RTOS
Pascal function
Firmware ROM function

_ directmap s Absolute address allocation specification

36 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3 ldentifiers

An identifier is the name given to the following variables.

Function

Object

Tag of structure, union, or enumeration type
Member of structure, union, or enumeration type
typedef name

Label name

Macro name

Macro parameter

Each identifier can consist of uppercase letters, lowercase letters, or numeric characters including underscores.
The following characters can be used as identifiers.

There is no restriction on the maximum length of the identifier. In this compiler, however, only the first 249
characters can be identified (refer to Table 1-1 Maximum Performance Characteristics of This C Compiler).

_(underscore) abcde fghijklm
nopgrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

012345%6 7829

All identifiers must begin with other than a numerical character (namely, a letter or an underscore) and must not
be the same as any keyword.

2.3.1 Scope of identifiers
The range of an identifier within which its use becomes effective is determined by the location at which the
identifier is declared. The scope of identifiers is divided into the following four types.
Function scope
File scope
Block scope
Function prototype scope

User's Manual U15556EJ1VOUM 37

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

extern _ _ boolean datal, data2; datal, data2...........ccccoeiiiiiniiii File scope
void testb(int x); T Xttt Function prtotype scope
void main (void)
{
int cot ; T GO i —————————————— Block scope
datal = 1 ;
data2 = 0 ;
while (datal)
datal = data2;
j1 : T T e Function scope
testb (cot) ;
}
}
void testb (int x) D CUT TR Block scope
{
(1) Function scope

()

(©)

(4)

38

Function scope refers to the entirety within a function. An identifier with function scope can be referenced from
anywhere within a specified function.
Identifiers that have function scope are label names only.

File scope

File scope refers to the entirety of a translation (compiling) unit. Identifiers that are declared outside a block or
parameter list all have file scope. An identifier that has file scope can be referenced from anywhere within the
program.

Block scope

Block scope refers to the range of a block (a sequence of declarations and statements enclosed by a pair of
curly braces { } which begins with the opening brace and ends with the closing brace).

Identifiers that are declared inside a block or parameter list all have block scope. An identifier that has block
scope is effective until the innermost brace pair including the declaration of the identifier is closed.

Function prototype scope

Function prototype scope refers to the range of a declared function from beginning to end. Identifiers that are
declared inside a parameter list within a function prototype all have function prototype scope. An identifier that
has function prototype scope is effective within a specified function.

User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.2 Linkage of identifiers

The linkage of an identifier refers to the case when the same identifier declared more than once in different

scopes or in the same scope can be referenced as the same object or function. By being linked an identifier is
regarded to be one and the same. An identifier may be linked in the following three different ways: External linkage,

Internal linkage and No linkage.

(1

)

3)

External linkage

External linkage refers to identifiers to be linked in translation (compiling) units that constitute the entire program
and as a collection of libraries.

The following identifiers are examples of external linkage.

¢ The identifier of a function declared without a storage class specification.

* The identifier of an object or function declared as extern, which has no storage class specification

¢ The identifier of an object which has file scope but has no storage class specification

Internal linkage

Internal linkage refers to identifiers to be linked within one translation (compiling) unit.

The following identifier is an example of internal linkage.

e The identifier of an object or function that has file scope and contains the storage class specifier static.

No linkage

An identifier that has no linkage to any other identifier is an inherent entity.

Examples of identifiers that have no linkage are as follows.

¢ An identifier that does not refer to a data object or function

¢ An identifier declared as a function parameter

¢ The identifier of an object that does not have the storage class specifier extern inside a block

2.3.3 Name space for identifiers

All identifiers are classified into the following “name spaces”.

o Labelname.......ccccocviiiiiiiiini e, Distinguished by a label declaration.

¢ Tag name of structure, union, or enumeration Distinguished by the keyword struct, union or enum

* Member name of structure or union Distinguished by the dot (.) operator or arrow (—) operator.

* Ordinary identifiers (other than above)............ Declared as ordinary declarators or enumeration type constants.

2.3.4 Storage duration of objects

Each object has a storage duration that determines its lifetime (how long it can remain in memory). This storage

duration is divided into the following two categories: Static storage duration and Automatic storage duration.

(1) Static storage duration

Before executing an object program that has a static duration, an area is reserved for objects and values to be
stored are initialized once. The objects exist throughout the execution of the entire program and retain the
values last stored.

Objects that have a static storage duration are as shown below.

* Objects that have external linkage

* Objects that have internal linkage

* Objects declared by the storage class specifier static

User's Manual U15556EJ1VOUM 39

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(2) Automatic storage duration
For objects that have automatic storage duration, an area is reserved when they enter a block to be declared.
If initialization is specified, the objects are initialized as they enter from the beginning of the block. In this case, if
any object enters the block by jumping to a label within the block, the object will not be initialized.
For objects that have automatic storage duration, the reserved area will not be guaranteed after the execution of
the declared block.
Objects that have automatic storage duration are as follows.
* Objects that have no linkage
* Objects declared inside a block without the storage class specifier static

2.3.5 Data types
A type determines the meaning of the value to be stored in each object.
Data types are divided into the following three categories depending on the variable to be declared.

® ODbJECEtYPE ..oveeeeiiieeeee e Type that indicates an object with size information
® FUNCHON tYPe ...oveieiiiieeee e Type that indicates a function

¢ Incomplete type Type that indicates an object without size information

e Basic types —T1— Integral types ——char type
(Arithmetic types) — Signed signed char
integral short int
types int

long int
— Unsigned integral types
(specified by unsigned)

— Enumeration type

— Floating point types—7— float
— double

—long double

e Character types char
i: signed char
unsigned char
* Incomplete types — Array with an indefinite object size, structure, union,
and void type
e Derived types ——— Array type
Structure type j_ Aggregate type
Union type
Function type
Pointer type
e Scalar types ——I__ Basic (Arithmetic types)
Pointer type

40 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(1) Basic types
A collection of basic data types is also referred to as “arithmetic types”. The arithmetic types consist of integral

types and floating-point types.

(a) Integral types
Integral data types are subdivided into four types. Each of these types has a value represented by the

binary numbers 0 and 1.

e char type
* Signed integral type
* Unsigned integral type

e Enumeration type

(i)

(i)

~

char type

The char the type has a sufficient size to store any character in the basic execution character set.
The value of the character to be stored in a char type object becomes positive. Data other than
characters is handled as an unsigned integer. In this case, however, if an overflow occurs, the
overflowed part will be ignored.

Signed integral type
The signed integral type is subdivided into the following four types.
* signed char

e shortint
e int
* long int

An object declared with the signed char type has an area of the same size as the char type without
a qualifier.

An int object without a qualifier has a size natural to the CPU architecture of the execution
environment. A signed integral type data has its corresponding unsigned integral type data. Both
share an area of the same size. The positive number of a signed integral type data is a partial
collection of unsigned integral type data.

Unsigned integral data

The unsigned integral type is a data defined with the unsigned keyword. No overflow occurs in any
computation involving unsigned integral type data. This is because if the result of a computation
involving unsigned integral type data becomes a value which cannot be represented by an integral
type, the value will be divided by the maximum number which can be represented by an unsigned
integral type plus 1 and substituted with the remainder in the result of the division.

Enumeration type

Enumeration is a collection or list of named integer constants. An enumeration type consists of one
or more sets of enumeration.

User's Manual U15556EJ1VOUM 41

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

42

(b) Floating-point types
The floating-point types are subdivided into three types.
e float
e double
¢ long double
In this compiler, double and long double types as well as the float type are supported as a floating-point
expression for the single precision normalized number that is specified in ANSI/IEEE 754-1985. Thus, float,
double, and long double types have the same value range.

Table 2-3. List of Basic Data Types

Type Value Range
(signed) char —-128 to +127
unsigned char 0to 255
(signed) short int -32768 to +32767
unsigned short int 0 to 65535
(signed) int -32768 to +32767
unsigned int 0 to 65535
(signed) long int —2147483648 to +2147483647
unsigned long int 0 to 4294967295
float 1.17549435E-38F to 3.40282347E+38F
double 1.17549435E-38F to 3.40282347E+38F
long double 1.17549435E-38F to 3.40282347E+38F

* The signed keyword may be omitted. However, with the char type, it is judged as signed char or
unsigned char depending on the condition at compilation.

* short int data and int data are handled as data that have the same value range but are of
different types.

* unsigned short int data and unsigned int data are handled as data that have the same value
range but are of different types.

» float, double, and long double data are handled as data that have the same value range but are
of different types.

User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(i) Floating-point number (float type) specifications
* Format
The floating-point number format is shown below.

(Higher address) | s e m (Lower address)

31 30 23 22 0
The numerical values in this format are as follows.

(Value of sign) (Value of exponent)

1) * (Value of mantissa) *2

s: Sign (1 bit)
0 for a positive number and 1 for a negative number.

e: Exponent (8 bits)
An exponent with a base of 2 is expressed as a 1-byte integer (expressed by two’s complement
in the case of a negative), and used after having a further bias of 7FH added. These
relationships are shown in Table 2-4 below.

Table 2-4. Exponent Relationships

Exponent (Hexadecimal) Value of Exponent
FE 127
81 2
80 1
7F 0
7E -1
01 -126

m: Mantissa (23 bits)
The mantissa is expressed as an absolute value, with bit positions 22 to 0 equivalent to the 1st to
23rd places of a binary number. Except for when the value of the floating point is 0, the value of
the exponent is always adjusted so that the mantissa is within the range of 1 to 2 (normalization).
The result is that the position of 1 (i.e. the value of 1) is always 1, and is thus represented by
omission in this format.

e Zero expression
When exponent = 0 and mantissa = 0, +0 is expressed as follows.

(Value of sign)

(-1) "0

User's Manual U15556EJ1VOUM 43

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

¢ Infinity expression
When exponent = FFH and mantissa = 0, +~ is expressed as follows.

(Value of sign)

1) *e

¢ Unnormalized value
When exponent = 0 and mantissa # 0, the unnormalized value is expressed as follows.

(Value of sign) -126

1) * (Value of mantissa) *2

Remark The mantissa value here is a number less than 1, so bit
positions 22 to 0 of the mantissa express as is the 1st to
23rd decimal places.

¢ Not-a-number (NaN) expression
When exponent = FFH and mantissa # 0, NaN is expressed, regardless of the sign.

* Operation result rounding

Numerical values are rounded down to the nearest even number. If the operation result cannot be

expressed in the above floating-point format, round to the nearest expressible number.

If there are two values that can express the differential of the prerounded value, round to an even

number (a number whose lowest binary bit is 0).

e Operation exceptions
There are five types of operation exceptions, as shown below.

Table 2-5. List of Operation Exceptions

Exception Return Value
Underflow Unnormalized nhumber
Inexact +0
Overflow +oo
Zero division +oo
Operation impossible Not-a-number (NaN)

Calling the matherr function causes a warning to appear when an exception occurs.

(2) Character types
The character data types include the following three types.
e char
* signed char
¢ unsigned char

44 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(3) Incomplete types
The incomplete data types include the following four types.

4

®)

Arrays with indefinite object size
Structures

Unions

void type

Derived types

The derived types are divided into the following three categories.

(a)

Array type
Structure type
Union type
Function type
Pointer type

Aggregate type
The aggregate type is subdivided into two types.
Array type and Structure type. An aggregate type data is a collection of member objects to be taken
successively.
i) Array type
The array type continuously allocates a collection of member objects called element types. Member
objects all have an area of the same size. The array type specifies the number of element types and the
elements of the array. It cannot create an incomplete type array.
i) Structure type
The structure type continuously allocates member objects each differing in size. Each member object
can be specified by name.
Union type
The union type is a collection of member objects that overlap each other in memory. These member objects
differ in size and name and can be specified individually.
Function type
The function type represents a function that has a specified return value. Function type data specifies the
type of return value, the number of parameters, and the type of parameter. If the type of return value is T,
the function is referred to as a function that returns T.
Pointer type
The pointer type is created from a function type object type called a referenced type as well as from an
incomplete type. The pointer type represents an object. The value indicated by the object is used to
reference the entity of a referenced type.
A pointer type data created from the referenced type T is called a pointer to T.

Scalar types
The basic types (arithmetic types) and pointer type are collectively called the scalar types. The scalar types

include the following data types.

char type

Signed integral type
Unsigned integral type
Enumeration type
Floating point type
Pointer type

User's Manual U15556EJ1VOUM 45

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.3.6 Compatible type and composite type

(1) Compatible type
If two types are the same, they are said to be compatible or have compatibility. For example, if two structures,
unions, or enumeration types that are declared in separate translation (compiling) units have the same number of
members, the same member name and compatible member types, they have a compatible type. In this case, the
individual members of the two structures or unions must be in the same order and the individual members
(enumerated constants) of the two enumerated types must have the same values.
All declarations related to the same objects or functions must have a compatible type.

(2) Composite type
A composite type is created from two compatible types. The following rules apply to the composite type.
¢ If either of the two types is an array of known type size, the composite type is an array of that size.
¢ |f only one of the types is a function type which has a parameter type list (declared with a prototype), the
composite type is a function prototype that has the parameter type list.
e |f both types have a parameter type list (i.e., functions with prototypes), the composite type is one with a
prototype consisting of all information that can be combined from the two prototypes.

[Example of composite type]

Assume that two declarations that have file scope are as follows.

int £ (int (*) (), double (*) [3]) ;
int £ (int (*) (char *), double (*) []);

The composite type of the function in this case becomes as follows.

int £ (int (*) (char *), double (*) [3]) ;

2.4 Constants

A constant is a variable that does not change in value during the execution of the program, and its value must be
set beforehand. The type for each constant is determined according to the format and value specified for the
constant. The following four constant types are available.

¢ Floating-point constants
* Integer constants

¢ Enumeration constants
e Character constants

46 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.4.1 Floating-point constant
A floating-point constant consists of an effective digit part, exponent part, and floating-point suffix.

Effective digit part: Integer part, decimal point, and fraction part
Exponent part: e or E, signed exponent
Floating-point suffix: f/F (float)

I/L (long double)

If omitted (double)

The signed exponent of the exponent part and the floating-point suffix can be omitted.
Either the integer part or fraction part must be included in the effective digits. Also, either the decimal point or
exponent part must be included (example: 1.23F, 2e3).

2.4.2 Integer constant

An integer constant starts with a number and does not have a decimal point or exponent part. An unsigned suffix
can be added after the integer constant to indicate that the integer constant is unsigned. A long suffix can be added
after the integer constant to indicate that the integer constant is long.

There are the following three types of integer constants.

e Decimal constant: Decimal number that starts with a number other than 0
Decimal number = 123456789
* Octal constant: Integer suffix 0 + octal number
Octal number = 01234567
* Hexadecimal constant: Integer suffix Ox or 0X + hexadecimal number
Hexadecimal number = 0123456789
abcdef ABCDEF

Unsigned suffix
u U

Long suffix
1L

(1) Decimal constant
A decimal constant is an integer value with a base (radix) of 10 and must begin with a number other than 0
followed by any numbers 0 through 9 (example: 56UL).

(2) Octal constant
An octal constant is an integer value with a base of 8 and must begin with 0 followed by any numbers 0 through
7 (example: 034U).

(3) Hexadecimal constant
A hexadecimal constant is an integer value with the base of 16 and must begin with 0x or 0X followed by any
numbers 0 through 9 and a through f or A through F, which represent 10 through 15 (example: OxF3).

The type of integer constant is regarded as the first of the “representable type” shown below.

In this compiler, the type of the unsubscripted constant can be changed to char or unsigned char depending on
the compile condition (option).

User's Manual U15556EJ1VOUM 47

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

(Integer constant) (Representable type)
¢ Unsuffixed decimal number...........ccccceevvenieenne. int, long int, unsigned long int
¢ Unsuffixed octal, hexadecimal number................. int, unsigned int, long int, unsigned long int
o Suffixed Uor U.....oeeiiiiiiiiiie e unsigned int, unsigned long int
o Suffixed [Or L...cooeiieiiieee e long int, unsigned long int
e Suffixed u or U, and suffixed lorLcccceeenee. unsigned long int

2.4.3 Enumeration constants

Enumeration constants are used for indicating an element of an enumeration type variable, that is, the value of an
enumeration type variable that can have only a specific value indicated by an identifier.

The enumeration type (enum) is whichever is the first type from the top of the list of three types shown below that
can represent all the enumeration constants. The enumeration constant is indicated by the identifier.

¢ signed char
e unsigned char

¢ signed int

It is described as ‘enum enumeration type {list of enumeration constant}’.

Example enum months {January = 1, February, March, April, May};

When the integer is specified with =, the enumeration variable has the integer value, and the
following value of enumeration variable has that integer value + 1. In the example shown above,
the enumeration variable has 1, 2, 3, 4, 5, respectively. When there is not ‘= 1’, each constant has
0, 1,2, 3, 4, 5, respectively.

2.4.4 Character constants

A character constant is a character string that includes one or more characters enclosed in a pair of single quotes
asin ‘X’ or ‘ab’.

A character constant does not include single quote’, backslash (¥ or\), and line feed character (¥n). To represent
these characters, escape sequences are used. There are the following three types of escape sequences.

» Simple escape sequence: \’ \” \? \¥
\a \b \f \n \r \t \v
¢ Octal escape sequence: \octal number [octal number octal number]

(example: \012, \0"“*")

¢ Hexadecimal escape sequence: \x hexadecimal number

(example: \xFF"*?)

Notes 1. Null character
2. In this compiler, \xFF represents —1. If the condition (option) that regards char as unsigned char is
added, however, it represents +255.

48 User's Manual U15556EJ1VOUM

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.5 String Literals

A string literal is a string of zero or more characters enclosed in a pair of double quotes as in “xxx”. (Example:
xy2’)

A single quote (') is represented by the single quotation mark itself or by the escape sequence \, whereas a
double quote (”) is represented by the escape sequence \".

Array elements have a char type string literal and are initialized by assigned tokens (example: char array [] =
“abc”;).

2.6 Operators

The operators are shown below.

[] () ->

++ - - & * + - ~ ! sizeof
/ % << >> < > <= >= == =
" | && ||

?

= *= /= %= += -= <<= >>=

&= *= | =

/ # #H#

The[], (), and ?: operators must always be used in pairs.

An expression may be described in brackets “[J”, in parentheses “()”, or between “?” and “”.

The # and ## operators are used only for defining macros in preprocessings. (For the description, refer to
CHAPTER 5 OPERATORS AND EXPRESSIONS.)

2.7 Delimiters

A delimiter is a symbol that has an independent syntax or meaning. However, it never generates a value.
The following delimiters are available for use in C.

1) {} = , : = ; . #

An expression declaration or statement may be described in brackets “[]”, parentheses “()", or braces “{ }’,
These delimiters must always be used in pairs as shown above. The delimiter # is used only for preprocessings.

User's Manual U15556EJ1VOUM 49

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

2.8 Header Name

A header name indicates the name of an external source file. This name is used only in the preprocessing
directive “#include”.

An example of the #include directive header name is shown below. For details of each #include directive, refer
to 9.2 Source File Inclusion Directive.

#include <header name>
#include “header name”

2.9 Comment

A comment refers to a statement to be included in a C source module for information only. It begins with “/*” and
ends with “*/”. The part after “//” to the line feed can be identified as a comment statement using the —ZP option.

Example /* comment statement */
//comment statement

50 User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

This chapter explains how data (variables) or functions to be used in C should be declared as well as the scope
for each data or function. A declaration means the specification of an interpretation or attribute for an identifier or a
collection of identifiers. A declaration to reserve a storage area for an object or function named by an identifier is

referred to as a “definition”.

An example of a declaration is shown below.

#define TRUE 1
#define FALSE 0
#define SIZE200

void main (void)

{

auto int i, prime, k; /* declaration of automatic variables */

for (1 =0 ; 1 <= SIZE ; i++)

mark [i1] = TRUE ;

A declaration is configured with a storage class specifier, type specifier, initialize declarator, etc. The storage
class specifier and type specifier specify the linkage, storage duration, and the type of entity indicated by the
declarator. An initialize declarator list is a list of declarators delimited with a comma. Each declarator may have
additional type information or initializer or both.

If an identifier for an object is declared to have no linkage, the type of the object must be perfect (the object with
information related to the size) at the end of the declarator or initialize declarator (if it has an initializer).

User's Manual U15556EJ1VOUM 51

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.1 Storage Class Specifiers

A storage class specifier specifies the storage class of an object. It indicates the storage location of a value that

the object has, and the scope of the object. In a declaration, only one storage class specifier can be described. The

foll

owing five storage class specifiers are available.

e typedef
e extern
e static
® auto

e register

(1)

)

@)

4

®)

52

typedef
The typedef specifier declares a synonym for the specified type. See 3.6 below for details of the typedef
specifier.

extern
The extern specifier indicates (tells the compiler) that the variable immediately before this specifier is declared
elsewhere in the program (i.e., an external variable).

static

The static specifier indicates that an object has static storage duration. For an object that has static storage
duration, an area is reserved before the program execution and the value to be stored is initialized only once.
The object exists throughout the execution of the entire program and retains the value last stored in it.

auto

The auto specifier indicates that an object has automatic storage duration. For an object that has automatic
storage duration, an area is reserved when the object enters a block to be declared.

At entry into the declared block from its top, the object is initialized if so specified. If the object enters the block
by jumping to a label within the block, the object will not be initialized.

The area reserved for an object that has automatic storage duration will not be guaranteed after the execution of
the declared block.

register

The register specifier indicates that an object is assigned to a register of the CPU. With this C compiler, it is
allocated to the register or saddr area of the CPU. See CHAPTER 11 EXTENDED FUNCTIONS for details of
register variables.

User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2 Type Specifiers

A type specifier specifies (or refers to) the type of an object. The following type specifiers are available.

e void

e char

e short

e int

e long

e float

e double

e long double

e signed

e unsigned

e structure or union specifier
e enumeration specifier

e typedef name

In this C compiler, the following type specifiers have been added.

* bit/boolean/ boolean/ booleanl

User's Manual U15556EJ1VOUM

53

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

The following explains the meaning of each type specifier and the limit values that can be expressed with this

compiler (the values enclosed in the parentheses). Since this compiler supports only the single precision of IEEE Std

754-1985 for floating-point operations, double and long double data are regarded to have the same format as those

of float data.

VOLA i Collection of null values

ChAT ciiei e Size of the basic character set that can be stored

signed Char ..o Signed integer (—128 to +127)

unsigned Char...ccocoeieeeeeenn Unsigned integer (0 to 255)

short, signed short, short int,

signed short int.........ecn. Signed integer (32768 to +32767)

unsigned short, unsigned short int Unsigned integer (0 to 65535)

int, signed, signed int Signed integer (—32768 to +32767)

unsigned, unsigned intcccceeeeinn Unsigned integer (0 to 65535)

long, signed long, long int,

signed long int .. Signed integer (—2147483648 to +2147483647)

unsigned long, unsigned long int... Unsigned integer (0 to 4294967295)

Sl o Y- RSSO Single precision floating-point number (1.17549435E-38F to
3.40282347E+38F)

o L b o S Double precision floating-point number (1.17549435E—-38F to
3.40282347E+38F)

10Ng AOUDLE iiiiiiiieeeiiieeeeeeieeesreeeeeeeneeeeeeenes Extended precision floating-point number (1.17549435E-38F to
3.40282347E+38F)

structure/union Specifier..........cccernnen. Collection of member objects

enumeration SPECIfierccooooviiiiiiiinnnnnnn. Collection of int type constants

typedef NAMEcocceeiiiiiieeeer e Synonym of specified type

bit/boolean/ _boolean/_ _booleanl Integers represented with a single bit (0 to 1)

54

Type specifiers delimited with a comma have the same size.

User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.2.1 Structure specifier and union specifier

Both the structure specifier and union specifier indicate a collection of named members (objects). These member

objects can have different types from one another.

(1

Structure specifier

The structure specifier declares a collection of two or more different types of variables as one object. Each type
of object is called a member and can be given a name. For members, continuous areas are reserved in the
order of their declaration.

Align data is inserted by specifying the -RP option.

A structure is declared as follows. The declaration will not yet allocate memory since it does not have a list of
structure variables. For the definition of the structure variables, refer to CHAPTER 7 STRUCTURES AND
UNIONS.

struct identifier {member declaration list};

Example of structure declaration

struct tnode {
int count;

struct tnode *left, *right;

}i

()

Union specifier

The union specifier declares a collection of two or more different types of variables as one object. Each type of
object is called a member and can be given a name. The members of a union overlap each other in area,
namely, they share the same area.

A union is declared as follows. The declaration will not yet allocate memory since it does not have a list of union
variables. For the definition of the union variables, refer to CHAPTER 7 STRUCTURES AND UNIONS.

union identifier {member declaration list};

Example of union declaration

union u tag {
int varl ;

long var2 ;

}i

Each member object can be any type other than the incomplete types or function types. A member can be
declared with the number of bits specified. A member with the number of bits specified is called a bit field.

In this compiler, extended functions related to bit field declaration have been added. For details, refer to 11.5
(19) Bit field declaration.

User's Manual U15556EJ1VOUM 55

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

(3) Bit field
A bit field is an integral type area consisting of a specified number of bits. For the bit field, int type, unsigned int
type, and signed int type data can be specified."*' The MSB of an int field which has no qualifier or a signed
int field will be judged as a sign bit."**?
If two or more bit fields exist, the second and subsequent bit fields are packed into the adjacent bit positions,
provided there is an ample space within the same memory unit. By placing an unnamed bit field with a width of
0, the next bit field will not be packed into a space within the same memory unit. An unnamed bit field has no
declarator and declares a colon and a width only.

The unary & operator (address) cannot be applied to a bit field object.

Notes 1. In this compiler, char type, unsigned char type, and signed char type can also be specified. All of
them are regarded as unsigned type since this compiler does not support sighed type bit fields.
2. In this compiler, the direction of bit field allocation can be changed using the compiler option —RB (for
details, refer to CHAPTER 11 EXTENDED FUNCTIONS).

The following shows an example of a bit field.

struct data {
unsigned int a:2;
unsigned int b:3;
unsigned int c:1;

} nol ;

3.2.2 Enumeration specifiers
An enumeration type specifier indicates a list of objects to be put in sequence. Objects to be declared with the

enum specifier will be declared as constants that have int types.
The enumeration specifier is declared as shown below.

enum [identifier] {enumerator list}

Objects are declared according to an enumerator list. Values are defined for all objects in the list in the order of
their declaration by assigning the value of 0 to the first object and the value of the previous object plus 1 to the 2nd
and subsequent objects. A constant value may also be specified by “=".

In the following example, “hue” is assumed as the tag name of the enumeration, “col” as an object that has this
(enum) type, and “cp” as a pointer to an object of this type. In this declaration, the values of the enumeration

become “{0, 1, 20, 21}".

56 User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

enum hue {
chartreuse,
burgundy,
claret=20,

winedark

enum hue col, *cp ;
void main (void)
col = claret ;
cp = &col ;
/*...*/ (*cp != burgundy) /*...*/

3.2.3 Tags

A tag is a name given to a structure, union, or enumeration type. A tag has a declared data type and objects of
the same type can be declared with a tag.

The identifier in the following declaration is a tag name.

structure/union identifier {member declaration list}
or
enum identifier {enumerator list}

A tag has the contents of the structure/union or enumeration defined by a member. In the next and subsequent
declarations, the structure of a struct, union, or enum type becomes the same as that of the tag's list. In the
subsequent declarations within the same scope, the list enclosed in braces must be omitted. The following type
specifier is undefined with respect to its contents and thus the structure or union has an incomplete type.

struct/union identifier

A tag to specify the type of this type specifier can be used only when the object size is unnecessary. This is
because by defining the contents of the tag within the same scope, the type specification becomes incomplete.

In the following example, the tag “tnode” specifies a structure that includes pointers to an integer and two objects
of the same type.

struct tnode {
int count;
struct tnode *left, *right ;

}i

The next example declares “s” as an object of the type indicated by the tag (tnode) and “sp” as a pointer to the
object of the type indicated by the tag. By this declaration, the expression “sp — left” indicates a pointer to “struct
tnode” on the left of the object pointed to by “sp” and the expression “s.right — count” indicates “count”, which is a
member of “struct tnode” on the right of “s”.

User's Manual U15556EJ1VOUM 57

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

typedef struct tnode TNODE;
struct tnode ({
int count ;
struct tnode *left, *right ;
}i
TNODE s *sp;
void main (void)
sp = left = sp — right;

s.right — count = 2;

3.3 Type Qualifiers

Two type qualifiers are available: const and volatile. These type qualifiers affect left-side values only.

Using a left-side value that has a non-const type qualifier cannot change an object that has been defined with a
const type qualifier. Using a left-side value that has a non-volatile type qualifier cannot reference an object that has
been defined with a volatile type qualifier.

An object that has a volatile qualifier type can be changed by a method not recognizable by the compiler or may
have other unnoticeable side effects. Therefore, an expression that references this object must be strictly evaluated
according to the sequence rules that regulate abstractly how programs written in C should be executed. In addition,
the values to be stored last in the object at every sequence point must be in agreement with those determined by the
program, except for the changes due to factors unrecognizable by the compiler as mentioned above.

If an array type is specified with type qualifiers, the qualifiers apply to the array members, not the array itself.

No type qualifier can be included in the specification of a function type. However, callt
noauto, norec, _ _ leaf interrupt interrupt_brk
unique to this compiler mentioned in 2.1 Keywords, can be included as type qualifiers.

callt, callf callf,

’ — — y — —

rtos_interrupt, _ _pascal, which are the type qualifiers

sreg, _ _sreg, _ _sregl, and _ _directmap are also type qualifiers.
In the following example, “real_time_clock” can be changed by hardware, but operations such as assignment,
increment, and decrement are not possible.

extern const volatile int real_time_clock;

An example of modifying aggregate type data with type qualifiers is shown below.

const struct s { int mem;} c¢s = { 1 };

struct s ncs; /* object ncs is changeable */

typedef int A [2] [3];

const A a = { {4, 5, 6}, {7, 8, 9} };/*arrayof const int array */
int *pi;

const int *pci;

ncs = cs; /* correct */

cs = ncs; /* violates restriction of left-side value which has modifiable assignment operator */
pi = &ncs. mem; /* correct */

pi = &cs. mem; /* violates restriction of the type of assignment operator = */

pci = &cs. mem; /* correct */

pi = alo0]; /* incorrect:a[0] has “const int *” type */

58 User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.4 Declarators

A declarator declares an identifier. Here, pointer declarators, array declarators, and function declarators are
mainly discussed. The scope of an identifier and a function or object that has a storage duration and a type are
determined by a declarator.

A description of each declarator is given below.

3.4.1 Pointer declarators
A pointer declarator indicates that an identifier to be declared is a pointer. A pointer points to (indicates) the
location where a value is stored. Pointer declaration is performed as follows.

* type qualifier list identifier

By this declaration, the identifier becomes a pointer to T1.
The following two declarations indicate a variable pointer to a constant value and an invariable pointer to a
variable value, respectively.

const int *ptr to constant;

int *const constant ptr;

The first declaration indicates that the value of the constant “const int” pointed by the pointer “ptr_to_constant”
cannot be changed, but the pointer “ptr_to_constant” itself may be changed to point to another “const int”. Likewise,
the second declaration indicates that the value of the variable “int” pointed by the pointer “constant_ptr” may be
changed, but the pointer “constant_ptr” itself must always point to the same position.

The declaration of the invariable pointer “constant_ptr” can be made distinct by including a definition for the
pointer type to the int type data.

The following example declares “constant_ptr” as an object that has a const qualifier pointer type to int.

typedef int *int ptr;

const int ptr constant ptr;

3.4.2 Array declarators
An array declarator declares to the compiler that an identifier to be declared is an object that has an array type.
Array declaration is performed as shown below.

type identifier [constant expression]

By this declaration, the identifier becomes an array that has the declared type. The value of the constant
expression becomes the number of elements in the array. The constant expression must be an integer constant
expression which has a value greater than 0. In the declaration of an array, if a constant expression is not specified,
the array becomes an incomplete type.

In the following example, a char type array “a[]’, which consists of 11 elements and a char type pointer array

“ap[1", which consists of 17 elements, have been declared.

char al11l], *apl17];

User's Manual U15556EJ1VOUM 59

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

In the following two examples of declarations, “x” in the first declaration specifies a pointer to an int type data and
“y” in the second declaration specifies an array to an int type data which has no size specification and is to be
declared elsewhere in the program.

extern int *x;

extern int y [1;

3.4.3 Function declarators (including prototype declarations)

A function declarator declares the type of return value, argument, and the type of the argument value of a function
to be referenced.

Function declaration is performed as follows.

type identifier (parameter list or identifier list)

By this declaration, the identifier becomes a function that has the parameter specified by the parameter type list
and returns the value of the type declared before the identifier. Parameters of a function are specified by a
parameter identifier list. By these lists, an identifier, which indicates the argument and its type, are specified. A
macro defined in the header file “stdarg.h” converts the list described by the ellipsis (, ...) into parameters. For a
function that has no parameter specification, the parameter list will become “void .

3.5 Type Names

A type name is the name of a data type that indicates the size of a function or object. Syntax-wise, it is a function
or object declaration less identifiers.

Examples of type names are given below.

Nt Specifies an int type.

o Nt Specifies a pointer to an int type.

o Nt *[8] . Specifies an array that has three pointers to an int type.

o int (") [B]cceeeeiieenieens Specifies a pointer to an array that has three int types.

LI 1] el (R O Specifies a function that returns a pointer to an int type that has no parameter
specification.

e int (*) (void)............... Specifies a pointer to a function that returns an int type that no parameter specification.

e int (*const[]) (unsignedint, ...) Specifies an indefinite number of arrays that have one parameter of unsigned

int type and an invariable pointer to each function that returns an int type.

3.6 typedef Declarations

The typedef keyword defines that an identifier is a synonym to a specified type. The defined identifier becomes a
typedef name.
The syntax of typedef names is shown below.

typedef type identifier;

60 User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

In the following example, “distance” is an int type, the type of “metricp” is a pointer to a function that returns an int
type that has no parameter specification, the type of “z” is a specified structure, and “zp” is a pointer to this structure.

typedef int MILES, KLICKSP () ;

typedef struct {long re, im} complex;
VARV

MILES distance;

extern KLICKSP *metricp;

complex z, *zp;

In the following example, the typedef name t is declared with a signed int type, and the typedef name plain is
declared with an int type, and a structure with three bit field members is declared. The bit field members are as
follows.

* Bit field member with name t and the value 0 to 15

* Bit field member without a name and the const qualified value —16 to +15 (if accessed)

* Bit field member with name r and the value —16 to +15

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;

const t:5;

plain r:5;

}i

In this example, these two bit field declarations differ in that the first bit field declaration has unsigned as the type
specifier (therefore, t becomes the name of the structure member), and the second bit field declaration, on the other
hand, has const as the type qualifier (qualifies t which can be referred to as the typedef name). After this
declaration, if:

t £(t (v));
long t;

is found within the effective range, the function f is declared as “function that has one parameter and returns signed
int”, and the parameter is declared as “pointer type for the function that has one parameter and returns signed int”.
The identifier t is declared as long type.

typedef names may be used to facilitate program reading. For example, the following three declarations for the
function signal all specify the same type as the first declaration which does not use typedef.

typedef void £fv(int) ;
typedef void (*pfv) (int) ;

void (*signal (int, wvoid (*) (int))) (int);
fv *signal (int, fv *);

pfv signal (int, pfv);

User's Manual U15556EJ1VOUM 61

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

3.7 Initialization

Initialization refers to setting a value in an object beforehand. An initializer carries out the initialization of an
object.
Initialization is performed as follows.

object = {initializer list}

An initializer list must contain initializers for the number of objects to be initialized.

All expressions in initializers or an initializer list for objects that have static storage duration and objects that have
an aggregate type or a union type must be specified with constant expressions.

Identifiers that declare block scope but have external or internal linkage cannot be initialized.

(1) Initialization of objects which have a static storage duration
If no attempt is made to initialize an arithmetic type object that has static storage duration, the value of the object
will be implicitly initialized to 0.
Likewise, a pointer type object that has a static storage duration will be initialized to a null pointer constant.

Example unsigned int gvall; /* initialized by 0 */
static int gval2; /* initialized by 0 */
void func (void) {
static char aval; /* initialized by 0 */
}

(2) Initialization of objects that have an automatic storage duration

The value of an object that has automatic storage duration becomes undefined and will not be guaranteed if it is
not initialized.

Example void func (void) {
char aval; /*undefined at this point */
aval = 1; /* initialized to 1 */
!

(3) Initialization of character arrays
A character array can be initialized by a char string literal (char string enclosed with “ ”). Likewise, a character
string in which a series of char string literals are contained initializes the individual members or elements of an
array.
In the following example, the array objects “s” and “t” with no type qualifier are defined and the elements of each
array will be initialized by a char string literal.

char s[] = “abec”, t[3] = “abc” ;

62 User's Manual U15556EJ1VOUM

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

The next example is the same as the above example of array initialization.

Char s[1 = {‘a’, ‘b’, ‘c’, *\0'},
t[] - { \arl \bl, ‘C'};

The next example defines p as “pointer to char” type and the member is initialized by a character string literal so
that the length indicates 4 “char array” type objects.

char *p = “abc” ;

(4) Initialization of aggregate or union type objects

e Aggregate type
An aggregate type object is initialized by a list of initializers described in ascending order of subscripts or
members. The initializer list to be specified must be enclosed in braces.
If the number of initializers in the list is less than the number of aggregate members, the members not
covered by the initializers will be implicitly initialized just the same as an object that has static storage
duration.
With an array of an unknown size, the number of its elements is governed by the number of initializers and the
array will no longer become an incomplete type.

¢ Union type
A union type object is initialized by an initializer for the first member of the union that is enclosed in braces.

In the following example, the array “x” with an unknown size will change to a one-dimensional array that has
three elements as a result of its initialization.

The next example shows a complete definition which has initializers enclosed in braces. “{1, 3, 5} initializes
“y [0] [O]", “y [0] [1]”, and “y [0] [2]” in the 1st line of the array object “y[0]". Likewise, in the second line, the
elements of the array objects “y [1]” and “y [2]” are initialized. The initial value of “y[3]” is 0 since it is not
specified.

char y [4] [3] = {

{1, 3, s},
{2, 4, 6},
{3, 5, 7},

char z[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

}i

User's Manual U15556EJ1VOUM 63

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

In the following example, the elements in the first row of “z” are initialized to the specified values and the rest of
the elements are initialized to 0.

char z[4] [3] = {
{1}, {2}, {3}, {4}
}i

In the next example, a three-dimensional array is initialized.
q[O] [0] [0] are initialized to 1, q[1] [0] [O] to 2, and g[1] [O] [1] to 3. 4, 5 and 6 initialize q[2] [0] [0], q[2] [0] [1], and
q[2] [1] [O], respectively. The rest of the elements are all initialized to 0.

short gl4] [3] [2] = {

{11,
{2, 3}
{a, 5, 6}

}i

The following example produces the same result as the above initialization of the three-dimensional array.

short ql4][311[2]1 = {

The following example shows a complete definition of the above initialization using braces.

Short q [4][31[2] = {

{

{1},
1
{

{2, 3},
1
{

{4, 5, 6},
}

64

User's Manual U15556EJ1VOUM

CHAPTER 4 TYPE CONVERSIONS

In an expression, if two operands differ in data type, the compiler automatically performs a type conversion
operation. This conversion is similar to a change obtained by the cast operator. This automatic type conversion is
called an implicit type conversion. In this chapter, this implicit type conversion is explained.

Type conversion operations include usual arithmetic conversions, conversions involving truncation/round off, and
conversions involving sign change. Table 4-1 gives a list of conversions between types.

User's Manual U15556EJ1VOUM 65

CHAPTER 4 TYPE CONVERSIONS

Table 4-1. List of Conversions Between Types

fter Conversion | (signed) | unsigned| (signed) | unsigned| (signed) | unsigned | (signed) | unsigned | float | double | long
Before Conversion char char shortint | shortint |int int longint | long int double
(signed) char + AN) o)) o)) o))) o) o)

- AN N o} N o} N o} N o) o o}
unsigned char A AN) e) 6} e) o) o))))
(signed) shortint | + AN) AN) o)) ¢) o) o)

- AN N AN N o} N ¢} o} ¢}
unsigned short int A AN A AN) e} e}))
(signed) int + AN o) AN e) 6} 6)) @) @)

- AN N AN N o} N o} o} o}
unsigned int A AN A AN o o) o) o o}
(signed) long int + AN e} e}))

- AN N o) o) o
unsigned long int A AN) o) o)
float AN @) @)
double AN AN
long double AN AN

Remarks 1 The signed keyword may be omitted. However, with a char type data, the data type is regarded as
the signed char or unsigned char type depending on the condition (option) for compilation.
2 Legend:

O: Type conversion will be performed properly.

\: Type conversion will not be performed.

N: A correct value will not be generated. (The data type will be regarded as an unsigned int
type.)

A: The data type will not change bit-image-wise. However, if a positive number cannot
represent it sufficiently, no correct value will be generated (regarded as an unsigned
integer).

Blank: An overflow in the result of the conversion will be truncated. The + or — sign of the data
may be changed depending on the type after the conversion.

66 User's Manual U15556EJ1V0UM

CHAPTER 4 TYPE CONVERSIONS

4.1 Arithmetic Operands

(1

)

Characters and integers (general integral promotion)

The data types of char, short int, and int bit fields (whether they are signed or unsigned) or of objects that have
an enumeration type will be converted to int types if their values are within the range that can be represented
with int types. If not within the range, they will be converted to unsigned int types. These implicit type
conversions are referred to as “general integral general promotion”. All other arithmetic types will not be
changed by this general integral promotion.

In general integral promotion, the value of the original data type is retained, including its sign. char type data
without a type qualifier will normally be handled as signed char in this compiler.

If can also be handled as unsigned char by using an option.

Signed integers and unsigned integers

When a value with an integer type is converted to another, the value will not be changed if the value can be
expressed by the integer type after conversion.

When a signed integer is converted to an unsigned integer of the same or larger size, the value is not changed
unless the value of the signed integer is negative. If the value of the signed integer is negative and the unsigned
integer has a size larger than that of the signed integer, the signed integer is expanded to the signed integer with
the same size as the unsigned integer, and then it is added to the value equal to the maximum number that can
be expressed with the unsigned integer plus 1, and the signed integer before conversion is converted to the
unsigned value.

When a value with an integer type is converted to an unsigned integer with a smaller size, the conversion result
is the non-negative remainder of the value divided with that value which 1 is added to the maximum number that
can be expressed with an unsigned integer after conversion. When a value with an integer type is converted to a
signed integer with smaller size or when an unsigned integer is converted to a signed integer with the same size,
the overflowed value is ignored if the value after conversion cannot be expressed. For the conversion pattern,
refer to Table 4-1. List of Conversions between Types.

Conversion operations from signed integral type to unsigned integral type are as listed in Table 4-2 below.

Table 4-2. Conversions from Signed Integral Type to Unsigned Integral Type

unsigned
Smaller in Value Range Greater in Value Range
+ / ©)
signed
- / +

O:Type conversion will be performed properly.

+: The data will be converted to a positive integer.

/: The result of the conversion will be the remainder of the integer value, modulo the largest
possible value of the type to be converted plus 1.

User's Manual U15556EJ1VOUM 67

CHAPTER 4 TYPE CONVERSIONS

@)

68

Usual arithmetic type conversions
Types obtained as a result of operations on arithmetic type data have a wide range of values.

The type conversion of the operation result is performed as follows.

¢ If either one of the operands has long double type, the other operand is converted to long double type.
* |f either one of the operands has double type, the other operand is converted to double type.

¢ If either one of the operands has float type, the other operand is converted to float type.

In cases other than above, general integer expansion is performed for both operands according to the following
rules. Figure 4-1 shows the rules.

Figure 4-1. Usual Arithmetic Type Conversions

unsigned long int

e o o « o Ifeitherof the two operands is unsigned long int type, or if one
operand is long int type and the other is unsigned int type
and the value of unsigned int type cannot be represented by long int type.
both operands will be converted to unsigned long int type.

e« o o « o Incasesotherthan above, if one operand is long int type and if the value of
the other operand can be represented by long int type, the other operand will be
| unsigned int | converted to long int type.

e e o o o Incasesotherthan above, if one operand is unsigned int type, the other operand
will be converted to unsigned int type.

int e o o o o Incasesotherthan above, both operands will have int type.

In this compiler, the conversion to int type can be intentionally disabled by a compile condition (optimizing
option) (For details, refer to CC78K4 C Compiler Operation User’s Manual (U15557E) CHAPTER 5
COMPILER OPTIONS).

User's Manual U15556EJ1VOUM

CHAPTER 4 TYPE CONVERSIONS

4.2 Other Operands

(1)

()

©)

Left-side values and function locators

A left-side value refers to an expression that specifies an object (and has an incomplete type other than object
type or void type).

Left-side values that do not have array types, incomplete types, or const qualifier types, and structures or unions
that have no const qualifier type members are “modifiable left-side values”.

A left-side value that has no array type will be converted to a value stored in the object to be specified, except
when it is the operand of the sizeof operator, unary & operator, ++ operator, or - - operator or the left operand of
an operator or an assignment operator. By being converted, it will no longer serve as a left-side value.

The behavior of left-side values that have incomplete types but have no array types is not guaranteed.

A left-side value that has an “... array” type except character arrays will be converted to an expression that has a
“pointer to ...” type. This expression is no longer a left-side value.

A function locator is an expression that has a function type. With the exception of the operand of the sizeof
operator or unary & operator, a function locator that has a “function type that returns ...” will be converted to an
expression that has a “pointer type to a function that returns ...”.

void

The value (non-existent) of a void expression (i.e., an expression that has the void type) cannot be used in any
way. Neither implicit nor explicit conversion to exclude void will be applied to this expression. If an expression
of another type appears in a context that requires a void expression, the value of the expression or specifier is
assumed to be non-existent.

Pointers

A void pointer can be converted to a pointer to any incomplete type or object type. Conversely, a pointer to any
incomplete type or object type can be converted to a void pointer. In either case, the result value must be equal
to that of the original pointer.

An integer constant expression that has the value of 0 and has been cast to the void * type is referred to as a
“null pointer constant”. If the null pointer constant is substituted with, equal to, or compared with some pointer,
the null pointer constant will be converted to that pointer.

User's Manual U15556EJ1VOUM 69

CHAPTER 5 OPERATORS AND EXPRESSIONS

This chapter describes the operators and expressions to be used in the C language.
C has an abundance of operators for arithmetic, logical, and other operations. This rich set of operators also

includes those for bit and address operations.

An expression is a string or combination of an operator and one or more operands. The operator defines the
action to be performed on the operand(s) such as computation of a value, instructions on an object or function,

generation of side effects, or a combination of these.
Examples of operators are given below.

#define TRUE 1
#define FALSE 0
#define SIZE 200

void lprintf (char *, int);

void putchar (char c);

char mark [SIZE+1]; S
void main(void)
int i, prime, k, count;
count = 0; PP PP PP
for (i = 0 ; 1 <= SIZE

;o oi++) ——I::++ ...
mark [i] = TRUE; <=

for (1 =0 ; i <= SIZE ; i++) |

if (mark [i]) |
prime = i + 1 + 3; F o
lprintf (“%d” , prime) ;
count++; i
if ((count%8) == 0) e T
putchar ('\n');
for (k = i + prime ; k<=SIZE; k += prime) +=......

mark [k] = FALSE;

Arithmetic operator

Assignment operator
Postfix operator
Relational operator

Arithmetic operator

Postfix operator
Relational operator

Assignment operator

70

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

lprintf (“Total %d\n”, count) ;
loopl:
goto loopl;

lprintf (char *s, int;)
int 3j;

char *ss;

void puttchar (char c) {
char d;
d = c;

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Table 5-1 shows the evaluation priority of operators used in C.

Table 5-1. Evaluation Precedence of Operators

Type of Expression Operator Linkage Priority
Postfix [1().—>++—- - Highest
Unary ++ —— & * + — ~ | sizeof “— +
Cast (type) «—
Multiplicative | % -

Additive +— -
Bitwise shift << >> -
Relational < ><=>= -
Equality == I= N
Bitwise AND & -
Bitwise XOR A -
Bitwise OR | -
Logical AND && -
Logical OR [-
Conditional ?: «
Assignment = *= [= %= 4= —= «
<<= >>= &= M= | = v
Comma , - Lowest

The arrow (— or «) in the “Linkage” column denotes that when an expression
contains two or more operators of the same priority, the operations are carried out in
the direction of the arrow “—” (from left to right) or “<” (from right to left).

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.1 Primary Expressions

Primary expressions include the following.

* |dentifier declared as object or function
(identifier primary expression)

» Constant (constant primary expression)

» String literal (constant primary expression)

* Expression enclosed in parentheses
(parenthesized expression)

An identifier that becomes a primary expression is a left-side value if an object is declared or a function locator if a
function is declared. The data type of a constant is determined according to the value specified for the constant as
explained in 2.4 Constants. String literal(s) become a left-side value that has a data type as explained in 2.5 String
Literals.

5.2 Postfix Operators

A postfix operator is an operator that appears or is placed after an object or function.
The primary expressions are described below.

User's Manual U15556EJ1VOUM 73

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Subscript operators

Postfix Operators [1 Subscript Operator

FUNCTION
The [] subscript operator specifies or refers to a single member of an array object. The array or expression “E1
[E2]” is evaluated as if it were “(*(E1+(E2)))”. In other words, the value of E1 is a pointer to the first member of
the array and E2 (if it is an integer) indicates the E2th member of E1 (counting from 0). With a multidimensional
array, as many subscript operators as the number of dimensions must be connected.
In the following example, x becomes an int type array of 3*5. In other words, x is an array which has three
members each consisting of five int type members.

int x[3][5] ;

A multidimensional array may be specified by connecting subscript operators. Assuming that E is an array of nth
dimension (where n > 2) consisting of i*j*...*k, the array can be specified with n number of subscript operators. In
this case, E becomes a pointer to an array of (n — 1)th dimension consisting of j*...*k.

SYNTAX
postfix-expression [subscripted expression]

NOTE
A postfix expression must have a

.... pointer to object”. The subscripted expression of an array must be
specified with integral type data. The result of the expression will become “.....” type.

74 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Function call operators

Postfix Operators () Function Call

FUNCTION
The postfix () operator calls a function. The function to be called is specified with a postfix expression and
argument(s) to be passed to the function are indicated in parentheses ().
The description related to function includes the function prototype declaration, the function definition (the body of
a function), and the function call. The function prototype declaration specifies the value a function returns, the
type of argument, and the storage class.
If the function prototype declaration is not referred to in a function call, each argument is extended with a general
integer. This is called “default actual argument extension”. Performing a function prototype declaration avoids
default actual argument extension and detects errors in of the type and number of arguments and the type of
return value.
Calling a function that has neither a storage class specification nor a data type specification such as “identifier (
);” is interpreted as calling a function that has an external object and returns an int type that has no information
on arguments. In other words, the following declaration will be made implicitly.

extern int identifier () ;

SYNTAX

postfix-expression (argument-expression list) ;

[Example of function call]

int func (char, int); /* function prototype declaration */
char a ;
int b, ret;

void main (void) {

ret = func(a, b); /* function call */

!

int func(char c, int i) { /* function definition */
return I;

NOTE
A function that returns an object other than array types can be called with this operator. The postfix expression
must be of a pointer type to this function.
In a function call including a prototype, the type of argument must be of a type that can be assigned to the
corresponding parameter(s). The number of arguments must also be in agreement.

User's Manual U15556EJ1VOUM 75

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Structure and union member

Postfix Operators o>

<1> . (dot) operator

FUNCTION
The . (dot) operator (also called a member operator) specifies the individual members of a structure or union.
The postfix expression is the name of the structure or union object to be specified, and the identifier is the name
of the member.

SYNTAX

postfix-expression . identifier

<2> — (arrow) operator

FUNCTION
The — (arrow) operator (also called an indirect membership operator) specifies the individual members of a
structure or union. The postfix expression is the name of the pointer to the structure or union object to be
specified, and the identifier is the name of the member.

SYNTAX

postfix-expression — identifier

76 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Postfix Operators

[Examples of ‘.’, ‘->’ operators]

#include <stdlib.h>

union {
struct {
int type ;
}no
struct {
int type ;
int intnode ;
} ni ;
struct {
int type ;
struct {
long longnode ;
} *nl p ;
} nl ;

}ou

void func (void) {
u. nl. type = 1 ;
u. nl.nl p -> longnode = -31415L ;
VALY
if (u.n.type = = 1)

u.nl.nl p -> longnode = labs (u. nl.nl p -> longnode)

7

User's Manual U15556EJ1VOUM

77

CHAPTER 5 OPERATORS AND EXPRESSIONS

(4) Postfix Increment/Decrement operators

Postfix Operators 4+ ——

<1> Postfix ++ (Increment) operator

FUNCTION
The postfix ++ (Increment) operator increments the value of an object by 1. This increment operation is
performed taking the data type of the object into account.

SYNTAX

postfix-expression ++

NOTE
See <2> below.

<2> Postfix — — (Decrement) operator
FUNCTION
The postfix — — (Decrement) operator decrements the value of an object by 1. This decrement operation is

performed taking the data type of the object into account.

SYNTAX

postfix expression - -

NOTE
The operand of the postfix increment or decrement operator must be a modifiable left-side value (qualified or
unqualified).

78 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.3 Unary Operators

A unary operator performs an operation on one object or parameter (i.e., operand). The following unary operators

are available.

¢ Prefix Increment and Decrement operators
+ + - -

e Address and Indirect operators
& *

e Unary Arithmetic operators
+ - ~

* sizeof operator

sizeof

The followings explain each unary operators are described below.

User's Manual U15556EJ1VOUM

79

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Prefix Increment and Decrement operators

Unary Operators 4+ ——

<1> Prefix ++ (Increment) operator

FUNCTION
The prefix ++ (Increment) operator increments the value of an object by 1. The expression “++E” of the prefix
increment operator will produce the same result as the following expression.

SYNTAX

+ + unary-expression

<2> Prefix —— (Decrement) operator

FUNCTION
The prefix — — (Decrement) operator decrements the value of an object by 1. The expression “— —E” of the prefix
decrement operator will produce the same result as the following expression.

SYNTAX

- - unary-expression

80 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Address and Indirection operators

Unary Operators & *

<1> Unary & operator

FUNCTION

The unary & (address) operator returns the pointer of a specified object (i.e., the address of the variable it
precedes).

SYNTAX

& operand

<2> Unary * operator

FUNCTION

The unary * (indirection) operator returns the value indicated by a specified pointer (i.e., takes the value of the
variable it precedes and uses that value as the address of the information in memory).

SYNTAX

* operand

NOTE

The operand of the unary & operator must be a left-side value referring to an object not declared with the register

storage class specifier. Neither a function locator nor a bit field can be used as the operand of this unary
operator.

The operand of the unary * operator must have a pointer type.

User's Manual U15556EJ1VOUM 81

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Unary Arithmetic operators (+ — ~!)

Unary Operators + - ~ !

FUNCTIONS
The + (unary plus) operator performs positive integral promotion on its operand.
The — (unary minus) operator performs negative integral promotion on its operand.
The ~ (tilde) operator is a bitwise one’s complement operator which inverts all the bits in a byte of its operand.
The ! NOT or logical negation operator returns O if its operand is 0 and 1 if it is not 0. In other words, the
operator changes each 0 to 1 and 1 to 0.

SYNTAX

+ operand
- operand
~ operand
! operand

82 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(4) sizeof operators

Unary Operators sizeof Operator

FUNCTION
The sizeof operator returns the size of a specified object in bytes. The return value is governed by the data type
of the object and the value of the object itself is not evaluated.
The value to be returned by an unsigned char or signed char object (including its qualified type) on which a
sizeof operation is performed is 1. With an array type object, the return value will be the total number of bytes in
the array. With a structure or union type object, the result value will be the total number of bytes that the object
would occupy including bytes necessary to pad out to the next appropriate alignment boundary.
The type of the sizeof operation result is an integral type and its name is size_t. This name is defined in the
<stddef.h> header. The sizeof operator is used mainly to allocate memory areas and transfer data to/from the
I/0 system.

SYNTAX

sizeof unary-expression
or
sizeof (type-name)

EXAMPLE
The following example finds the number of elements of an array by dividing the total number of bytes in the array
by the size of a single element. Num becomes 5.

int num;

char array[1= {0, 1, 2, 3, 4};

void func (void) {

num = sizeof array / sizeof array [0] ;

}

NOTE
An expression that has a function type or incomplete type and a left-side value that refers to a bit field object
cannot be used as the operand of this operator.

User's Manual U15556EJ1VOUM 83

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.4 Cast Operators

A cast is a special operator that forces one data type to be converted into another. The cast operator is mainly
used when converting a pointer type.

Cast Operators (type-name)

FUNCTION
The cast operator converts the data type of another object (or the result of another expression) into the type
specified in parentheses ().

SYNTAX

(type-name) expression

EXAMPLE

void func (void) {
int val;

float £f;

f = 3.14F;
(int) £; /* val becomes 3 by cast */
val = *(int *)0x10000; /*castconstant*/

val

84 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.5 Arithmetic Operators

Arithmetic operators are divided into multiplicative operators and additive operators. Multiplicative operators find

the product, quotient, and remainder of two operands. Additive operators find the sum and difference of two
operands.

e Multiplicative operators * / %
e Additive operators + -

Table 5-2. Signs of Division/Remainder Division Operation Result

a/b b a%b b

Remark a and b indicate operands.

Division is performed with two integers whose sign, if any, is removed through the usual arithmetic conversion and
the result will be truncated towards 0 if necessary. Likewise, a remainder or modulo division operation is performed
with two integers whose sign, if any, is removed through the usual arithmetic conversion. Table 5-2 shows the
results of calculations only on the signs of two operands in division and remainder division, respectively.

Multiplicative operators and additive operators are described below. E1 and E2 used in the explanation of syntax
indicate operands or expressions.

User's Manual U15556EJ1VOUM 85

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Multiplicative operators

Multiplicative Operators *I %

<1> * operator

FUNCTION
The binary * (multiplication) operator performs normal multiplication on two operands and returns the product.

SYNTAX

E1l * E2

<2> [/ operator

FUNCTION
The / operator performs normal division on two operands and returns the quotient.

SYNTAX

El / E2

<3> % operator

FUNCTION
The % operator performs a remainder (or modulo division) operation on two operands and returns the remainder
in the result.

SYNTAX

El % E2

86 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Additive operators

Additive Operators + -

<1> + operator

FUNCTION
The + operator performs addition on two operands and returns the sum of the two numbers.

SYNTAX

E1l + E2

<2> - operator

FUNCTION
The — operator performs subtraction on two operands and returns the difference between the two numbers (the
first operand minus the second operand).

SYNTAX

El - E2

User's Manual U15556EJ1VOUM 87

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.6 Bitwise Shift Operators

A shift operator shifts its first (left) operand to the direction (left or right) indicated by the operator by the number of
bits specified by its second operand. There are the following two shift operators.

e shift operator << >>

Table 5-3. Shift Operations

a<<b b a>>b b
+ 0 + 0
a a
— 0 - -1

Note The table indicates when the right operand is greater than the number of bits in the left operand or
when an overflow occurs in the result of the shift operation.
If the right operand is negative, the value is processed as an unsigned positive number.

Remark a and b indicate operands.

The shift operators are described below. E1 and E2 indicate operands or expressions.

88 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

Shift Operators << >>

<1> Left shift (<<) operators

FUNCTION

The binary << (left shift) operator shifts the left operand to the left the number of bits specified by the right
operand and fills zeros in vacated bits. If the left operand E1 has an unsigned type in “E1 << E2”, the result will
become a value obtained by multiplying E1 by the E2th power of 2.

SYNTAX

El << E2

<2> Right shift (>>) operators

FUNCTION

The binary >> (right shift) operator shifts the left operand to the right the number of bits specified by the right
operand. If the left operand is unsigned, zeros are filled in vacated bits (Logical shift). If the left operand is
signed, a copy of the sign bit is filled in vacated bits.

If the left operand E1 is unsigned or signed and has a non-negative value in “E1>>E2”, the result will become a
value obtained by dividing E1 by the E2th power of 2.

SYNTAX

El >> E2

User's Manual U15556EJ1VOUM 89

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.7 Relational Operators

There are two types of operators to indicate the relationship between two operands: “relational operator” and
“equality operator”.

The relational operator indicates the value relationship between two operands such as greater than and less than.
The equality operators indicate that two operands are equal or not equal.

The relational operators and equality operators are shown below.

* Relational operator < > <= >=
e Equality operator == | =

The value relationship between two pointers compared by relational operators is determined by the relative
location in the address space of the object indicated by the pointer.

In this compiler, relational operators and equality operators generate ‘1’ if the specified relationship is true and ‘0’
if it is false. The results have int type.

The relational operators and equality operators are described below. E1 and E2 used in the explanation of syntax
indicate operands or expressions.

90 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Relational operators

Relational Operators < > <= >=

<1> < (less than) operator

FUNCTION
The < (less than) operator returns 1 if the left operand is less than the right operand; otherwise, 0 is returned.

SYNTAX

El < E2

<2> > (greater than) operator

FUNCTION
The > (greater than) operator returns 1 if the left operand is greater than the right operand; otherwise, 0 is
returned.

SYNTAX

El > E2

<3> <= (less than or equal) operator

FUNCTION
The <= (less than or equal) operator returns 1 if the left operand is less than or equal to the right operand,;
otherwise, 0 is returned.

SYNTAX

El <= E2

<4> >= (greater than or equal) operator

FUNCTION
The >= (greater than or equal) operator returns 1 if the left operand is greater than or equal to the right operand;
otherwise, 0 is returned.

SYNTAX

El >= E2

User's Manual U15556EJ1VOUM 91

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Equality operators

Equality Operators

<1> == (equal) operator

FUNCTION
The = = (equal) operator returns 1 if its two operands are equal to each other; otherwise, 0 is returned.

SYNTAX

<2> |=(not equal) operator

FUNCTION
The != (not equal) operator returns 1 if the operands are not equal to each other; otherwise, 0 is returned.

SYNTAX

El != E2

92 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.8 Bitwise Logical Operators

Bitwise logical operators perform a specified logical operation on the value of an object in bit units. The bitwise
logical expressions include Bitwise AND (&), Bitwise Exclusive OR (/), and Bitwise Inclusive OR (|).
Each logical operation is indicated by the operators shown below.

* Bitwise AND operator &
* Bitwise XOR operator
* Bitwise OR operator |

The bitwise logical operators are described below. E1 and E2 used in the explanation of syntax indicate operands
or expressions.

User's Manual U15556EJ1VOUM 93

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Bitwise AND operators

Bitwise AND Operators

FUNCTION

The binary & operator is a bitwise AND operator that returns an integral value that has “1” bits in positions where

both operands have “1” bits and that has “0” bits everywhere else.

The bitwise AND operator must be specified with an “operator”.

Table 5-4. Bitwise AND Operation

Value of Each Bit in Left Operand

1 0
Value of 1 1 0
each bit in
right operand 0 0 0

SYNTAX

El & E2

94

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Bitwise XOR operators

Bitwise XOR Operators

FUNCTION

The binary A (caret) operator is a bitwise exclusive OR operator that returns an integral value that has a “1” bit in

each position where exactly one of the operands has a “1” bit and that has a “0” bit in each position where both

operands have a “1” bit or both have a “0” bit.

Table 5-5. Bitwise XOR Operation

Value of Each Bit in Left Operand

1

0

Value of
each bit in
right operand

1 0

1

0 1

0

SYNTAX

E1l E2

User's Manual U15556EJ1VOUM

95

CHAPTER 5 OPERATORS AND EXPRESSIONS

(3) Bitwise Inclusive OR operators

Bitwise Inclusive OR Operators

FUNCTION

The binary | operator is a bitwise inclusive OR operator that returns an integral value that has a “1” bit in each
position where at least one of the operands has a “1” bit and that has a “0” bit in each position where both

operands have a “0” bit.

Table 5-6. Bitwise OR Operation

Value of Each Bit in Left Operand

1 0
Value of 1 1 1
each bit in
right operand 0 1 0

SYNTAX

El | E2

96

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.9 Logical Operators

Logical operators perform logical OR and logical AND operations. A logical OR operation is specified with a
logical OR operator, and a logical AND operation is specified with a logical AND operator. Each operator is shown
below.

* Logical AND operator

— R
— R

* Logical OR operator

Each operand of both the operators returns the value of int type ‘0’ or ‘1. The following explains each logical
operator. E1 and E2 used in the explanation of syntax indicate operands or expressions.

User's Manual U15556EJ1VOUM 97

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Logical AND operators

Logical AND Operators

&&

FUNCTION

The && operator performs a logical AND operation on two operands and returns a “1” if both operands have

nonzero values. Otherwise, a “0” is returned. The type of the result is int.

Table 5-7. Logical AND Operation

Value of Left Operand

Zero Nonzero
Value of Zero 0 0
right operand Nonzero 0 1

SYNTAX

El && E2

NOTE

This operator always evaluates its operands from left to right.

operand is not evaluated.

98

If the value of the left operand is “0”, the right

User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Logical OR operators

Logical OR Operators ||

FUNCTION
The | | operator performs a logical OR operation on two operands and returns a “0” if both operands are zero.
Otherwise, a “1” is returned. The type of result is int.

Table 5-8. Logical OR Operation

Value of Left Operand
Zero Nonzero
Value of Zero 0 1
each bit in
right operand Nonzero 1 1

SYNTAX

El || E2

NOTE
This operator always evaluates its operands from left to right. If the value of the left operand is nonzero, the right
operand is not evaluated.

User's Manual U15556EJ1VOUM 99

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.10 Conditional Operators

Conditional operators judge the processing to be performed next by the value of the first operand. Conditional
operators judge by ‘2’ and . The conditional operators are described below.

(1) Conditional operators (?, :)

Conditional Operators ?

FUNCTION
The conditional (?, :) operator evaluates the first operand before the ?. If the value of the first operand is
nonzero, it evaluates the second operand before the colon. If the value of the first operand is zero, it evaluates
the third operand after the colon. The result of the entire conditional expression will be the value of the second
or third operand.

SYNTAX

1st-operand ? 2nd-operand : 3rd-operand

EXAMPLE

#define TRUE 1
#define FALSE O

char flag ;
int ret ;
ret func () {

ret = flag ? TRUE : FALSE ;

return ret ;

NOTE
If both the second and third operand types are arithmetic types, normal arithmetic type conversion is performed
to make them common types. The type of result is the common type. If both the operand types are structure
types or union types, the result becomes those types. If both the operand types are void types, the result is a
void type.

100 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.11 Assignment Operators

Assignment operators include a simple assignment expression that stores the right operand in the left operand

and a compound assignment expression that stores the result of an operation on both operands in the left operand.
The assignment operators are shown below.

* Assignment Operators

The each assignment operators are described below. E1 and E2

used in the explanation of syntax indicate
operands or expressions.

User's Manual U15556EJ1VOUM 101

CHAPTER 5 OPERATORS AND EXPRESSIONS

(1) Simple assignment operators

Simple Assignment Operators =

FUNCTION

The = (simple assignment) operator converts the right operand (expression) to the type of the left operand (left-
side value) before the value is stored.

In the following example, the value of an int type to be returned from the function by the type conversion of the
simple assignment expression will be converted to a char type and an overflow in the result will be truncated.
The comparison of the value with “—1” will be made after the value is converted back to the int type. If the
variable “c” declared without a qualifier is not interpreted as unsigned char, the result of the variable will not
become negative and its comparison with “—1” will never result in equal. In such a case, the variable “c” must be
declared with an int type to ensure complete portability.

int f(void) ;

char c ;

/*..0.%/ ((c = £ () == -1) /[/*x...%/
SYNTAX

El = E2

102 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

(2) Compound assignment operators

Compound Assignment Operators

*— /= 0/°= = —=

<<= >>= &= "= |=

<1> Compound assignment operators

FUNCTION
The compound assignment operators perform a specified operation on both operands and stores the result in the

left operand. The value to be stored in the left operand will be converted to the type of the left-side value (left

operand). The compound assignment expression “E1 op = E2” (where op indicates a suitable binary operator) is

equivalent to the simple assignment expression “E1 = E1 op (E2)”, except that the left-side value (E1) is only

evaluated once. The following compound assignment expressions will produce the same result as the respective

simple assignment expressions on the right.

a *= b; a a * b;
a /= b; a a / b;
a %= b; a a % b;
a += b; a a + b;
a -= b; a a - b;
a <<= b; a a << b;
a >>= b; a a >> b;
a &= b; a a & b;
a = b; a a * b;
a |= b; a a | b;
SYNTAX

El *= E2

El /= E2

El %= E2

El += E2

El -= E2

El <<= E2

El >>= E2

El &= E2

El “= E2

El |= E2

User's Manual U15556EJ1VOUM

103

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.12 Comma Operator

(1) Comma operator

Comma Operator

FUNCTION

The comma operator evaluates the left operand as a void type (that is, ignores its value) and then evaluates the
right operand. The type and value of the result of the comma expression are the type and value of the right
operand.

In contents where a comma has another meaning (as in a list of function arguments or in a list of variable
initializations), comma expressions must be enclosed in parentheses. In other words, the comma operator
described in this chapter will not appear in such a list.

In the following example, the comma operator finds the value of the second argument of the function “f ()”. The
value of the second argument becomes 5.

int a, ¢, t;
void main (void)
f(a, (t=3, t+2), c);

}

SYNTAX

El , E2

104 User's Manual U15556EJ1VOUM

CHAPTER 5 OPERATORS AND EXPRESSIONS

5.13 Constant Expressions

Constant expressions include general integral constant expressions, arithmetic constant expressions, address

constant expressions, and initialization constant expressions. Most of these constant expressions can be calculated

at translation instead of execution.

In a constant expression, the following operators cannot be used except when they appear inside sizeof

expressions.

)

()

3)

¢ Assignment operators
* Increment operators

¢ Decrement operators
¢ Function call operator
e Comma operator

General integral constant expression

A general integral constant expression has a general integral type. The following operands may be used.
* Integer constants

¢ Enumerated value constants

¢ Character constants

* sizeof expressions

* Floating-point constants

Arithmetic constant expression

An arithmetic constant expression has an integral type. The following operands may be used.
* Integer constants

e Enumerated value constants

e Character constants

* sizeof expressions

* Floating-point constants

Address constant expression

An address constant expression is a pointer to an object that has a static storage duration or a pointer to a
function locator. Such an expression must be created explicitly using the unary & operator or implicitly using an
expression with an array type or function type. The following operands may be used.

e Array subscript operator []

¢ . (dot) operator

e — (arrow) operator

e & address operator

e *indirection operator

¢ Pointer casts

However, none of these operators can be used to access the value of an object.

User's Manual U15556EJ1VOUM 105

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

This chapter describes the program control structures of C language and the statements to be executed in C.
Generally speaking, no matter how complicated a process is, it can be expressed with three basic control

structures. These three control structures are: Sequential, Conditional (Selection), and lteration. Branch is used to

change the flow of a program by force.

1

)

3)

4

Sequential processing
Statements in a program are executed one by one from top to bottom in the order of their description in the
program.

Conditional (selection) processing

According to the status of the program under execution, the next executable statement is selected and executed.
The selection condition is specified in a control statement. The control statement determines which of the two
alternative statement groups or multiway (three or more) alternative statement groups is to be executed.

Looping (iteration) processing
The same processing is executed two or more times. The execution of an executable statement is repeated a
specified number of times in the state indicated by the control statement.

Branch processing
C is forced to exit from the current program flow and control is transferred to a specified label. Program

execution starts from the statement next to the specified label.

There are six types of statements used in C.

e Labeled statement..........cccceeviiiiinnnn. Causes branch according to the value of the switch statement
and the destination of the goto statement

e Compound statement (block) Collects two or more statements to be processed as one unit

e Expression statement.......................... A statement consisting of an expression and a semicolon

* Selection statement.............cccoeeeeenen. Selects a statement out of several statements according to the
value of the expression

e lteration statement...........cccceeiiiennne Repeatedly performs a statement called the body of a loop
until control expression becomes equal to 0

e Branch statementccccoeiiiiin Causes an unconditional branch to a different destination

106 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

A description example of these statements is shown below.

[Description example]

#define SIZE 10
#define TRUE 1
#define FALSEOQ

extern void putchar (char) ;

extern void lprintf (char*, int) ;

char mark [SIZE+1];
void main (void)

int i, prime, k, count;

count = 0 ;
for (1 = 0 ; 1 <= SIZE ; 144) coiiiiiiiieeeeeeeeennene [for............. Iteration statement */
mark [i] = TRUE ;
for (i = 0 ; 1 <= SIZE ; i++) {evvriiiiiiiinns [*for........... lteration statement */
if (mark [1]) { e VA | ST Selection statement */
prime = i + 1 + 3;
lprintf (“%d” , prime) ;
if ((count%8) == 0) putchar ('\n');
for (k = i + prime ;
k <= SIZE ; k += prime) [/ if............. Selection statement * /
mark [k] = FALSE;
}
}
lprintf (“Total %d\n”, count);
100DL; e /*loopT: Labeled statement * /
goto 100PL; e ——— /*goto.......... Branch statement * /
}

User's Manual U15556EJ1VOUM 107

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.1 Labeled Statements

A labeled statement specifies the destination of the switch or goto statement. The switch statement selects the
statement specified by a control expression from among statements with two or more options. The labeled statement
becomes the label of the statement to be executed by the switch statement. The goto statement causes
unconditional branching to the applicable label from the normal flow of processing.

The syntax of labeled statements is given below.

108 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) case label

Labeled Statements case label

FUNCTION
case labels are used only in the body of a switch statement to enumerate values to be taken by the control

expression of the switch statement.

SYNTAX

case constant-expression : statement

EXAMPLE 1
int £ (void), 1i;
void main (void) {
/* ... %/
switch (£()) {
case 1:
i =1+ 4 ;
break ;
case 2:
i=1+3;
break ;
case 3:
i =1+ 2 ;
}
/* o */
}
EXPLANATION

In EXAMPLE 1, if the return value of f() is 1, the first case clause (statement) is selected and the expression
“i=i+4” is executed. Likewise, if the return value of f() is 2 or 3, the second or third case statement is selected,
respectively. Each break statement in the above example is to break out of the switch body.

As in this example, case labels are used when two or more options are involved.

User's Manual U15556EJ1VOUM 109

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

Labeled Statements case label

EXAMPLE 2
int i ;
void main (void) {
/* */
i=2;

switch(i)

case 1:

EXPLANATION
In example 2, the processing starts in the second case statement since i is 2. The third statement is also

consecutively performed since the case statement does not include a break statement. Thus, if the constant
expression and the control expression in the case statement match, the programs thereafter are performed
sequentially. A break statement is used to exit the switch statement.

110 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) default label

Labeled Statements default label

FUNCTION
A default label is a special case label used only in the body of a switch statement to specify a process to be
executed by C if the value of the control expression does not match any of the case constants.

SYNTAX

default : statement

EXAMPLE

int £ (void), i;

switch (£())
case 1:
i=14+ 4 ;
break ;
case 2:
i=1+3;
break ;
case 3:
i =1 +2 ;
default:

i=1;

EXPLANATION
In the above example, if the return value of f() is 1, 2, or 3, the corresponding case clause (statement) is
selected and the expression that follows the case label is executed. Each break statement in the above
example is used to break out of the switch body. If the return value of f() is other than 1 to 3, the expression
that follows the default label is executed. In this case, the value of i becomes 1.

User's Manual U15556EJ1VOUM 111

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.2 Compound Statements or Blocks

A compound statement or block consists of two or more statements grouped together with enclosing braces and
executed as one unit syntax-wise. In other words, by enclosing zero or more declarations followed by zero or more
statements all in braces, these statements can be processed as a compound statement whenever a single statement
is expected.

6.3 Expression Statements and Null Statements
An expression statement consists of a statement and a semicolon. A null statement consists of only a semicolon
and is used for labels that require a statement and in looping that does not need a body.

The description examples of expression statements and null statements are given below.

As in the following example, for a function to be called as an expression statement merely to obtain side effects,
the value of its return value can be discarded by using a cast expression.

int p(int) ;

void main(void) {
VAV
(void)p(0) ;

A null statement can be used as the body of a looping statement as shown below.

char *s ;

void main(void) {

VAV
while (*s++ != '0') ;
/* */

In addition, it can be used to place a label before a brace (}) that closes a compound statement as shown below.

void func (void) {
VAV
while (loopl) {
VAV
while (loop2) {
[*...%/
if (want_out)
goto end loopl ;
VAV
}
end loopl: ;

}

112 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.4 Conditional Statements

Conditional (or selection) statements include the if and switch statements. The if or switch statement allows the
program to choose one of several groups of statements to execute, based on the value of the control expression
enclosed in parentheses.

The control flows of if and switch statements are illustrated in Figure 6-1 below.

Figure 6-1. Control Flows of Conditional Statements

Control flow of switch statement

case 1 case 2 case 3 default :

Control flow of if statement

if
condition

False

Executes Executes
statement statement
that follows that follows

if. else.

User's Manual U15556EJ1VOUM 113

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) if and if ... else statements

Conditional Statements if, if ... else

FUNCTION
An if statement has a one-way selection structure and executes the statement that follows the control expression
enclosed in parentheses if the value of the control expression is nonzero (True).
An if ... else statement has a two-way selection structure and executes the statement-1 that follows the control
expression if the value of the control expression is nonzero (True) or the statement-2 that follows else if the
value of the control expression is zero (False).

SYNTAX

if (expression) statement
if (expression) statement-1 else statement-2

EXAMPLE

unsigned char uc ;
void func (void) {
if (uc < 10){
/*111%/
}
else(

/* 222 */

EXPLANATION
In the above example, if the value of uc is less than 10 based on the control expression in the if statement, the
block “{/*111*/}” is executed. If the value is greater than 10, the block “{/*222*/}" is executed.

NOTE

When the processing after the if statement/if...else statement is not enclosed with “{ }”, only the processing of a
line after the if statement/if...else statement is performed regarding it as the body.

114 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) switch statement

Conditional Statements switch

FUNCTION
A switch statement has a multiway branching structure and passes control to one of a series of statements that
have the case labels in the switch body depending on the value of the control expression enclosed in
parentheses. If no case label that corresponds to the control expression exists, the statement that follows the
default label is executed. If no default label exists, no statement is executed.

SYNTAX

switch (expression) statement

EXAMPLE

extern void func (void) ;
unsigned char mode ;
void main(void) {
switch (mode) {
case 2:
mode = 8 ;
break ;
case 4:
mode = 2 ;
break ;
case 8:

func() ;

NOTE
The same value cannot be set in each case label in the switch body. Only one default label can be used in the
switch body.

User's Manual U15556EJ1VOUM 115

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.5 lteration Statements

An iteration statement executes a group of statements in the loop body as long as the value of the control
expression enclosed in parentheses is True (nonzero). C has the following three types of iteration statements.

e while statement
e do statement
e for statement

The control flow of each type of iteration statement is illustrated in Figure 6-2 below.

Figure 6-2. Control Flows of Iteration Statements

Control flow of while loop Control flow of do-while loop Control flow of for loop
Loop |
Loop
Loop
while False
condition
Executes
statement (s)
that c:gl.low f°_’_ False
condition
Executes
statement (s)
that follow T while

while. rue condition Executes
‘ statement (s)

that follow

for.
Reevaluates
control
expression.
|

—

116 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) while statement

lteration Statements while statement

FUNCTION
A while statement executes one or more statements (the body of the while loop) several times as long as the

value of the control expression enclosed in parentheses is True (nonzero). The while statement evaluates the
control expression before executing its loop body.

SYNTAX

while (expression) statements

EXAMPLE

int i, x ;

void main (void)

i=1, x=0 ;

while (i < 11) {
X += 1 ;

14+

7

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are
the body of this while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this reason,
the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10).
“while(1) {statement}” is used to endlessly perform a loop statement.

User's Manual U15556EJ1VOUM 117

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) do statement

lteration Statements do statement

FUNCTION

A do statement executes the body of the loop as long as the control expression enclosed in parentheses is True
(nonzero). The do statement evaluates the control expression after the loop body has been executed.

SYNTAX

do statements while (expression)

7

EXAMPLE

Int i, x ;

void main (void) {

i=1, x=0 ;
do {
X += 1 ;
i++ ;

} while(i<11);

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are
the body of this do ... while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this
reason, the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10). The

body of the loop is always performed once or more since the control expression of a do statement is evaluated
after execution.

118 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(3) for statement

lteration Statements for statement

FUNCTION
A for statement executes the body of the for loop a specified number of times as long as the value of the control
expression is nonzero (True). Of the three expressions inside the parentheses separated by semicolons, the first
expression is an initializing statement to initialize a variable to be used as a counter and is executed only once in
the beginning of the loop, the second is the control expression for testing the counter value, and the third is a
step statement executed at the end of every loop and reevaluates the variable after the execution.

SYNTAX

for (1st-expression ; 2nd-expression ; 3rd-expression) statements

EXAMPLE

for(i=1 ; i<11 ; ++1i)

X += 1 ;

EXPLANATION
The above example finds the sum total of integers from 1 to 10 for x. “x+=i" is the body of this for loop. The

control expression “i<11” returns 0 if the value of i becomes 11. For this reason, the loop body is executed
repeatedly as long as the value of i is less than 11 (between 1 and 10).

NOTE
When the processing after for statement is not enclosed with “{ }*, only the processing of a line after the for
statements is regarded as the body of the loop of the for statement. The first and the third expression of a for
statement can be omitted. When the second expression is omitted, it is replaced with a constant other than 0.
The description of “for (; ;) statement” is used to endlessly perform the body of the loop.

User's Manual U15556EJ1VOUM 119

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

6.6 Branch Statements

A branch statement is used to exit from the current control flow and transfer control to elsewhere in the program.
Branch statements include the following four statements.

* goto statement

* continue statement
* break statement

* return statement

The control flow of each type of branch statement is shown in Figure 6-3.

Figure 6-3. Control Flows of Branch Statements

continue break

Loop Loop

~—1 continue break

120 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(1) goto statement

Branch Statements goto

FUNCTION
A goto statement causes program execution to unconditionally jump to the label name specified in the goto
statement within the current function.

SYNTAX

goto identifier ;

EXAMPLE

do {
VALY
goto point ;
VALY
twhile (/*...%/) ;
VALY

point: ;

EXPLANATION
In the above example, when control is passed to the goto statement, C jumps out of the current do ... while loop
processing unconditionally and transfers control to the statement next to “point”.

NOTE
The label name (branch destination) to be specified in a goto statement must have been specified within the
current function that includes the goto statement. In other words, a goto can branch only within the current
function - not from one function to another.

User's Manual U15556EJ1VOUM 121

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(2) continue statement

Branch Statements continue

FUNCTION
A continue statement is used in the body of loops in a looping statement. continue ends one cycle of the loop
by transferring control to the end of the loop body. When a continue statement is enclosed by more than one
loop, it ends the cycle of the smallest enclosing loop.

SYNTAX

continue ;

EXAMPLE

while (/*...*/){
[*...%/
continue ;
VA

contin: ;

EXPLANATION
In the above example, when the while loop processing by C reaches the continue statement, C unconditionally
branches to the label “contin”. The label “contin” indicates the branch destination and may be omitted. The
same branching operation may be performed by using “goto contin ;” instead of continue.

NOTE
A continue statement can only be used as the body of a loop or in the body of loops.

122 User's Manual U15556EJ1VOUM

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(3) break statement

Branch Statements break

FUNCTION
A break statement may appear in the body of a loop and in the body of a switch statement and causes control to
be transferred to the statement next to the loop or switch statement.

SYNTAX
break ;
EXAMPLE
Int i;

unsigned char count, flag;

void main(void) {
/* .. %/
for (i = 0;1i < 20;i++) {

switch (count) {

case 10
flag = 1;
break; /* exit switch statement */
default:
func () ;
}
if (flag)
break ; /*exit for loop */

EXPLANATION
In the above example, break statements are used so that more than required evaluations are not performed in
the body of the switch statement. If the corresponding case label is found in evaluating the switch statement,
the break statement causes C to exit from the switch statement.

NOTE
A break statement can only be used as the body of a looping or switch statement or in the loop or switch body.

User's Manual U15556EJ1VOUM 123

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

(4) return statement

Branch Statements return

FUNCTION
A return statement exits the function that includes the return and passes controls to the function that called the
return, and calls and returns the value of the return statement expression as the value of the function call
expression. Two or more return statements may be used in a function. Using the closing brace}” at the end of
a function produces the same result as when a return statement without expression is executed.

SYNTAX

return expression ;

EXAMPLE

Int £ (int);

void main(void) {
VAV
int i =0, y =20 ;
y = £(1) ;
J*x... %/

int (int 1) |
int x = 0 ;
VALY

return (x) ;

EXPLANATION
In the above example, when control is passed to the return statement, the function f() returns a value to the
function main (). Because the value of the variable “x” is returned as the return value, the assignment operator

“y

causes the variable “y” to be substituted with the value of the variable “x”.

NOTE

With a void type function, an expression that indicates a return value cannot be used for a return statement.

124 User's Manual U15556EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

A structure or union is a collection of member objects with different types grouped under one given name. The
member objects of a structure are allocated successively to memory space, while the member objects of a union
share the same memory.

User's Manual U15556EJ1VOUM 125

CHAPTER 7 STRUCTURES AND UNIONS

7.1 Structures

As mentioned earlier, a structure is a collection of member objects successively allocated to memory space.

(1) Declaration of structure and structure variable
A structure declaration list and a structure variable are declared with the keyword struct. Any “tag” name can be

given to the structure declaration list.
Subsequently, the structure variables of the same structure may be declared using this tag name.

[Declaration of structure]

struct tag name structure declaration list variable name;

In the following example, in the first struct declaration, int type array “code”, char type arrays name, addr, and
tel which have the tag name “data” are specified and no1 is declared as the structure variable. In the second
struct declaration, the structure variables no2, no3, no4, and no5 that are of the same structure as no1 are

declared.

[Example]

struct data {
int code;
char name [12];
char addr [50];
char tel [12];

} noil;

struct data no2, no3, no4, nos5;

126 User's Manual U15556EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

(2) Structure declaration list
A structure declaration list specifies the structure of a structure type to be declared. Individual elements in the
structure declaration list are called members and an area is allocated for each of these members in the order of
their declaration. In the following [Example of structure declaration list], an area is allocated in the order of
variable a, array b, and two dimensional array c.
Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each
member. Therefore, the structure itself cannot be included in the structure declaration list.
Each member can have any object type other than the above two types. A bit field that specifies each member in
bits can also be specified.
If a variable takes a binary value “0” or “1”, the minimum required number of bits is specified as 1 for a bit field.
By this specification of the minimum required number of bits with the bit field, two or more members can be
stored in an integer area.

[Example of structure declaration list]

int a;
char b [7];
char ¢ [5] [10];

[Example of bit field declaration]

struct bf_tag {
unsigned int a:2;
unsigned int b:3; :| bit field
unsigned int c:1;

} bit field;

User's Manual U15556EJ1VOUM 127

CHAPTER 7 STRUCTURES AND UNIONS

(3) Arrays and pointers

Structure variables may also be declared as an array or referenced using a pointer.

[Structure arrays]

An array of structures is declared in the same ways as other objects.

struct dataf{
char name [12];
char addr [50];
char tel [12];
}i

struct data no [5];

[Structure pointers]

A pointer to a structure has the characteristics of the structure indicated by the pointer. In other words, if a
structure pointer is incremented, adding the size of the structure to the pointer points to the next structure.

In the following example, “dt_p” is a pointer to the value of “struct data” type.

Here, if the pointer “dt_p” is
incremented, the pointer becomes the same value as “&no[1]".

struct data nol5];

struct data *dt p = no;

128 User's Manual U15556EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

(4) How to refer to structure members
A structure member (or structure element) may be referenced in two ways: one by using a structure variable and
the other by using a pointer to a variable.

[Reference by using a structure variable]
The . (dot) operator is used for referring to a structure member by using a structure variable.

struct data {
char name [12];
char addr [50];
char tel [12];
} no[5] = {“NAME”, “ADDR”, “TEL”}; *data ptr = no;

void main () {
char c;

¢ = nol[0]. name([1];

[Reference by using a pointer to a variable]
The —> (arrow) operator is used for referring to a structure member by using a pointer to a variable.

struct data {
char name [12];
char addr [50];
char tel [12];
} no[5] = {“NAME”, “ADDR”, “TEL”}, *data ptr = no;

void main () {
char c;

data ptr -> tel [3] = ‘E’ ;

User's Manual U15556EJ1VOUM 129

CHAPTER 7 STRUCTURES AND UNIONS

7.2 Unions

As mentioned earlier, a union is a collection of members that share the same memory space (or overlap in

memory).

(1) Declaration of union and union variable
A union declaration list and a union variable are declared with the keyword union. Any “tag” hame can be given

to the union declaration list. Subsequently, the union variables of the same union may be declared using this tag

name.

[Declaration of union]

union tag name {union declaration list} variable name;

In the following example, in the first union declaration, char type arrays “name”, “addr’, and “tel” that have the
tag name “data” are specified and “no1” is declared as the union variable. In the second union declaration, the
union variables “no2, no3, no4, and no5”, which are of the same union as “no1”, are declared.

union data {
char name [12];
char addr [50];
char tel [12];
} noi;

union data no2, no3, no4, no5;

(2) Union declaration list
A union declaration list specifies the structure of a union type to be declared. Individual elements in the union

declaration list are called members and an area is allocated for each of these members in the order of their
declaration. In the following [Example of union declaration list], an area is allocated to ‘c’, which becomes the
largest area of the members. The other members are not allocated new areas but use the same area.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each
member same as the union declaration list.

Each member can have any object type other than the above two types.

[Union declaration list]

int a;
char b [7];
char ¢ [5] [10];

130 User's Manual U15556EJ1VOUM

CHAPTER 7 STRUCTURES AND UNIONS

(3) Union arrays and pointers
Union variables may also be declared as an array or referenced using a pointer (in much the same way as

structure arrays and pointers).

[Union arrays]
An array of unions is declared in the same ways as other objects.

union data {
char name [12];
char addr [50];
char tel [12];
}i

union data no [5];

[Union pointers]
A pointer to a union has the characteristics of the union indicated by the pointer. In other words, if a union

pointer is incremented, adding the size of the union to the pointer points to the next union.
In the following example, “dt_p” is a pointer to the value of “union data” type.

union data no[5];

union data *dt p = no;

User's Manual U15556EJ1VOUM 131

CHAPTER 7 STRUCTURES AND UNIONS

(4) How to refer to union members
A union member (or union element) may be referenced in two ways: one by using a union variable and the other
by using a pointer to a variable.

[Reference by using a union variable]
The . (dot) operator is used for referring to a union member by using a union variable.

union data {
char name [12];
char addr [50];
char tel [12];
} nol[5] = {“NAME”, “ADDR”, “TEL”};

void main (void)

no[0] .addr[10] = ‘B’ ;

[Reference by using a pointer to a variable]
The —> (arrow) operator is used for referring to a union member by using a pointer to a variable.

union data {
char name [12];
char addr [50];
char tel [12];
} *data ptr ;

void main(void) {

data ptr -> name[l] = ‘N’ ;

132 User's Manual U15556EJ1VOUM

CHAPTER 8 EXTERNAL DEFINITIONS

In a program, lists of external declarations come after the preprocessing. These declarations are referred to as
“external declarations” because they appear outside a function and have effective file ranges.

A declaration to give a name to external objects by identifiers or a declaration to secure storage for a function is
called an external definition. If an identifier declared with external linkage is used in an expression (except the
operand part of the sizeof operator), one external definition for the identifier must exist somewhere in the entire
program.

The syntax of external definitions is given below.

#define TRUE 1
#define FALSE 0
#define SIZE 200

void printf (char*, int);

void putchar (char c);

char mark [SIZE+1]; <+— External object declaration

main ()

{

int i, prime, k, count;

count = 0;

for (1 =0 ; i <= SIZE ; 1++)
mark [i] = TRUE;
for (i =0 ; i <= SIZE ; i++){
if (mark([i])
prime = i + 1 + 3;
printf (“%d “,prime);
count++;
if ((count%8) = = 0) putchar(‘\n’);
for ((k = i + prime ; k <= SIZE ; K += prime)
mark [k] = FALSE;

}
printf (“Total %d\n”, count);
loopl:
goto loopl;

User's Manual U15556EJ1VOUM 133

CHAPTER 8 EXTERNAL DEFINITIONS

8.1 Function Definition

A function definition is an external definition that begins with a declaration of the function. If the storage class
specifier is omitted from the declaration, extern is assumed to have been defined. An external function definition
means that the defined function may be referenced from other files. For example, in a program consisting of two or
more files, if a function in another file is to be referenced, this function must be defined externally.

The storage class specifier of an external function is extern or static. If a function is declared as extern, the
function can be referenced from another file. If declared as static, it cannot be referenced from another file.

In the following example, the storage class specifier is “extern” and the type specifier is “int”. These two are
default values and thus may be omitted from specification. The function declarator is “max(int a, int b)” and the body

of the function is “{return a>b?a:b;)".

[Example of function definition]

extern int max(int a, int b)

{

return asb?a :b ;

Because this function definition specifies a parameter type in the function declaration, the type of argument is
forcibly converted by the compiler. This type conversion can be described by using the form of an identifier list for
the parameters. An example of this identifier list is shown below.

extern int max(a, b)
int a, b;

{

return asb?a:b;

The address of a function may be passed as an argument to the function call. By using the function name in the
expression, a pointer to the function can be generated.

int £ (void) ;

void main() {

g(f);

134 User's Manual U15556EJ1VOUM

CHAPTER 8 EXTERNAL DEFINITIONS

In the above example, the function g is passed to the function f by a pointer that points to the function f. The
function g must be defined in either of the following two ways.

void g (int (*funcp) (void))

{

(*funcp) (); /* or funcp();*/
or
void g (int func(void))

{

func(); /* or (*func) ();*/

User's Manual U15556EJ1VOUM 135

CHAPTER 8 EXTERNAL DEFINITIONS

8.2 External Object Definitions

An external object definition refers to the declaration of an identifier for an object that has file scope or an
initializer. If the declaration of an identifier for an object that has file scope has no initializer without storage class
specification or has static storage class, the object definition is considered to be temporary, because it becomes a
declaration that has file scope with initializer 0.

Examples of external object definitions are shown below.

[Example of external object definition]

int 11 = 1 o, Definition with external linkage

static int 12 = 2 ;.. Definition with internal linkage

extern int i3 = 3 ;... Definition with external linkage

INt 14 ;o Temporary definition with external linkage

static int 15 ; ceceeeeeen. Temporary definition with internal linkage

int 11 ;o Valid temporary definition which refers to previous declaration
ANt 12 oo Violation of linkage rule

int i3 ; Valid temporary definition which refers to previous declaration
int 14 ; Valid temporary definition which refers to previous declaration
ANt 15 e Violation of linkage rule

extern int il ; . Reference to previous declaration which has external linkage
extern int 12 ; . Reference to previous declaration which has internal linkage
extern int i3 ; . Reference to previous declaration which has external linkage
extern int 14 ; i Reference to previous declaration which has external linkage
extern int 15 ; . Reference to previous declaration which has internal linkage

136 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

A preprocessing directive is a string of preprocessing tokens between the # preprocessing token and the line feed
character.

Blank characters that can be used between preprocessing token strings are only spaces and horizontal tabs.

A preprocessing directive specifies the processing performed before compiling a source file. Preprocessing
directives include operations such as processing or skipping a part of a source file depending on the conditions,
obtaining additional code from other source files, and replacing the original source code with other text as in macro
expansion. The preprocessing directives are described below.

9.1 Conditional Translation Directives

Conditional translation skips part of a source file according to the value of a constant expression. |If the value of
the constant expression specified by a conditional translation directive is 0, the statements that follow the directive
are not translated (compiled). The sizeof operator, cast operator, or an enumerated type constant cannot be used in
the constant expression of any conditional translation directive.

Conditional translation directives include #if, #elif, #ifdef, #ifndef, #else, and #endif.

In preprocessing directives, the following unary expressions called defined expressions may be used.

defined identifier
or
defined (identifier)

The unary expression returns 1 if the identifier has been defined with the #define preprocessing directive and 0 if
the identifier has never been defined or its definition has been canceled.

[Example]
In this example, the unary expression returns 1 and compiles between #if and #endif because SYM has been
defined (for the explanation of #if through #endif, refer to the explanations on the following pages).

#define SYM 0

#if defined SYM

#endif

User's Manual U15556EJ1VOUM 137

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(1) #if directive

Conditional Translation Directives #if

FUNCTION
The #if directive tells the translation phase of C to skip (discard) a section of source code if the value of the
constant expression is 0.

SYNTAX

#if constant expression line feed [group]

EXAMPLE

#if FLAG ==

#endif

EXPLANATION
In the above example, the constant expression “FLAG == 0” is evaluated to determine whether a set of
statements (i.e., source code) between #if and #endif is to be used in the translation phase. If the value of
“FLAG” is nonzero, the source code between #if and #endif will be discarded. If the value is zero, the source
code between #if and #endif will be translated.

138 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(2) #elif directive

Conditional Translation Directives #elif

FUNCTION
The #elif directive normally follows the #if directive. If the value of the constant expression of the #if directive is
0, the constant expression of the #elif directive is evaluated. If the constant expression of the #elif directive is 0,
the translation phase of C will skip (discard) the statements (a section of source code) between #elif and #endif.

SYNTAX

#elif constant-expression line feed [group]

EXAMPLE

#if FLAG ==

#elif FLAG != 0

#endif

EXPLANATION
In the above example, the constant expression “FLAG= =0" or “FLAG!=0" is evaluated to determine whether a
set of statements that follow #if and another set of statements that follow #elif is to be used in the translation
phase. If the value of “FLAG” is zero, the source code between #if and #elif will be translated. If the value is
nonzero, the source code between #elif and #endif will be translated.

User's Manual U15556EJ1VOUM 139

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(3) #ifdef directive

Conditional Translation Directives #ifdef

FUNCTION
The #ifdef directive is equivalent to:
#if defined (identifier)
If the identifier has been defined with the #define directive, the statements between #ifdef and #endif will be
translated. If the identifier has never been defined or its definition has been canceled, the translation phase will
skip the source code between #ifdef and #endif.

SYNTAX

#ifdef identifier line feed [group]

EXAMPLE

#define ON
#ifdef ON

#endif

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code
between #ifdef and #endif will be translated. If the identifier “ON” has never been defined, the source code
between #ifdef and #endif will be discarded.

140 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(4) #ifndef directive

Conditional Translation Directives #ifndef

FUNCTION
The #ifndef directive is equivalent to:
#if !defined (identifier)
If the identifier has never been defined with the #define directive, the source code between #ifndef and #endif
will not be translated.

SYNTAX

#ifndef identifier line feed [group]

EXAMPLE

#tdefine ON
#ifndef ON

#endif

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code
between #ifndef and #endif will be discarded in the translation phase. If the identifier “ON” has never been
defined, the source code between #ifndef and #endif will be translated.

User's Manual U15556EJ1VOUM 141

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(5) #else directive

Conditional Translation Directives #else

FUNCTION
The #else directive tells the translation phase of C to discard a section of source code that follows #else if the
identifier of the preceding conditional translation directive is nonzero.
The #if, #elif, #ifdef, or #ifndef directive may precede the #else directive.

SYNTAX

#else line feed [group]

EXAMPLE

#define ON
#ifdef ON

#else

#endif

EXPLANATION
In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code
between #ifndef and #endif will be translated. If the identifier “ON” has never been defined, the source code
between #else and #endif will be translated.

142 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(6) #endif directive

Conditional Translation Directives

FUNCTION

The #endif directive indicates the end of a #ifdef block.

SYNTAX

#endif line feed

EXAMPLE

#define ON
#ifdef ON

#endif

EXPLANATION

In the above example, #endif indicates the end of the #ifdef block (effective range of #ifdef directive).

User's Manual U15556EJ1VOUM

143

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.2 Source File Inclusion Directive

The preprocessing directive #include searches for a specified header file and replaces #include by the entire
contents of the specified file. The #include directive may take one of the following three forms for inclusion of other
source files.

e #include <file-name>

¢ #include “file-name”

e #include preprocessing token string

An #include directive may appear in the source obtained by #include. In this compiler, however, there are
restrictions for #include directive nesting. For the restrictions, refer to Table 1-1 Maximum Performance

Characteristics of This C Compiler.

Remark Preprocessing token string: Character string defined by the #define directive

144 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(1) #include < >

Source File Inclusion Directive #include< >

FUNCTION
If the directive form is #include < >, the C compiler searches the directory specified by the -i compiler option, the

directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4 registered in
the registry for the header file specified in angle brackets and replaces the #include directive line with the entire

contents of the specified file.

SYNTAX

| #include <file-name> line feed |

EXAMPLE

| #include <stdio.h> |

EXPLANATION
In the above example, the C compiler searches the directory specified by the INC78K environment variable and

the directory \NECTools32\INC78K4 registered in the registry for the file stdio.h and replaces the directive line
#include<stdio.h> with the entire contents of the specified file stdio.h.

Caution The above directories differ depending on the installation method.

User's Manual U15556EJ1VOUM 145

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(2) #include “ ”

Source File Inclusion Directive #include “

FUNCTION
If the directive form is #include “ ”, the current working directory is first searched for the header file specified in

double quotes. If it is not found, the directory specified by the -i compiler option, the directory specified by the
INC78K environment variable, and the directory \NECTools32\INC78K4 registered in the registry are searched.
The compiler then replaces the #include directive line with the entire contents of the specified file.

SYNTAX

#include “file-name” line feed

EXAMPLE

| #include “myprog. h”

EXPLANATION
In the above example, the C compiler searches the current working directory, the directory specified by the

INC78K environment variable, and the directory \NECTools32\INC78K4 registered in the registry for the file
myprog.h specified in double quotes and replaces the directive line #include “myprog.h” with the entire
contents of the specified file myprog.h.

Caution The above directories differ depending on the installation method.

146 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(3) #include preprocessing token string

Source File Inclusion Directive #include token string

FUNCTION
If the directive form is #include preprocessing token string, the header file to be searched is specified by macro
replacement and the #include directive line is replaced by the entire contents of the specified file.

SYNTAX

#include preprocessing token string line feed

EXAMPLE

#define INCFILE “myprog.h”
#include INCFILE

EXPLANATION

When including source files using the directive form “#include preprocessing token string line feed”, the
specified “preprocessing token string” must be substituted with <file-name> or “file name” by macro replacement.
If the token string is replaced by <file-name>, the C compiler searches the directory specified by the -i compiler
option, the directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4
registered in the registry for the specified file. If the token string is replaced by “file name”, the current working
directory is searched. |If the specified file is not found, the directory specified by the -i compiler option, the
directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4 registered in
the registry are searched.

Caution The above directories differ depending on the installation method.

User's Manual U15556EJ1VOUM 147

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.3 Macro Replacement Directives

The macro replacement directives #define and #undef are used to replace the character string specified by
“identifier” with “substitution list” and to end the scope of the identifier given by the #define, respectively. The
#define directive has two forms: Object format and Function format.

* Object format
#define identifier replacement list line feed

* Function format
#define identifier ([identifier-list]) replacement-list line feed

(1) Actual argument replacement
Actual argument replacement is executed after the arguments in the function-form macro call are identified. If
the # or ## preprocessing token is not prefixed to a parameter in the replacement list or if the ## preprocessing
token does not follow any such parameter, all macros in the list will be expanded before replacement with the
corresponding macro arguments.

(2) # operator
The # preprocessing token replaces the corresponding macro argument with a char string processing token. In
other words, if this preprocessing token is prefixed to a parameter in the replacement list, the corresponding
macro argument will be translated into a character or character string.

(3) #i# operator
The ## preprocessing token concatenates the two tokens on either side of the ## symbol into one token. This
concatenation will take place before the next macro expansion and the ## preprocessing token will be deleted
after the concatenation. The token generated from this concatenation will undergo macro expansion if it has a
macro name.
[Example of ## operation]
The above macro replacement directive will be expanded as follows.

printf (“X" win "=%d, X" W27 w_ggn , Xl, X2) ;

The concatenated char string will look like this.

printf (“x1=%d, x2=%s”, x1, x2);

#include <stdio.h>

#define debug(s, t) printf (“x"#s”"= %d, x"#t”=%s", x##s, x##t);

void main() {
int x1, x2;

debug (1, 2);

148 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(4) Re-scanning and further replacement
The preprocessing token string resulting from replacement of macro parameters in the list will be scanned again,
together with all remaining preprocessing tokens in the source file. Macro names currently being replaced (not
including the remaining preprocessing tokens in the source file) will not be replaced even if they are found during
scanning of the replacement list.

(5) Scope of macro definition

A macro definition (#define directive) continues macro replacement until it encounters the corresponding #undef
directive.

User's Manual U15556EJ1VOUM 149

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(6) #define directive

Macro Replacement Directives #define

FUNCTION
The #define directive in its simplest form replaces the specified identifier (manifest) with a given replacement list
(any character sequence that does not contain a line feed) whenever the same identifier appears in the source
code after the definition by this directive.

SYNTAX

#define identifier replacement list line feed

EXAMPLE

#define PAI 3.1415

EXPLANATION
In the above example, the identifier “PAI” will be replaced with “3.1415” whenever it appears in the source code
after the definition by this directive.

150 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(7) #define() directive

Macro Replacement Directives #define ()

FUNCTION
The function-form #define directive which has the form:
#define name (name, ..., name) replacement list
replaces the identifier specified in the function format with a given replacement list (any character sequence that
does not contain a line feed). No white space is allowed between the first name and the opening parenthesis “(”.
This list of names (identifier list) may be empty. Because this form of the directive defines a macro, the macro
call will be replaced with the parameters of the macro inside the parentheses.

SYNTAX

#define identifier ([identifier list]) replacement-list line feed

EXAMPLE

#define F(n) (n*n)
void main()

int i;

i=F(2)

}

EXPLANATION
In the above example, #define directive will replace “F(2)” with “(2*2)” and thus the value of i will become 4. For
the sake of safety, be sure to enclose the replacement list in parentheses, because unlike a function definition,
this function-form macro is merely to replace a sequence of characters.

User's Manual U15556EJ1VOUM 151

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

(8) #undef directive

Macro Replacement Directives #undef

FUNCTION
The #undef directive undefines the given identifier. In other words, this directive ends the scope of the identifier
that has been set by the corresponding #define directive.

SYNTAX

#undef identifier line feed

EXAMPLE

#define F(n) (n*n)

#undef F

EXPLANATION
In the above example, #undef directive will invalidate the identifier “F” previously specified by “#define F(n)
(n*n)”.

152 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.4 Line Control Directive

The preprocessing directive for line control #line replaces the line number to be used by the C compiler in
translation with the number specified in this directive. If a string (character string) is given in addition to the number,
the directive also replaces the source file name the C compiler has with the specified string.

(1) To change the line number
To change the line number, the specification is made as follows. 0 and numbers larger than 32767 cannot be
specified.

#1ine numeric-string line feed

[Example]

#line 10

(2) To change the line number and the file name
To change the line number and file name, the specification is made as follows.

#1ine numeric-string “character string” line feed

[Example]

#line 10 “filel.c”

(3) To change using preprocessing token string
In addition to the specifications above, the following specification can also be made. In this case, the specified
preprocessing token string must be either one of the above two examples after all the replacement.

#1ine preprocessing-token-string line feed

[Example]

#define LINE NUM 100
#line LINE_NUM

User's Manual U15556EJ1VOUM 153

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.5 #error Preprocessing Directive

The #error preprocessing directive is a directive that outputs a message including the specified preprocessing
tokens and incompletely terminates compileation. This preprocessing directive is used to terminate compilation.

This preprocessing directive is specified as follows.

#error “preprocessing-token-string” line feed

[Example]
In this example, the macro name _ _K4 _ _, which indicates the device series of this compiler, is used. If the

device is the 78K/IV Series, the program between #if and #else is compiled. In the other cases, the program
between #else and #endif is compiled, but compilation will be terminated with an error message “not for 78K4”

output by the #error directive.

#if K4

#else

#error “‘not for 78K4”

#endif

154 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.6 #pragma Directives

#pragma directives are directives to instruct the compiler to operate using the compiler definition method. In this
compiler, there are several #pragma directives to generate codes for the 78K/IV Series (for details of #pragma
directives, refer to CHAPTER 11 EXTENDED FUNCTIONS).

[Example]
In this example, the #pragma NOP directive enables the description to directly output a NOP instruction in the C
source.

#pragma NOP

9.7 Null Directives

Source lines that contain only the # character and white space are called null directives. Null directives are simply
discarded during preprocessing. In other words, these directives have no effect on the compiler. The syntax of null
directives is given below.

line feed

User's Manual U15556EJ1VOUM 155

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

9.8 Compiler-Defined Macro Names

In this C compiler, the following macro names have been defined.

_ _LINE_ _ Line number of the current source line (decimal constant)

__FILE_ _ Source file name (string literal)

_ _DATE_ _ Date the source file was compiled (string literal in the form of “Mmm dd yyyy”)
__TIME_ _ Time of day the source file was compiled (string literal in the form of “hh:mm:ss”)
__STDC_ _ Decimal constant “1” that indicates the compliance with ANS|"* specification

Note ANSI is the acronym for American National Standards Institute

A #define or #undef preprocessing directive must not be applied to these macro name and defined identifiers.
All the macro names of the compiler definition start with an underscore followed by an uppercase character or a

second underscore.

In addition to the above macro names, macro names indicating the series name of devices according to the
device subject to applied product development and macro names indicating device names are provided. To output
the object code for the target device, these macro names must be specified by the option at compilation or by the
processor type in the C source.

* Macro name indicating the series name of devices
‘ ka
e Macro name indicating the device name
‘ ’is added before the device type name and ‘ ’ is added after the device type name.
Describe letters in uppercase

(Example) 4026 4038Y

Remark The device type names are the same as those specified by the -C option. For the device type names,
refer to the reference materials related to device files.

156 User's Manual U15556EJ1VOUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

This C compiler has a macro name indicating the memory model or location.

e Macro name indicating memory model
When small model is specified
#define _ K4 SMALL_ _ 1
When medium model is specified
#define _ _K4_ MEDIUM_ _ 1
When large model is specified
#define K4 LARGE 1
* Macro name indicating location

Location 0

#define _ _K4LOCO_ _ 1
Location 15

#define _ K4LOCl5 1

The device type for compilation is specified by adding the following to the command line
‘-c device type name’

Example cc78k4 -c4038Y prime.c

It is possible to avoid specifying the device type at compilation by specifying it at the start of the C source
program.

‘#pragma PC (device type)’

Example #pragma PC (4038Y)

However, the following can be described before ‘#pragma PC (device type)’

e Comment statement
* Preprocessing directives that do not generate definition/reference of variables nor functions.

User's Manual U15556EJ1VOUM 157

CHAPTER 10 LIBRARY FUNCTIONS

C has no instructions to transfer (input or output) data to and from external sources (peripheral devices and
equipment). This is because of the C language designer's intent to hold the functions of C to a minimum. However,
for actually developing a system, 1/O operations are requisite. Thus, C is provided with library functions to perform
I/O operations.

This C compiler is provided with library functions such as 1/O, character/memory manipulation, program control,
and mathematical functions. This chapter describes the library functions provided in this compiler.

158 User’'s Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

10.1 Interface Between Functions

To use a library function, the function must be called. Calling a library function is carried out by a call instruction.
The arguments and return value of a function are passed via a stack and a register, respectively. However, when the
old function interface supporting option (-ZO) is not specified, the first argument is, if possible, also passed via a
register.

For the -ZO option, refer to CHAPTER 5 COMPILER OPTION in the CC78K4 C Compiler Operation User's
Manual (U15557E).

10.1.1 Arguments

Placing or removing arguments on or from the stack is performed by the caller (calling function). The callee
(called function) only references the argument values. However, when the argument is passed via a register, the
callee directly refers to the register and copies the value of the argument to another register, if necessary. Also,
when specifying the function call interface automatic pascal function option -ZR, removal of arguments from the stack
is performed by the called side if the argument is passed by the stack.

Arguments are placed on the stack one by one in descending order from bottom to top if the argument is passed
via the stack.

The minimum unit of data that can be stacked is 16 bits. A data type larger than 16 bits is stacked in units of 16
bits one by one from its MSB. An 8-bit type data is extended to a 16-bit type data for stacking.

When it is a large model and the argument is the address value or when it is a medium model and the argument is
the address value of the function, the argument is stacked in 3-byte units.

The following shows the list of the passing of the first argument. The second and subsequent arguments are
passed via a stack.

The function interface (passing of argument and storing of return value) of the standard library is the same as that
of normal function.

Table 10-1. List of Passing First Argument

Passing Method
Type of First Argument Passing Method (Without -ZO Specification) a.ssmg N 0_ L
(with -ZO Specification)
1-byte, 2-byte integer AX Passed via a stack
3-byte integer WHL, small model: stack passing Passed via a stack
4-byte integer AX, RP2 Passed via a stack
Floating-point number AX, RP2 Passed via a stack
(float type)
Floating-point number AX, RP2 Passed via a stack
(double type)
Other Passed via a stack Passed via a stack

Remark Of the types shown above, 1- to 4-byte integers include structures and unions.

User's Manual U15556EJ1VOUM 159

CHAPTER 10 LIBRARY FUNCTIONS

10.1.2 Return values

The return value of a function is stored in units of 16 bits starting from its LSB in the direction from the register BC
to the register RPZ. When returning a structure, the first address of the structure is stored in the register BC. When
returning a pointer, the first address of the structure is stored in the register BC.

The following shows the list of storing the return value. The method of storing return values is the same as that of
normal functions.

Table 10-2. List of Storing Return Value

Return Value Type

Small Model

Medium Model

Large Model

1 bit

CcY

CY

CY

1-byte, 2-byte integers

BC

BC

BC

4-byte integers

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

Floating-point number
(float type)

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

Floating-point number

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

(double type)

Structure Copies the structure to return | Copies the structure to return | Copies the structure to return
to the area specific to the to the area specific to the to the area specific to the
function and stores the function and stores the function and stores the
address in BC address in BC address in TDE

Pointer BC BC (function pointer) TDE

WHL (function pointer)

10.1.3 Saving registers to be used by individual libraries
Each library that uses RP3, RG4 (VVP) and RG5 (UUP) saves the registers it uses to a stack.
Each library that uses a saddr area saves the saddr area it uses to a stack. A stack area is used as a work area

for each library.

(1) When -ZR option is not specified
The procedure of passing arguments and return values is shown below. An example of the small model is shown
below.

Called function “long func (int a, long b, char *c) ;”

160 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

<9>

Placing arguments on the stack (by the caller)

The higher 16 bits of arguments “c” and “b” and lower 16 bits of argument “b” are placed on the stack in the
order named. a is passed via the AX register.

Calling func by call instruction (by the caller)

The return address is placed on the stack next to the lower 16 bits of argument “b” and control is

transferred to the function func.

Saving registers to be used within the function (by the callee)
If register RP3 is to be used, RP3 is placed on the stack.

Placing the first argument passed via the register on the stack (by the callee)

Processing func and storing the return value in registers (by the callee)

The lower 16 bits of the return value “long” are stored in BC and the higher 16 bits of the return value, are
stored are stored in RP2.

Restoring the stored first argument (by the callee)

Restoring the saved registers (by the callee)

Returning control to the caller with ret instruction (by the callee)

Removing arguments from the stack (by the caller)

The number of bytes (in units of 2 bytes) of the arguments is added to the stack pointer. In the example

shown in Figure 10-1, 6 is added.

Figure 10-1. Stack Area When Function Is Called (No —ZR Specified)

Return value in <5> is stored
Lower 16 bits Higher 16 bits
BC RP2
Stack pointer after <4> —— a
Stack pointer after <3> —— RP3 < Stack pointer after <6>
Stack pointer after <2> — Return address ~— Stack pointer after <7>
Stack pOinter after <1> — » Lower 16 bits of b -<— Stack pointer after <8>
Higher 16 bits of b
c
Stack pointer before ——
stacking arguments —~— Stack pointer after <9>

High address

User's Manual U15556EJ1VOUM 161

CHAPTER 10 LIBRARY FUNCTIONS

(2) When -ZR option is specified

The following example shows the procedure of passing arguments and return values when the -ZR option is
specified.

Called function *long func (int a, long b, char *c);”

<1> Place arguments on the stack (by the caller)
The higher 16 bits of arguments “c” and “b” and the lower 16 bits of argument “b” are placed on the stack in
the order named. a is passed via the AX register.

<2> Call func by call instruction (by the caller).
The return address is placed on the stack next to the lower 16 bits of argument “b” and control is
transferred to the function func.

<3> Save the registers used in the functions (by the caller).

<4> Perform processing of the function func, and store return values in the register (by the callee).
Store the lower 16 bits of the return value (long) in BC and the higher 16 bits in RP2.

<5> Restore the saved registers (by the callee).

<6> Save the return address in the register (by the callee).
Save the return address in the WHL register.

<7> The caller restores the placed arguments (by the callee).

<8> Return control to the function on the caller in the branch instruction (by the callee) at the value saved in the
register in <6>.
Return control to the function on the caller in the BR WHL instruction (by the callee).

Figure 10-2. Stack Area When Function Is Called (-ZR Specified)

Return value in <4> is stored
Lower 16 bits Higher 16 bits
BC RP2
Stack pointer after <3> — » RP3
Stack pointer after <2> — Return address ~ Stack pointer after <5>
Stack pOinter after<1> — » Lower 16 bits of b -— Stack pointer after <6>
Higher 16 bits of b
c
Stack pointer before —— —— Stack pointer after <7>
stacking arguments

High address

162 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

10

.2 Headers

This C compiler has 13 headers (or header files). Each header defines or declares standard library functions,

data type names, and macro names.

These 13 headers are as shown below.

ctype.h setjmp.h stdarg.h stdio.h
stdlib.h string.h error.h errno.h
limits.h stddef.h math.h float.h
assert.h

(1)

ctype.h
This header is used to define character and string functions. In this standard header, the following library
functions have been defined.

However, when the compiler option -ZA (the option that disables the functions not complying with ANSI
specifications and enables a part of the functions of ANSI specifications) is specified, _toupper and _tolower
are not defined. Instead, tolow and toup are defined. When -ZA is not specified, tolow and toup are not
defined.

Isalnum isalpha iscntrl isdigit isgraph
islower isprint ispunct isspace isupper
isxdigit tolower toupper isascii toascii
__toupper _tolower tolow toup

()

setjmp.h

This header is used to define program control functions. In this standard header, the setjmp and longjmp
functions have been defined.

In the header setjmp.h, the following object has been defined.

[Declaration of char array type jmp_buf with an array size of greater than 30]

typedef char jmp buf [30]

)

stdarg.h

This header used to define special functions. In this standard header, the following four library functions have
been defined.

When the -ZO option (old function interface supporting option) is not specified, the va_start function cannot be
specified for the first argument because the first argument is passed via the register.

Use the macro in the following manner when the -ZO option is not specified.

¢ Use the va_starttop macro when specifying the first argument.

¢ Use the va_start macro when specifying the second argument.

va_start wva_starttop va_arg va_end

In the header stdarg.h the following object has been declared.

User's Manual U15556EJ1VOUM 163

CHAPTER 10 LIBRARY FUNCTIONS

[Declaration of pointer type va_list to char]

typedef char *va list;

(4) stdio.h
This header is used to define I/O functions. In this standard header, the following functions have been defined.

sprintf sscanf printf scanf vprintf vsprintf

getchar gets putchar puts

The following macro names are declared.

#define EOF (-1)
#define NULL (void *)0
(5) stdlib.h

This header is used to define character and string functions, memory functions, program control functions,
mathematical functions, and special functions. In this standard header, the following library functions have been
defined.

However, when the compiler option -ZA (the option that disables the functions not complying with ANSI
specifications and enables a part of the functions of ANSI specifications) is specified, brk, sbrk, itoa, Itoa, and
ultoa are not defined. Instead, strbrk, strsbrk, stritoa, stritoa, and strultoa are defined. When -ZA is not
specified, strbrk, strsbrk, stritoa, strltoa, and strultoa are not defined.

atoili atol strtol strtoul calloc free malloc realloc abort atexit exit
abs div labs ldiv brk sbrk atof strtod itoa ltoa

ultoarand srand bsearch gsort strbrk strsbrk stritoa strltoa strultoa

In the header stdlib.h the following objects have been defined.

[Declaration of structure type “div_t” which has int type members “quot” and “rem”]

typedef struct {
int quot ;
int rem ;

}div t ;

[Declaration of structure type Idiv_t which has long int type members quot and rem]

typedef struct {
long int quot ;
long int rem ;
} ldiv_t ;

[Definition of macro name RAND_MAX]

#define RAND MAX 32767

164 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

[Declaration of macro name]

define EXIT SUCCESS 0
define EXIT FAILURE 1

(6) string.h
This header is used to define character and string functions, memory functions, and special functions. In this
standard header, the following library functions have been defined.

Memcpy memmove strcpy stmcpy sStrcat strncat memcmp
Strcmp strncmp memchr strchr strcespn strpbrk strrchr

Strspn strstr strtok memset strerror strlen strcoll strxfrm

(7) error.h
error.h includes errno.h.

(8) errno.h
In this standard header, the following objects have been defined.

[Definitions of macro names “EDOM”, “ERANGE”, and “ENOMEM”]

#define EDOM 1
#tdefine ERANGE 2
#define ENOMEM 3

[Declaration of volatile int type external variable errno]

extern volatile int errno ;

(9) limits.h
In this standard header, the following macro names have been defined.

#define CHAR BIT 8
#define CHAR_MAX +127
#define CHAR MIN -128
#define INT_MAX +32767
#define INT_MIN -32768
#define LONG MAX +2147483647
#define LONG_MIN -2147483648
#define SCHAR_MAX +127
#define SCHAR MIN -128
#define SHRT MAX +32767
#define SHRT MIN -32768
#define UCHAR MAX 255U
#define UINT MAX 65535U
#define ULONG MAX 4294967295U
#define USHRT MAX 65535U

User's Manual U15556EJ1VOUM 165

CHAPTER 10 LIBRARY FUNCTIONS

However, when the -QU option, which regards unqualified char as unsigned char, is specified, CHAR_MAX and
CHAR_MIN are declared by the macro_CHAR_UNSIGNED_ _ declared by the compiler as follows.

#define CHAR_MAX (2550)
#define CHAR MIN (0)

(10) stddef.h
In this standard header, the following objects have been declared and defined.

[Declaration of int type ptrdiff_t]

typedef int ptrdiff t;

[Declaration of unsigned int type size_t]

typedef unsigned int size t;

[Definition of macro name NULL]

#define NULL (void*)O0

[Definition of macro name offsetof]

#define offsetof (type, member) ((size t)&(((type*)0) -> member))

« offsetof (type, member specifier)

offsetof is expanded to a general integer constant expression with the type size_t, and the value is an offset
value in byte units from the start of the structure (that is specified by the type) to the structure member (that is
specified by the member specifier).

The member specifier must be the one that the result of evaluation of the expression & (t. member specifier)
becomes an address constant when static type t; is declared. When the specified member is a bit field, the
operation will not be guaranteed.

(11) math.h
math.h defines the following functions.

acos asin atan atan2 cos sin tan cosh sinh tgnh exp frexp
ldexp log logl0 modif pow sqrt ceil fabs floor fmod acosf
asinf atanf atan2l cost sinf tanf coshf sinhf tanhf expf frexpf

ldexpf logf logl0f modff powf sgrtf ceilf fabsf floorf fmodf matherr

The following objects are defined.

[Definition of macro name HUGE_VAL]

#define HUGE_VAL _HUGE

166 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(12) float.h
float.h defines the following objects.
When the size of a double type is 32 bits, the macros to be defined are sorted by the macro
_ _DOUBLE_IS_32BITS_ _ declared by the compiler.

#ifndef FLOAT H

#define FLT_ROUNDS 1

#define FLT_RADIX 2

#ifdef _ _DOUBLE_IS_32BITS_ _

#define FLT_MANT DIG 24

#define DBL_MANT DIG 24

#define LDBL_MANT DIG 24

#define FLT DIG 6

#define DBL_DIG 6

#define LDBL_DIG 6

#define FLT MIN_EXP -125

#define DBL_MIN_EXP -125

#define LDBL_MIN_ EXP -125

#define FLT _MIN_10_ EXP -37

#define DBL_MIN_10_EXP -37

#define LDBL_MIN 10_EXP -37

#define FLT MAX EXP +128

#define DBL_MAX EXP +128

#define LDBL_MAX EXP +128

#define FLT=MAX=10=EXP +38

#define DBL_MAX 10_EXP +38

#define LDBL_MAX 10_EXP +38

#define FLT_MAX 3.40282347E+38F
#define DBL_MAX 3.40282347E+38F
#define LDBL_MAX 3.40282347E+38F
#define FLT EPSILON 1.19209290E-07F
#define DBL_EPSILON 1.19209290E-07F
#define LDBL_EPSILON 1.19209290E-07F
#define FLT_MIN 1.1749435E-38F
#define DBL_MIN 1.17549435E-38F
#define LDBL_MIN 1.17549435E-38F

User's Manual U15556EJ1VOUM

167

CHAPTER 10 LIBRARY FUNCTIONS

ftelse

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define
#endif

#define
#endif

/* _ _DOUBLE_IS_ 32BITS_
FLT MANT DIG
DBL_MANT DIG
LDBI,_ MANT DIG

FLT DIG
DBL_DIG
LDBL DIG

FLT MIN EXP
DBL_MIN_ EXP
LDBL MIN EXP

FLT MIN 10 EXP
DBL_MIN 10 EXP
LDBL MIN 10 EXP

FLT MAX EXP
DBL_MAX EXP
LDBL MAX_ EXP

FLT MAX 10 EXP
DBL_MAX 10 EXP
LDBL MAX 10 EXP

FLT MAX
DBL_MAX
LDBI,_ MAX

FLT EPSILON

DBL EPSILON
LDBL_EPSILON

/* | FLOAT H */

_*/

24
53
53

15
15

-1
-1
-1

-3
-3
-3

+1
+1
+1

+3
+3
+3

25
021
021

7
07
07

28
024
024

8
08
08

3.40282347E+38F

.7976931348623157E+308

1.7976931348623157E+308

.19209290E-07F
.2204460492503131E-016
.2204460492503131E-016

FLT MIN 1.17549435E-38F
DBL_MIN 2.225073858507201E-308
LDBIL,_ MIN 2.225073858507201E-308
/* _ DOUBLE_IS 32BITS _ */

_FLOAT_H

168

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(13) assert.h
assert.h defines the following objects.

#ifdef NDEBUG

#define assert (p) ((void) 0)
#else
extern int _ assertfail (char* msg, char* cond, char* file, int 1line);
#define assert (p) ((p) ? (void) 0 : (void)_ assertfail
“Assertion failed: %s, file %s, line %d\n”, #p, _ FILE , _LINE_))

#endif /* NDEBUG */

However, the assert.h header file is not defined in the assert.h header file.

If the assert.h header file references another macro, NDEBUG, which is not defined by the assert.h header file,
and if NDEBUG is defined as a macro when assert.h is captured to the source file, the assert.h header file
simply declares the assert macro as:

#define assert (p) ((void)O0)

and does not define _ _ assertfail.
10.3 Re-entrantability

Re-entrant is a state where a function called from a program can be consecutively called from another program.

The standard library of this compiler does not use static area allowing re-entrantability. Therefore, data in the
storage used by functions will not be destroyed by a call from another program.

However, the functions shown in (1) to (3) are not re-entrant.

(1) Functions that cannot be re-entranced
setjmp, longjmp, atexit, exit

(2) Functions that use the area secured in the startup routine
div, Idiv, brk, sbrk, rand, srand, strtok

(3) Functions that deal with floating-point numbers
sprintf, sscanf, printf, scanf, vprintf, vsprintf Nt atof, strtod, and

all the mathematical functions

Note Among sprintf, sscanf, printf, scanf, vprintf, and vsprintf, functions that do not support floating-
point numbers are re-entrant.

User's Manual U15556EJ1VOUM 169

CHAPTER 10 LIBRARY FUNCTIONS

10.4 Standard Library Functions

This section explains the standard library functions of this C compiler classified by function as follows. All standard
library functions are supported even when the —ZF option is specified.

e ltem (1-x) Character and character string functions
e ltem (2-x) Program control functions

e ltem (3-x) Special functions

e Item (4-x) 1/0 functions

e ltem (5-x) Utility functions

e Item (6-x) Character string/memory functions

e ltem (7-x) Mathematical functions

e Item (8-x) Diagnostic functions

170 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

-1 is~

Character & String Functions

FUNCTION

is~ judges the type of character.

HEADER

ctype.h for all the character functions

FUNCTION PROTOTYPE

int is~ (int «¢);
Function Arguments Return Value

is~ c... Character to be judged 1 if character c is included in
the character range.
0 if character c is not included
in the character range.

EXPLANATION
Function Character Range

isalpha Alphabetic character Ato Zorato z

isupper Uppercase letters Ato Z

islower Lowercase letters a to z

isdigit Numeric characters 0 to 9

isalnum Alphanumeric characters 0to 9 and Ato Zorato z

isxdigit Hexadecimal numbers 0 to 9 and Ato Forato f

isspace White-space characters (space, tab, carriage return, line feed,

vertical tab, and form feed)

ispunct Punctuation characters except white-space characters

isprint Printable characters

isgraph Printable nonblank characters

iscntrl Control characters

isascii ASCII character set

User's Manual U15556EJ1VOUM

171

CHAPTER 10 LIBRARY FUNCTIONS

1-2 toupper, Character & String Functions

tolower

FUNCTION
The character functions toupper and tolower both convert one type of character to another.

The toupper function returns the uppercase equivalent of c if c is a lowercase letter.
The tolower function returns the lowercase equivalent of ¢ if ¢ is a uppercase letter.

HEADER
ctype.h

FUNCTION PROTOTYPE

int to~(int c);

Function Arguments Return Value

c... Character to be converted Uppercase equivalent if c is a
convertible character.

Character “c” is returned
unchanged if not convertible.

toupper, tolower

EXPLANATION
toupper
The toupper function checks to see if the argument is a lowercase letter and if so converts the letter to its

L]
uppercase equivalent.

tolower

¢ The tolower function checks to see if the argument is a uppercase letter and if so converts the letter to its

lowercase equivalent.

172 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

1-3 toascii Character & String Functions

FUNCTION
The character function toascii converts “c” to an ASCII code.

HEADER
ctype.h

FUNCTION PROTOTYPE

int toascii (int c¢);

Function Arguments Return Value

toascii c... Character to be converted Value obtained by converting
the bits outside the ASCII
code range of “c” to 0.

EXPLANATION
The toascii function converts the bits (bits 7 to 15) of “c” outside the ASCII code range of “c” (bits 0 to 6) to “0”
and returns the converted bit value.

User's Manual U15556EJ1VOUM 173

CHAPTER 10 LIBRARY FUNCTIONS

1-4 _toupper/toup Character & String Functions
_tolower/tolow

FUNCTION
The character function _toupper/toup subtracts “a” from “c” and adds “A” to the result.
The character function _tolower/tolow subtracts “A” from “c” and adds “a” to the result.
(_toupper is exactly the same as toup, and _tolower is exactly the same as tolow)

Remark a: Lowercase, A: Uppercase

HEADER
ctype.h

FUNCTION PROTOTYPE

int _to~(int c);

Function Arguments Return Value
_toupper c... Character to be converted Value obtained by adding “A”
toup to the result of subtraction “c” -

agr
_tolower Value obtained by adding “a”
tolow to the result of subtraction “c” -
A

Remark a: Lowercase, A: Uppercase

EXPLANATION
_toupper
¢ The _toupper function is similar to toupper except that it does not test to see if the argument is a lowercase
letter.
_tolower
e The _tolower function is similar to tolower, except it does not test to see if the argument is an uppercase
letter.

174 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

2-1 setjmp, Program Control Functions
longjmp

FUNCTION
The program control function setjmp saves the environment information when a call to this function is made.
The program control function longjmp restores the environment information saved by setjmp.

HEADER
setjmp. h

FUNCTION PROTOTYPE
int setjmp (jmp buf env);
void longjmp (jmp buf env, int wval);

(jmp_buf is typedef defined with setjmp.h.)

Function Arguments Return Value
setjmp env ... Array to which e 0if called directly
environment information is to ¢ Value given by “val” if
be saved returning from the
corresponding longjmp or 1
if “val “is 0
longjmp env ... Array to which longjmp will not return
environment information was because program execution
saved by setjmp resumes at statement next to
val ... Return value to setjmp setjmp that saved
environment to “env”.

EXPLANATION

setjmp

* The setjmp function saves the RP3, RG4, RG5 registers, saddr area and SP to be used as variable registers,
and the return address of the functions to the array (or information block) referred to as env and returns 0.

longjmp

* The longjmp function restores the environment information (RP3, RG4, RG5 registers, saddr area and SP to
be used as variable registers) saved to env. Program execution continues as if the value given by val (or 1 if
the value of val is 0) was returned by the corresponding setjmp.

User's Manual U15556EJ1VOUM 175

CHAPTER 10 LIBRARY FUNCTIONS

3-1 va_start, Special Functions
va_starttop,
va_arg,
va_end
FUNCTION

The va_start function (macro) is used to start a variable argument list.

The va_starttop function (macro) is used to start a variable argument list.

The va_arg function (macro) obtains the value of an argument from a variable argument list.

The va_end function (macro) indicates that the end of a variable argument list is reached.

HEADER
stdarg. h

FUNCTION PROTOTYPE

176

void
void
type
void

va_start

(va_list ap, parmN) ;

va_starttop(va_list ap,parmN) ;

va_arg (va_list ap,

va_end (va_list ap);

type) ;

va-list is typedef defined with stdarg.h.

Function

Arguments

Return Value

va_start
va_starttop

va_list Variable
argument list

ap ... Variable to be
initialized so that it can be
used in va_arg and va_end
parmN ... Name of last
parameter in function
prototype (one immediately
proceeding ellipsis “...”)

None

argument list. ap must be set
up with call to va_start before
calling va_arg.

va_arg va_list ap ... Variable Next value from argument list;
argument list. ap must be set 0 if ap is a null pointer
up with call to va_start before
calling va_arg type... Type of
argument to be obtained
va_end va_list ap Variable None

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

va_start, Special Functions
va_starttop,

va_arg,

va_end

EXPLANATION
va_start

In the va_start macro, the argument ap (argument pointer) must be a va_list type (char* type) object.
A pointer to the next argument of parmN is stored in ap.

parmN is the name of the last (rightmost) parameter specified in the function's prototype.

If parmN has the register storage class, proper operation of this function is not guaranteed.

If parmN is the first argument, proper operation of this function is not guaranteed.

va_starttop

When the -ZO option (old function interface supporting option) is not specified, the va_start function cannot
be specified for the first argument because the first argument is passed via the register.

Use the macro in the following manner when the -ZO option is not specified.

Use the va_starttop macro when specifying the first argument.

Use the va_start macro when specifying the second argument.

va_arg

In the va_arg macro, the argument ap must be the same as the va_list type object initialized with va_start.
After the argument pointer ap has been initialized via a call to va_start, parameters are returned via calls to
va_arg, with type being the type of the next parameter. (Each call to va_arg obtains the next value from the
argument list.)

If the argument pointer ap is a null pointer, 0 (of type type) is returned.

va_end

The va_end macro sets a null pointer in the argument pointer ap to inform the macro processor that all the
parameters in the variable argument list have been processed.

User's Manual U15556EJ1VOUM 177

CHAPTER 10 LIBRARY FUNCTIONS

4-1 sprintf

I/0 Functions

FUNCTION

sprintf writes data into a character string according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int sprintf (char *s,const

char *format,...);

Function Arguments Return Value

Number of characters written
in s (Terminating null
character is not counted.)

sprintf s ... Pointer to the string into
which the output is to be
written

format ... Pointer to the string
that indicates format
commands

... ... Zero or more arguments

to be converted

EXPLANATION

If there are fewer actual arguments than the formats, the proper operation is not guaranteed. If the formats run
out despite the fact that actual arguments still remain, the excess actual arguments are only evaluated and
ignored.

sprintf converts zero or more arguments that follow format according to the format command specified by
format and writes (copies) them into the string s.

Zero or more format commands may be used. Ordinary characters (other than format commands that begin
with a % character) are output as is to the string s. Each format command takes zero or more arguments that
follow format and outputs them to the string s.

Each format command begins with a % character and is followed by these:

178

Zero or more flags (to be explained later) that modify the meaning of the format command

Optional decimal integer that specifies a minimum field width

If the output width after the conversion is less than this minimum field width, this specifier pads the output
with spaces or zeros on its left. (If the left-justifying flag “—” (minus) sign follows %, zeros are padded out
to the right of the output.)

The default padding is done with spaces. If the output is to be padded with Os, place a 0 before the field
width specifier. If the number or string is greater than the minimum field width, it will be printed in full
even if the minimum is exceeded.

Optional precision (number of decimal places) specification (. integer)

With d, i, 0, u, x, and X type specifiers, the minimum number of digits is specified. With the s type
specifier, the maximum number of characters (maximum field width) is specified. The number of digits to
be output following the decimal point is specified for e, E, and f conversions. The number of maximum
effective digits is specified for g and G conversions. This precision specification must be made in the
form of (.integers). If the integer part is omitted, 0 is assumed to have been specified. The amount of
padding resulting from this precision specification takes precedence over the padding by the field width
specification.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

sprintf I/0 Functions

e Optional h, I and L modifiers
The h modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows
this modifier on short int or unsigned short int type. The h modifier instructs the sprintf function to
perform the n type conversion that follows this modifier on a pointer to short int type.
The | modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows
this modifier on long int or unsigned long int type. The h modifier instructs the sprintf function to
perform the n type conversion that follows this modifier on a pointer to long int type.
For other type specifiers, the h, | or L modifier is ignored.

* Character that specifies the conversion (to be explained later)
In the minimum field width or precision (number of decimal places) specification, * may be used in place
of an integer string. In this case, the integer value will be given by the int argument (before the argument
to be converted). Any negative field width resulting from this will be interpreted as a positive field that
follows the — (minus) flag. All negative precision will be ignored.

The following flags are used to modify a format command.

e The result of a conversion is left-justified within the field.

F o The result of a signed conversion always begins with a + or — sign.

space.......... If the result of a signed conversion has no sign, a space is prefixed to the output. If the +
(plus) flag and space flag are specified at the same time, the space flag will be ignored.

o The result is converted in the assignment form.

In the o type conversion, precision is increased so that the first digit becomes 0. In the x or X
type conversion, Ox or 0X is prefixed to a nonzero result. In the e, E, and f type conversions,
a decimal point is forcibly inserted to all the output values (in the default without #, a decimal
point is displayed only when there is a value to follow).
In the g and G type conversions, a decimal point is forcibly inserted to all the output values,
and truncation of 0 to follow will not be allowed (in the default without #, a decimal point is
displayed only when there is a value to follow. The 0 to follow will be truncated). In all the
other conversions, the # flag is ignored.

The format codes for output conversion specifications are as follows.

d... Converts int argument to signed decimal format.

TR Converts int argument to signed decimal format.

(o ST Converts int argument to unsigned octal format.

Converts int argument to unsigned decimal format.

Converts int argument to unsigned hexadecimal format (with lowercase letters abcdef).

Converts int argument to unsigned hexadecimal format (with uppercase letters ABCDEF).

With d, i, o, u, x and X type specifiers, the minimum number of digits (minimum field width) of the result is
specified. If the output is shorter than the minimum field width, it is padded with zeros. If no precision is
specified, 1 is assumed to have been specified. Nothing will appear if 0 is converted with O precision.

User's Manual U15556EJ1VOUM 179

CHAPTER 10 LIBRARY FUNCTIONS

sprintf I/0O Functions

o Converts double argument as a signed value with [-] dddd.dddd format.
dddd is one or more decimal number(s). The number of digits before the decimal point is
determined by the absolute value of the number, and the number of digits after the decimal
point is determined by the required precision. When the precision is omitted, it is interpreted
as 6.

€ s Converts double argument as a signed value with [-] d.dddd e [sign] ddd format. d is one
decimal number, and dddd is one or more decimal number(s). ddd is exactly a three-digit
decimal number, and the sign is + or —. When the precision is omitted, it is interpreted as 6

E.ovrieee The same format as that of e except E is added instead of e before the exponent.

[« FUTT Uses whichever shorter method of f or e format when converting double argument based on
the specified precision. e format is used only when the exponent of the value is smaller than —
4 or larger than the specified number by precision.
The following 0 are truncated, and the decimal point is displayed only when one or more
numbers follow.

G The same format as that of g except E is added instead of e before the exponent.
2 Converts int argument to unsigned char and writes the result as a single character.
L= J T The associated argument is a pointer to a string of characters and the characters in the string

are written up to the terminating null character (but not included in the output). If precision is
specified, the characters exceeding the maximum field width will be truncated off the end.
When the precision is not specified or larger than the array, the array must include a null
character.

P The associated argument is a pointer to void and the pointer value is displayed in unsigned
hexadecimal 4 digits (with Os prefixed to less than a 4-digit pointer value). In the case of the
large model, the pointer value is displayed in unsigned hexadecimal 8 digits (the higher 2
digits are padded by 0 and displayed with Os prefixed to less than a 6-digit pointer value). The
precision specification if any will be ignored.

N The associated argument is an integer pointer into which the number of characters written thus
far in the string “s” is placed. No conversion is performed.
Yo it Prints a % sign. The associated argument is not converted (but the flag and minimum field

width specifications are effective).

» Operations for invalid conversion specifiers are not guaranteed.

e When the actual argument is a union or a structure, or the pointer to indicate them (except the character
type array in % s conversion or the pointer in % p conversion), operations are not guaranteed.

e The conversion result will not be truncated even when there is no field width or the field width is small. In
other words, when the number of characters of the conversion result are larger than the field width, the
field is extended to the width that includes the conversion result.

e The formats of the special output character string in %f, %e, %E, %g, %G conversions are shown below.
non-numeric — “(NaN)”
+oo0 — “(+INF)”

—co —“(—=INF)”

sprintf writes a null character at the end of the string s. (This character is included in the return value count.)
The syntax of format commands is illustrated in Figure 10-3.

180 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

Figure 10-3. Syntax of Format Commands

Ordinary char.
Ordinary

characters: Characters except %

Format command: —» Flags Min. field width W' 1

Flags:

Format codes:

Minimum field width:

cRllololsRlolelelofofololelclelele

User's Manual U15556EJ1VOUM 181

CHAPTER 10 LIBRARY FUNCTIONS

4-2 sscanf I/O Functions

FUNCTION
sscanf reads data from the input string according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int sscanf (const char *s, const char *format,...);
Function Arguments Return Value
sscanf s ... Pointer to the input string —1 if the string s is empty.

format ... Pointer to the string Number of assigned input data
that indicates the input format items if the string s is not
commands empty.

... ... Pointer to object in which
converted values are to be
stored, and zero or more
arguments

EXPLANATION

182

sscanf inputs data from the string pointed to by s. The string pointed to by format specifies the input string
allowed for input. Zero or more arguments after format are used as pointers to an object. format specifies
how data is to be converted from the input string.
If there are insufficient arguments to match the format commands pointed to by format, proper operation by
the compiler is not guaranteed.
For excessive arguments, expression evaluation will be performed but no data will be input.
The control string pointed to by format consists of zero or more format commands classified into the
following three types.
(1) White-space characters (one or more characters for which isspace becomes true)
(2) Non-white-space characters (other than %)
(3) Format specifiers
Each format specifier begins with the % character and is followed by these:
» Optional * character which suppresses assignment of data to the corresponding argument
* Optional decimal integer which specifies a maximum field width
* Optional h, I or L modifier which indicates the object size on the receiving side
If h precedes the d, i, 0, or x format specifier, the argument is a pointer to not int but short int.
If I precedes any of these format specifiers, the argument is a pointer to long int.
Likewise, if h precedes the u format specifier, the argument is a pointer to unsigned short int.
If | precedes the u format specifier, the argument is a pointer to unsigned long int.
» If I precedes the conversion specifier e, E, f, g, G, the argument is a pointer to double (a pointer to float
in default without). If L precedes, it is ignored.

Remark Conversion specifier: Character to indicate the type of corresponding conversion (to be
described later)

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

sscanf I/O Functions

sscanf executes the format commands in “format” in sequence and if any format command fails, the function

will terminate.

(1) A white-space character in the control string causes sscanf to read any number (including zero) of
white-space characters up to the first non-white-space character (which will not be read). This white-
space character command fails if it does not encounter any non-white-space characters.

(2) A non-white-space character causes sscanf to read and discard a matching character. This command
fails if the specified character is not found.

(3) The format commands define a collection of input streams for each type specifier (to be detailed later).
The format commands are executed according to the following steps.

e The input white-space characters (specified by isspace) are skipped over, except when the type
specifieris [, ¢, or n.

e The input data items are read from the string “s”, except when the type specifier is n. The input data
items are defined as the longest input stream of the first partial stream of the string indicated by the
type specifier (but up to the maximum field width if so specified). The character next to the input data
items is interpreted as not have been read. If the length of the input data items is O, the format
command execution fails.

¢ The input data items (number of input characters with the type specifier n) are converted to the type
specified by the type specifier except the type specifier %. If the input data items do not match the
specified type, the command execution fails. Unless assignment is suppressed by *, the result of the
conversion is stored in the object pointed to by the first argument that follows “format” and has not yet
received the result of the conversion.

The following type specifiers are available.

[« DT Reads a decimal integer (which may be signed). The corresponding argument must be a
pointer to an integer.

[T Reads an integer (which may be signed). If a number is preceded by 0x or 0X, the number
is interpreted as a hexadecimal integer. If a number is preceded by 0, the number is
interpreted as an octal integer. Other numbers are regarded as decimal integers. The
corresponding argument must be a pointer to an integer.

[« TR Reads an octal integer (which may be signed). The corresponding argument must be a
pointer to an integer.

L DU Reads an unsigned decimal integer.
The corresponding argument must be a pointer to an unsigned integer.

) G Reads a hexadecimal integer (which may be signed).

e, E F gG.... A floating-point value consists of an optional sign (+ or —), one or more consecutive

decimal number(s) including a decimal point, an optional exponent (e or E), and the
following optional signed integer value. When overflow occurs as a result of conversion, or
when underflow occurs with the conversion result e, a non-normalized number or +0
becomes the conversion result. The corresponding argument is a pointer to float. The
corresponding argument must be a pointer to the first character of an array that has
sufficient size to accommodate this character string and a null terminator. The null
terminator will be automatically added.

User's Manual U15556EJ1VOUM 183

CHAPTER 10 LIBRARY FUNCTIONS

sscanf I/O Functions

184

L J R Inputs a character string consisting of a non-blank character string. The corresponding
argument is a pointer to an integer. Ox or 0X can be allocated at the first hexadecimal integer.
The corresponding argument must be a pointer an array that has sufficient size to
accommodate this character string and a null terminator. The null terminator will be
automatically added.

[eoee Inputs a character string consisting of expected character groups (called a scanset). The

corresponding argument must be a pointer to the first character of an array that has sufficient
size to accommodate this character string and a null terminator. The null terminator will be
automatically added. The format commands continue from this character up to the closing
square bracket (]). The character string (called a scanlist) enclosed in the square brackets
constitutes a scanset except when the character immediately after the opening square
bracket is a circumflex (%).
When the character is a circumflex, all the characters other than a scanlist between the
circumflex and the closing square bracket constitute a scanset. However, when a scanlist
begins with [] or [#], this closing square bracket is contained in the scanlist and the next
closing square brocket becomes the end of the scanlist. A hyphen (-) at other than the left or
right end of a scanlist is interpreted as the punctuation mark for hyphenation if the character
at the left of the range specifying hyphen (-) is not smaller than the right-hand character in
ASCII code value.

C e Inputs a character string consisting of the number of characters specified by the field width. (If
the field width specification is omitted, 1 is assumed.) The corresponding argument must be a
pointer to the first character of an array that has sufficient size to accommodate this character
string. The null terminator will not be added.

[« JTRRR Reads an unsigned hexadecimal integer. The corresponding argument must be a pointer to
void pointer. For the large model, a hexadecimal 8-digit integer is input, and the higher two
digits are ignored.

N Receives no input from the string s. The corresponding argument must be a pointer to an
integer. The number of characters that are read thus far by this function from the string “s” is
stored in the object that is pointed to by this pointer. The %n format command is not included
in the return value assignment count.

Yo it Reads a % sign. Neither conversion nor assignment takes place.

If a format specification is invalid, the format command execution fails.

If a null terminator appears in the input stream, sscanf will terminate.

If an overflow occurs in an integer conversion (with the d, i, 0, u, x, or p format specifier), the higher bits will
be truncated depending on the number of bits of the data type after the conversion.

The syntax of input format commands is illustrated below.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

Figure 10-4. Syntax of Input Format Commands

White-space

characters: 4 N\
Format: { Space }
White-space 4@—/
char.
Ordinary :
char.

Format

specifier

: . Characters except
Ordinary characters: % and white space

Format command: —» ° Max. field width

Command:

Max. field width: Digits

@?

Format specifiers:

N

scanlist:

N

Characters
except]

scanlist o

POOOOOOOOOOOOO

B

User's Manual U15556EJ1VOUM 185

CHAPTER 10 LIBRARY FUNCTIONS

4-3 printf

I/O Functions

FUNCTION

printf outputs data to SFR according to the format.

HEADER
stdio.h
FUNCTION PROTOTYPE
int printf (const char *format, ...);
Function Arguments Return Value
printf format ...Pointer to the Number of characters output

character string that indicates
the output conversion
specification

... ... 0 Or more arguments to
be converted

to s (the null character at the
end is not counted)

EXPLANATION

¢ (0 or more) arguments following the format are converted and output using the putchar function, according to

the output conversion specification specified in the format.

e The output conversion specification is 0 or more directives.
specifications starting with %) are output as is using the putchar function. The conversion specification is

Normal characters (other than conversion

output using the putchar function by fetching and converting the following (0 or more) arguments.

e Each conversion specification is the same as that of the sprintf function.

186

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-4 scanf

I/O Functions

FUNCTION

scanf reads data from SFR according to the format.

HEADER
stdio.h

FUNCTION PROTOTYP

E

int scanf (const char *format, ...);

Function

Arguments

Return Value

scanf

format ... Pointer to the
character string to indicate
input conversion specification
format

... ... Pointer (0 or more)
argument to the object to
assign the converted value

When the character string s is
not null ... number of input
items assigned

EXPLANATION

e Performs input using the getchar function.

conversion is performed by the input string.

* When there are not enough arguments for format, normal operation is not guaranteed. When the number of

Specifies the input string permitted by the character string
indicated by format. Uses the arguments after format as pointers to an object. format specifies how the

arguments is excessive, the expression will be evaluated but not input.

¢ format consists of 0 or more directives. The directives are as follows.

(1) One or more null character (character that makes isspace true)

(2) Normal character (other than %)

(3) Conversion indication

* |If a conversion ends with an input character that conflicts with the directive, the conflicting input character is

rounded down. The conversion indication is the same as that of the sscanf function.

User's Manual U15556EJ1VOUM

187

CHAPTER 10 LIBRARY FUNCTIONS

4-5 vprintf I/0 Functions

FUNCTION
vprintf outputs data to SFR according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int vprintf (const char *format, va_ list p)

I

Function Arguments Return Value
vprintf format ... Pointer to the Number of output characters
character string that indicates (the null character at the end
output conversion is not counted)

specification
p ... Pointer to the argument
list

EXPLANATION

e The argument that the pointer of the argument list indicates is converted and output using the putchar
function according to the output conversion specification specified by the format.
¢ Each conversion specification is the same as that of the sprintf function.

188 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-6 vsprintf

I/0 Functions

FUNCTION

vsprintf writes data to character strings according to the format.

HEADER
stdio.h

FUNCTION PROTOTYPE

int vsprintf (char *s,

const char * format, va_list p) ;

Function

Arguments

Return Value

vsprintf

s ... Pointer to the character
string that writes the output
format ... Pointer to the
character string that indicates
output conversion
specification

p ... Pointer to the argument
list

Number of characters output
to s (the null character at the
end is not counted)

EXPLANATION

¢ Writes out the argument that the pointer of argument list indicates to the character strings indicated by s
according to the output conversion specification specified by format.
¢ The output specification is the same as that of the sprintf function.

User's Manual U15556EJ1VOUM

189

CHAPTER 10 LIBRARY FUNCTIONS

4-7 getchar I/0 Functions

FUNCTION
getchar reads a character from SFR.

HEADER
stdio.h.

FUNCTION PROTOTYPE

int getchar (void);

Function Arguments Return Value

getchar None A character read from SFR

EXPLANATION
¢ Returns the value read from SFR symbol PO (port 0).
* An error check related to reading is not performed.
* To change the SFR to be read, it is necessary to either change the source and re-register it to the library or

create a new getchar function.

190 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-8 gets

I/O Functions

FUNCTION

gets reads a character string.

HEADER
stdio.h

FUNCTION PROTOTYPE

char *gets (char *s);

Function

Arguments

gets

s ... Pointer to input character Normal ... s

string If the end of the file is
detected without reading a
character

... null pointer

EXPLANATION

* Reads a character string using the getchar function and stores in the array that s indicates.
* When the end of the file is detected (getchar function returns —1) or when a line feed character is read, the
reading of a character string ends. The line feed character read is abandoned, and a null character is written

at the end of the character stored in the array in the end.
¢ When the return value is normal, it returns s.
¢ When the end of the file is detected and no character is read in the array, the contents of the array remain
unchanged, and a null pointer is returned.

User's Manual U15556EJ1VOUM

191

CHAPTER 10 LIBRARY FUNCTIONS

4-9 putchar I/0 Functions

FUNCTION
putchar outputs a character to SFR.

HEADER
stdio.h

FUNCTION PROTOTYPE

int putchar (int c);

Function Arguments Return Value

putchar ¢ ... Character to be output character to have been output

EXPLANATION
* Writes the character specified by ¢ to the SFR symbol PO (port 0) (converted to unsigned char type).
* An error check related to writing is not performed.
* To change the SFR to be written, it is necessary to either change the source and re-register to the library or
user create a new putchar function.

192 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

4-10 puts

I/O Functions

FUNCTION

puts outputs a character string.

HEADER
stdio.h

FUNCTION PROTOTYPE

int puts (const char *s);

Function

Arguments

Return Value

puts

s ...Pointer to an output
character string

Normal ... 0
When putchar function
returns -1 ... -1

EXPLANATION

¢ Writes the character string indicated by s using the putchar function and adds a line feed character at the end

of the output.

¢ Writing of the null character at the end of the character string is not performed.

¢ When the return value is normal, 0 is returned, and when the putchar function returns —1, —1 is returned.

User's Manual U15556EJ1VOUM

193

CHAPTER 10 LIBRARY FUNCTIONS

5-1 atoi, Utility Functions
atol

FUNCTION
The string function atoi converts the contents of a decimal integer string to an int value.
The string function atol converts the contents of a decimal integer string to a long value.

HEADER
stdlib. h

FUNCTION PROTOTYPE
int atoi (const char *nptr);

long int atol (const char *nptr);

Function Arguments Return Value
atoi nptr... String to be converted * int value if converted
properly

* INT_MAX (32767) if positive
overflow occurs

* INT_MIN (-32768) if
negative overflow occurs

* 0 if the string is invalid

atol * long int value if converted
properly

* LONG_MAX (2147483647)
for positive overflow

e LONG_MIN (—2147483648)
for negative overflow

* 0 if the string is invalid

194 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

atoi, Utility Functions
atol

EXPLANATION
atoi

The atoi function converts the first part of the string pointed to by pointer “nptr” to an int value. The string
may consist of zero or more white-space characters possibly followed by a minus or plus sign, followed by a
string of digits.

The atoi function skips over zero or more white-space characters (for which isspace becomes true) from the
beginning of the string and converts the string from the character next to the skipped white-spaces to an int
value (until other than digits or a null character appears in the string).

If no digits to convert are found in the string, the function returns 0. If an overflow occurs, the function returns
INT_MAX (32767) for a positive overflow and INT_MIN (-32768) for a negative overflow.

atol

The atol function converts the first part of the string pointed to by pointer “nptr” to a long value. The string
may consist of zero or more white-space characters, possibly followed by a minus or plus sign, followed by a
string of digits.

The atol function skips over zero or more white-space characters (for which isspace becomes true) from the
beginning of the string and converts the string from the character next to the skipped white-spaces to a long
value (until other than digits or null character appears in the string).

If no digits to convert are found in the string, the function returns 0. If an overflow occurs, the function returns
LONG_MAX (2147483647) for a positive overflow and LONG_MIN (-2147483648) for a negative overflow.

User's Manual U15556EJ1VOUM 195

CHAPTER 10 LIBRARY FUNCTIONS

5-2 strtol, Utility Functions
strtoul

FUNCTION
The string function strtol converts a string to a long integer.
The string function strtoul converts a string to an unsigned long integer.

HEADER
stdlib. h

FUNCTION PROTOTYPE
long int strtol (const char *nptr, char **endptr, int base);

unsigned long int strtoul (const char *nptr, char **endptr, int base);

Function Arguments Return Value
strtol nptr... String to be converted * long int value if converted
endptr ... Address of char properly
pointer ¢ LONG_MAX
base ... Base for number (2147483647) for positive
represented in the string overflow
* LONG_MIN
(—2147483648) for negative
overflow

¢ 0 if not converted

strtoul * unsigned long if converted
properly

¢ ULONG_MAX
(4294967295U)) if overflow
occurs

¢ 0 if not converted

196 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

strtol, Utility Functions
strtoul

EXPLANATION
strtol

The strtol function decomposes the string pointed by pointer nptr into the following three parts.
(1) String of white-space characters that may be empty (to be specified by isspace)
(2) Integer representation by the base determined by the value of “base”
(3) String of one or more characters that cannot be recognized (including null terminators)
The strtol function converts part (2) of the string into a long integer and returns this integer value.

A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or
0X indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is
interpreted as decimal. (In this case, the number may be signed.)

If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be
signed) with any of these bases are taken to represent 10 to 35. A leading Ox or 0X is ignored if the base is
16.

If endptr is not a null pointer, a pointer to part (3) of the string is stored in the object pointed to by endptr.

If the correct value causes an overflow, the function returns LONG_MAX (2147483647) for the positive
overflow or LONG_MIN (—2147483648) for the negative overflow depending on the sign and sets errno to
ERANGE (2).

If the string in (2) is empty or the first non-white-space character of the string (2) is not appropriate for an
integer with the given base, the function performs no conversion and returns 0. In this case, the value of the
string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases
0 and 2 to 36.

strtoul

The strtoul function decomposes the string pointed by pointer nptr into the following three parts.

(1) String of white-space characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of base

(3) String of one or more characters that cannot be recognized (including null terminators)
The strtoul function converts part (2) of the string into a unsigned long integer and returns this unsigned
long integer value.

A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or
0X indicates a hexadecimal number; a leading O indicates an octal number; otherwise, the number is
interpreted as decimal.

If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be
signed) with any of these bases are taken to represent 10 to 35. A leading Ox or OX is ignored if the base is
16.

If endptr is not a null pointer, a pointer to part (3) of the string is stored in the object pointed to by endptr.

User's Manual U15556EJ1VOUM 197

CHAPTER 10 LIBRARY FUNCTIONS

strtol, Utility Functions
strtoul

198

If the correct value causes an overflow, the function returns ULONG_MAX (4294967295U) and sets errno to
ERANGE (2).
If the string in (2) is empty or the first non-white-space character of the string in (2) is not appropriate for an
integer with the given base, the function performs no conversion and returns 0. In this case, the value of the
string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases
0 and 2 to 36.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-3 calloc Utility Functions

FUNCTION
The memory function calloc allocates an array area and then initializes the area to 0.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void *calloc (size t nmemb, size t size);

Function Arguments Return Value
calloc nmemb ... Number of ¢ Pointer to the beginning of
members in the array the allocated area if the
size ... Size of each member requested size is allocated

¢ Null pointer if the requested
size is not allocated

EXPLANATION
* The calloc function allocates an area for an array consisting of n number of members (specified by nmemb),
each of which has the number of bytes specified by size and initializes the area (array members) to zero.
¢ |f memory cannot be allocated, the function returns a null pointer. (This memory allocation will start from a
break value and the address next to the allocated space will become a new break value. See 5-11 brk for
break value setting with the memory function brk.)

User's Manual U15556EJ1VOUM 199

CHAPTER 10 LIBRARY FUNCTIONS

5-4 free Utility Functions

FUNCTION

The memory function free releases the allocated block of memory.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void free (void *ptr);

Function Arguments Return Value

free ptr ... Pointer to the beginning | None

of block to be released

EXPLANATION

The free function releases the allocated space (before a break value) pointed to by ptr. (malloc, calloc, or
realloc called after free will allocate space that was freed earlier.)

If ptr does not point to the allocated space, free will take no action. (Freeing the allocated space is performed
by setting ptr as a new break value.)

200 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-5 malloc Utility Functions

FUNCTION
The memory function malloc allocates a block of memory.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void *malloc (size t size);

Function Arguments Return Value
malloc size ... Size of memory block * Pointer to the beginning of
to be allocated the allocated area if the

requested size is allocated
* Null pointer if the requested
size is not allocated

EXPLANATION
¢ The malloc function allocates a block of memory for the number of bytes specified by size and returns a
pointer to the first byte of the allocated area.
¢ If memory cannot be allocated, the function returns a null pointer. (This memory allocation will start from a
break value and the address next to the allocated area will become a new break value. See 5-11 brk for
break value setting with the memory function brk.)

User's Manual U15556EJ1VOUM 201

CHAPTER 10 LIBRARY FUNCTIONS

5-6 realloc Utility Functions

FUNCTION
The memory function realloc reallocates a block of memory (namely, changes the size of the allocated memory).

HEADER
stdlib. h

FUNCTION PROTOTYPE

void *realloc (void *ptr, size t size);

Function Arguments Return Value
realloc ptr ... Pointer to the beginning * Pointer to the beginning of
of block previously allocated the reallocated space if the
size ... New size to be given to requested size is
this block reallocated

* Pointer to the beginning of
the allocated space if ptr is
a null pointer

* Null pointer if the requested
size is not reallocated or
“ptr” is not a null pointer

EXPLANATION

202

The realloc function changes the size of the allocated space (before a break value) pointed to by ptr to that
specified by size.

If the value of size is greater than the size of the allocated space, the contents of the allocated space up to
the original size will remain unchanged. The realloc function allocates only for the increased space. If the
value of size is less than the size of the allocated space, the function will free the reduced space of the
allocated space.

If ptr is a null pointer, the realloc function will newly allocate a block of memory of the specified size (same as
malloc).

If ptr does not point to the block of memory previously allocated or if no memory can be allocated, the function
executes nothing and returns a null pointer.

(Reallocation will be performed by setting the address of ptr plus the number of bytes specified by size as a
new break value.)

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-7 abort

Utility Functions

FUNCTION

The program control function abort causes immediate, abnormal termination of a program.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void abort (void) ;

Function

Arguments

Return Value

abort

None

No return to its caller.

EXPLANATION

¢ The abort function loops and can never return to its caller.

e The user must create the abort processing routine.

User's Manual U15556EJ1VOUM

203

CHAPTER 10 LIBRARY FUNCTIONS

5-8 atexit, Utility Functions
exit

FUNCTION
atexit registers the function called at the normal termination.
exit terminates a program.

HEADER
stdlib. h

FUNCTION PROTOTYPE

int atexit (void(*func) (void)) ;

void exit (int status);
Function Arguments Return Value
atexit func ... Pointer to function to * 0 if function is registered as
be registered wrap-up function
* 1 if function cannot be
registered
exit status ... Status value exit can never return.
indicating termination
EXPLANATION
atexit

¢ The atexit function registers the wrap-up function pointed to by func so that it is called without argument upon
normal program termination by calling exit or returning from main.

* Up to 32 wrap-up functions may be established. If the wrap-up function can be registered, atexit returns 0. If
no more wrap-up functions can be registered because 32 wrap-up functions have already been registered, the
function returns 1.

exit

¢ The exit function causes immediate, normal termination of a program.

e This function calls the wrap-up functions in the reverse of the order in which they were registered with atexit.

¢ The exit function loops and can never return to its caller.

e The user must create the exit processing routine.

204 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-9 abs,
labs

Utility Functions

FUNCTION

The mathematical function abs returns the absolute value of its int type argument.

The mathematical function labs returns the absolute value of its long type argument.

HEADER
stdlib. h

FUNCTION PROTOTYPE

int abs (int j);

long int labs

(long int j);

Function

Arguments

Return Value

abs

j --- Any signed integer for
which absolute value is to be
obtained

Absolute value of j if j falls
within

—-32767 <j < 32767
—32768 (0x8000) if j is
-32768

labs

j ... Any long integer for which
absolute value is to be
obtained

Absolute value of j if j falls
within

—2147483647 <j <
2147483647

—2147483648
(0x80000000) if the value of
j is —2147483648

EXPLANATION
abs

* The abs returns the absolute value of its int type argument. If j is —32768, the function returns —32768.

labs

* The labs returns the absolute value of its long type argument. If the value of j is —2147483648, the function
returns —2147483648.

User's Manual U15556EJ1VOUM

205

CHAPTER 10 LIBRARY FUNCTIONS

5-10 div, Utility Functions

Idiv

FUNCTION
The mathematical function div performs the integer division of numerator divided by denominator.
The mathematical function Idiv performs the long integer division of numerator divided by denominator.

HEADER
stdlib.h

FUNCTION PROTOTYPE

div_t div (int numer, int denom) ;

ldiv_t 1ldiv (long int numer, long int denom) ;

Function Arguments Return Value

div numer ... Numerator of the Quotient to the quot element
division of structure type

denom ... Denominator of the div_t and the remainder to the
division rem element

Idiv Quotient to the quot element
of structure type

Idiv_t and the remainder to
the rem element

EXPLANATION
div

206

The div function performs the integer division of numerator divided by denominator. The result of div has a
structure type named div_t with the elements quo (quotient) and rem (remainder).

The absolute value of the quotient is defined as the largest integer not greater than the absolute value of
numer divided by the absolute value of denom. The remainder always has the same sign as the result of the
division (plus if numer and denom have the same sign; otherwise minus).

The remainder is the value of numer - denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer. If numer is —-32768 and denom
is —1, the quotient becomes —32768 and the remainder becomes 0.

Idiv

The Idiv function performs the long integer division of numerator divided by denominator. The result of Idiv
has a structure type named “Idiv_t” with the elements quo (quotient) and rem (remainder).

The absolute value of the quotient is defined as the largest long int type integer not greater than the absolute
value of numer divided by the absolute value of denom. The remainder always has the same sign as the
result of the division (plus if numer and denom have the same sign; otherwise minus).

The remainder is the value of numer - denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer. If numer is —-2147483648 and
denom is —1, the quotient becomes —2147483648 and the remainder becomes 0.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-11 brk, Utility Functions
sbrk

FUNCTION
The memory function brk sets a break value.
The memory function sbrk increments or decrements the set break value.

HEADER
stdlib. h

FUNCTION PROTOTYPE
int brk (char *endds) ;

char *sbrk (int incr);

Function Arguments Return Value
brk endds ... Break value to be * 0if break value is set
set properly
* —1 if break value cannot be
changed
sbrk incr ... Value (bytes) by which | ¢ Old break value if
set break value is to be incremented or
incremented/decremented. decremented properly
¢ —1 if old break value cannot
be incremented or
decremented

EXPLANATION

brk

¢ The brk function sets the value given by endds as a break value (the address next to the end address of an
allocated block of memory).

e |f endds is outside the permissible address range, the function sets no break value and sets errno to
ENOMEM (3).

sbrk

¢ The sbrk function increments or decrements the set break value by the number of bytes specified by incr.
(Increment or decrement is determined by the plus or minus sign of incr.)

* If the incremented or decremented break value is outside the permissible address range, the function does
not change the original break value and sets errno to ENOMEM (3).

User's Manual U15556EJ1VOUM 207

CHAPTER 10 LIBRARY FUNCTIONS

5-12 atof
strtod

Utility Functions

FUNCTION

atof converts a decimal integer character string to double.

strtod converts a character string to double.

HEADER
stdlib.h

FUNCTION PROTOTYPE

double atof const char *nptr) ;

double strtod (const char *nptr,

char **endptr)

Function

Arguments

Return value

atof

nptr ... Character string to be
converted

endptr ... Pointer to store a
pointer to an unidentifiable
area (strtod only)

e Normal ... Converted value
* When positive overflow
occurs ... HUGE_VAL (with
the sign of the overflowed
value)

When negative overflow
occurs ... 0

lllegal character string ... 0

strtod

nptr ... Character string to be
converted

endptr ... Pointer to store a
pointer to an unidentifiable
area

e Normal ... Converted value
o When positive overflow
occurs ... HUGE_VAL (with
the sign of the overflowed
value)

When negative overflow
occurs ... 0

lllegal character string ... 0

208

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-12 atof Utility Functions
strtod
EXPLANATION
atof

atof converts the character string that is pointed by the pointer nptr to double.

Skips 0 or more strings of null characters (a character which makes isspace true) from the start and converts
the character string (other than decimal characters or until the last null character appears) from the character
next to the floating-point number.

If the conversion is performed correctly, a floating point number is returned.

If an overflow occurs in the conversion, HUGE_VAL, which has the sign of the overflowed value, is returned,
and ERANGE is set to errno.

If annihilation of valid digits occurs due to underflow or overflow, a non-normalized number and +0 are
returned, respectively, and ERANGE is set to errno.

If a conversion cannot be performed, 0 is returned.

strtod

strtod converts the character string that is pointed by the pointer nptr to double.

Skips 0 or more strings of null characters (a character which makes isspace true) from the start and converts
the character string (other than decimal characters or until the last null character appears) from the character
next to the floating-point number.

If the conversion is performed correctly, a floating-point number is returned.

If an overflow occurs in the conversion, HUGE_VAL, which has the sign of the overflowed value, is returned,
and ERANGE is set to errno.

If annihilation of valid digits occurs due to underflow or overflow, a non-normalized number and +0 are
returned, respectively, and ERANGE is set to errno. At the same time, endptr stores the pointer in the next
character string.

If conversion cannot be performed, 0 is returned.

User's Manual U15556EJ1VOUM 209

CHAPTER 10 LIBRARY FUNCTIONS

5-13 itoa, Utility Functions
Itoa,
ultoa
FUNCTION

The string function itoa converts an int integer to its string equivalent.
The string function ltoa converts a long integer to its string equivalent.
The string function ultoa converts an unsigned long integer to its string equivalent.

HEADER
stdlib. h

FUNCTION PROTOTYPE
char *itoa (int value, char *string, int radix);
char *ltoa (long value, char *string, int radix);

char *ultoa (unsigned long value, char *string, int radix);

Function Arguments Return Value
itoa, value ... String to which ¢ Pointer to the converted
Itoa, integer is to be converted string if converted properly
ultoa string ... Pointer to the * Null pointer if not converted
conversion result properly
radix ... Base of output string

EXPLANATION

itoa, Itoa, ultoa

* The itoa, Itoa, and ultoa functions all convert the integer value specified by value to its string equivalent,
which is terminated with a null character, and store the result in the area pointed to by “string”.

* The base of the output string is determined by radix, which must be in the range 2 through 36. Each function
performs conversion based on the specified radix and returns a pointer to the converted string. If the
specified radix is outside the range 2 through 36, the function performs no conversion and returns a null
pointer.

210 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-14 rand,
srand

Utility Functions

FUNCTION

The mathematical function rand generates a sequence of psuedorandom numbers.

The mathematical function srand sets a starting value (seed) for the sequence generated by rand.

HEADER
stdlib. h

FUNCTION PROTOTYPE

int rand (void) ;

void srand (unsigned int seed);

Function

Arguments

Return Value

rand

None

Psuedorandom integer in the
range of 0 to RAND_MAX

srand

seed ... Starting value for
psuedorandom number
generator

None

EXPLANATION
rand

* Each time the rand function is called, it returns a psuedorandom integer in the range of 0 to RAND_MAX.

srand

¢ The srand function sets a starting value for a sequence of random numbers. seed is used to set a starting

point for a progression of random numbers that is a return value when rand is called. If the same seed value

is used, the sequence of psuedorandom numbers is the same when srand is called again.

Calling rand

before srand is used to set a seed is the same as calling rand after srand has been called with seed = 1.

(The default seed is 1.)

User's Manual U15556EJ1VOUM

211

CHAPTER 10 LIBRARY FUNCTIONS

5-15 bsearch Utility Functions

FUNCTION
The bsearch function performs a binary search.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void *bsearch (const void *key, const void *base, size t nmemb,

size t size, int (*compare) (const void *, const void ¥*));
Function Arguments Return Value

bsearch key ... Pointer to key for which | e Pointer to the first member

search is made that matches “key” if the

base ... Pointer to sorted array array contains the key

that contains information to ¢ Null pointer if the key is not

search contained in the array

nmemb ... Number of array

elements

size ... Size of an array

compare ... Pointer to function

used to compare two keys

EXPLANATION

212

The bsearch function performs a binary search on the sorted array pointed to by base and returns a pointer
to the first member that matches the key pointed to by key. The array pointed to by base must be an array
that consists of nmemb number of members each of which has the size specified by size and must have
been sorted in ascending order.

The function pointed to by compare takes two arguments (key as the 1st argument and array element as the
2nd argument), compares the two arguments, and returns:

- Negative value if the 1st argument is less than the 2nd argument

- 0 if both arguments are equal

- Positive integer if the 1st argument is greater than the 2nd argument

When the -ZR option is specified, the function passed to the argument of the bsearch function must be a
pascal function.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-16 (gsort Utility Functions

FUNCTION
The gsort function sorts the members of a specified array using a quicksort algorithm.

HEADER
stdlib. h

FUNCTION PROTOTYPE

void gsort (void *base, size t nmemb, size t size,

int (*compare) (const void *, const void *));

Function Arguments Return Value

qsort base ... Pointer to array to be None
sorted

nmemb ... Number of
members in the array

size ... Size of an array
member

compare ... Pointer to function
used to compare two keys

EXPLANATION

The gsort function sorts the members of the array pointed to by base in ascending order. The array pointed
to by base consists of nmemb number of members each of that has the size specified by size.

The function pointed to by compare takes two arguments (array element 1 as the 1st argument and array
element 2 as the 2nd argument), compares the two arguments, and returns:

- Negative value if the 1st argument is less than the 2nd argument

- 0if both arguments are equal

- Positive integer if the 1st argument is greater than the 2nd argument

If the two array elements are equal, the element nearest to the top of the array will be sorted first.

When the -ZR option is specified, the function passed to the argument of the gsort function must be a pascal
function.

User's Manual U15556EJ1VOUM 213

CHAPTER 10 LIBRARY FUNCTIONS

5-17 strbrk Utility Functions

FUNCTION
strbrk sets a break value.

HEADER
stdlib.h

FUNCTION PROTOTYPE
int strbrk (char *endds) ;

Function Arguments Return Value
strbrk endds ... Break value to be Normal ... 0
set When a break value cannot be
changed ... -1

EXPLANATION
* Sets the value given by endds to the break value (the address following the address at the end of the area to

be allocated).
* When endds is out of the permissible range, the break value is not changed. ENOMEM(3) is set to errno and

—1 is returned.

214 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

5-18 strsbrk Utility Functions

FUNCTION
strsbrk increments/decrements a break value.

HEADER
stdlib.h

FUNCTION PROTOTYPE

char *strsbrk (int incr) ;

Function Arguments Return Value
strsbrk incr ... Amount by which a Normal ... Old break value
break value is to be When a break value cannot be
incremented/decremented incremented/decremened ... —1

EXPLANATION
* incr byte increments/decrements a break value (depending on the sign of incr).
* When the break value is out of the permissible range after incrementing/decrementing, the break value is not
changed. ENOMEM(3) is set to errno, and —1 is returned.

User's Manual U15556EJ1VOUM 215

CHAPTER 10 LIBRARY FUNCTIONS

5-19 stritoa Utility Functions
stritoa
strultoa
FUNCTION

stritoa converts int to a character string.
strltoa converts long to a character string.

strultoa converts unsigned long to a character string.

HEADER
stdllib.h

FUNCTION PROTOTYPE
char *stritoa (int value, char *string, int radix);
char *strltoa (long value, char *string, int radix);

char *strultoa (unsigned long value, char *string, int radix);

Function Arguments Return Value
stritoa value ... Character string to Normal ... Pointer to the
stritoa convert converted character string
strultoa string ... Pointer to conversion | Other ... Null pointer

result
radix ... Radix to specify

EXPLANATION
stritoa, stritoa, strultoa
* Converts the specified numeric value value to the character string that ends with a null character, and stores
the result in the area specified with string. The conversion is performed by the specified radix, and the
pointer to the converted character string will be returned.

* radix must be a value in the range of 2 to 36. In other cases, the conversion is not performed and a null
pointer is returned.

216 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-1 memcpy, Character String/Memory Functions
memmove

FUNCTION
The memory function memcpy copies a specified number of characters from a source area of memory to a
destination area of memory.
The memory function memmove is identical to memcpy, except that it allows overlap between the source and
destination areas.

HEADER
string. h

FUNCTION PROTOTYPE
void *memcpy (void *sl, const void *s2, size t n);

void *memmove (void *sl, const void *s2, size t n);

Function Arguments Return Value
memcpy, s1 ... Pointer to object into Value of s1
memmove which data is to be copied

s2 ... Pointer to object
containing data to be copied
n ... Number of characters to
be copied

EXPLANATION

memcpy

e The memcpy function copies n number of consecutive bytes from the object pointed to by s2 to the object
pointed to by s1.

* If s2 < s1 < s2+n (s1 and s2 overlap), the memory copy operation by memcpy is not guaranteed (because
copying starts in sequence from the beginning of the area).

memmove

¢ The memmove function also copies n number of consecutive bytes from the object pointed to by s2 to the
object pointed to by s1.

¢ Even if s1 and s2 overlap, the function performs memory copying properly.

User's Manual U15556EJ1VOUM 217

CHAPTER 10 LIBRARY FUNCTIONS

6-2 strcpy, Character String/Memory Functions
strncpy

FUNCTION

The string function strepy is used to copy the contents of one character string to another.

The string function strncpy is used to copy up to a specified number of characters from one character string to
another.

HEADER
string. h

FUNCTION PROTOTYPE
char *strcpy (char *sl, const char *s2);

char *strncpy (char *sl, const char *s2, size t n);

Function Arguments Return Value

strcpy, s1... Pointer to copy Value of s1

strncpy destination array
s2 ... Pointer to copy source
array
n ... Number of characters to
be copied

EXPLANATION
strcpy

e The strcpy function copies the contents of the character string pointed to by s2 to the array pointed to by s1
(including the terminating character).

* If s2 < s1 <(s2 + Character length to be copied), the behavior of strepy is not guaranteed (as copying starts
in sequence from the beginning, not from the specified string).

strncpy

* The strncpy function copies up to the characters specified by n from the string pointed to by s2 to the array
pointed to by s1.

* If 82 < s1 <(s2 + Character length to be copied or minimum value of s2 + n — 1), the behavior of strnecpy is
not guaranteed (as copying starts in sequence from the beginning, not from the specified string).

* If the string pointed by s2 is less than the characters specified by n, nulls will be appended to the end of s1
until n characters have been copied. If the string pointed to by s2 is longer than n characters, the resultant
string that is pointed to by s1 will not be null terminated.

218 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-3 strcat, Character String/Memory Functions
strncat

FUNCTION
The string function strcat concatenates one character string to another.
The string function strncat concatenates up to a specified number of characters from one character string to
another.

HEADER
string. h

FUNCTION PROTOTYPE
char *strcat (char *sl, const char *s2);

char *strncat (char *sl, const char *s2, size t n);

Function Arguments Return Value
strcat, s1... Pointer to a string to Value of s1
strncat which a copy of another string

(s2) is to be concatenated

s2 ... Pointer to a string, copy
of which is to be concatenated
to another string (s1).

n ... Number of characters to

be concatenated

EXPLANATION

strcat

¢ The strcat function concatenates a copy of the string pointed to by s2 (including the null terminator) to the
string pointed to by s1. The null terminator originally ending s1 is overwritten by the first character of s2.

¢ When copying is performed between objects overlapping each other, the operation is not guaranteed.

strncat

¢ The strncat function concatenates not more than the characters specified by n of the string pointed to by s2
(excluding the null terminator) to the string pointed to by s1. The null terminator originally ending s1 is
overwritten by the first character of s2.

¢ s1 must always be terminated with a null.

¢ When copying is performed between objects overlapping each other, the operation is not guaranteed.

User's Manual U15556EJ1VOUM 219

CHAPTER 10 LIBRARY FUNCTIONS

6-4 memcmp

Character String/Memory Functions

FUNCTION

The memory function mememp compares two data objects, with respect to a given number of characters.

HEADER
string. h

FUNCTION PROTOTYPE

int memcmp (const void *sl1,

const void *s2, size t n);

Function

Arguments

Return Value

memcmp

s1, s2 ... Pointers to two data * 0if s1 and s2 are equal
objects to be compared ¢ Positive value if s1 is

n ... Number of characters to
compare

greater than s2; negative
value if s1 is less than s2
(s1-s2)

EXPLANATION

¢ The memcmp function compares the data object pointed to by s1 with the data object pointed to by s2 with

respect to the number of bytes specified by n.

* If the two objects are equal, the function returns 0.

* The function returns a positive value if the object s1 is greater than the object s2 and a negative value if s1 is

less than s2.

220

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-5 strcmp, Character String/Memory Functions
strncmp

FUNCTION
The string function stremp compares two character strings.
The string function strnemp compares not more than a specified number of characters from two character
strings.

HEADER
string. h

FUNCTION PROTOTYPE
char *strcmp (char *sl, const char *s2);

char *strncmp (char *sl, const char *s2, size t n);

Function Arguments Return Value
stremp s1... Pointer to one string to ¢ 0if s1is equal to s2
be compared ¢ Integer less than O or
s2 ... Pointer to the other greater than 0 if s1 is less
string to be compared than or greater than s2 (s1
—82)
strncmp s1... Pointer to one string to * 0if s1is equal to s2 within
be compared characters specified by n
s2 ... Pointer to the other * Integer less than 0 or
string to be compared greater than 0 if s1 is less
n ... Number of characters to than or greater than s2 (s1
be compared — s2) within characters
specified by n

EXPLANATION

strcmp

e The stremp function compares the two null terminated strings pointed to by s1 and s2, respectively.

* If s1is equal to s2, the function returns 0. If s1 is less than or grater than s2, the function returns an integer
less than 0 (a negative number) or greater than 0 (a positive number) (s1 — s2).

strncmp

e The strncmp function compares not more than the characters specified by n from the two null terminated
strings pointed to by s1 and s2, respectively.

* If s1is equal to s2 within the specified characters, the function returns 0. If s1 is less than or greater than s2
within the specified characters, the function returns an integer less than 0 (a negative number) or greater than
0 (a positive number) (s1 — s2).

User's Manual U15556EJ1VOUM 221

CHAPTER 10 LIBRARY FUNCTIONS

6-6 memchr Character String/Memory Functions

FUNCTION
The memory function memchr converts a specified character to unsigned char, searches for it, and returns a
pointer to the first occurrence of this character in an object of a given size.

HEADER
string. h

FUNCTION PROTOTYPE

void *memchr (const void *s, int ¢, size t n);

Function Arguments Return Value
memchr s ... Pointer to objects in ¢ Pointer to the first
memory subject to search occurrence of ¢ if ¢ is found

c ... Character to be searched ¢ Null pointer if ¢ is not found
n ... Number of bytes to be
searched

EXPLANATION
* The memchr function first converts the character specified by ¢ to unsigned char and then returns a pointer
to the first occurrence of this character within the n number of bytes from the beginning of the object pointed
tobys.
¢ If the character is not found, the function returns a null pointer.

222 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-7 strchr,
strrchr

Character String/Memory Functions

FUNCTION

The string function strchr returns a pointer to the first occurrence of a specified character in a string.
The string function strrchr returns a pointer to the last occurrence of a specified character in a string.

HEADER
string. h

FUNCTION PROTOTYPE

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

Function

Arguments

Return Value

strchr,
strrchr

s... Pointer to string to be
searched

¢ ... Character specified for
search

* Pointer indicating the first or
last occurrence of ¢ in string
sifcisfoundins

* Null pointer if ¢ is not found
ins

EXPLANATION
strchr

¢ The strchr function searches the string pointed to by s for the character specified by ¢ and returns a pointer
to the first occurrence of ¢ (converted to char type) in the string.

¢ The null terminator is regarded as part of the string.
* |If the specified character is not found in the string, the function returns a null pointer.

strrchr

e The strrchr function searches the string pointed to by s for the character specified by ¢ and returns a pointer
to the last occurrence of ¢ (converted to char type) in the string.

e The null terminator is regarded as part of the string.

¢ If no match is found, the function returns a null pointer.

User's Manual U15556EJ1VOUM

223

CHAPTER 10 LIBRARY FUNCTIONS

6-8 strspn, Character String/Memory Functions
strcspn

FUNCTION
The string function strspn returns the length of the initial substring of a string that is made up of only those
characters contained in another string.
The string function strespn returns the length of the initial substring of a string that is made up of only those
characters not contained in another string.

HEADER
string. h

FUNCTION PROTOTYPE
size t strspn (const char *sl, const char *s2);

size t strcspn (const char *sl, const char *2);

Function Arguments Return Value
strspn s1... Pointer to string to be Length of substring of the
searched string s1 that is made up of
s2 ... Pointer to string whose only those characters
characters are specified for contained in the string s2
strcspn match Length of substring of the
string s1 that is made up of
only those characters not
contained in the s2

EXPLANATION

strspn

¢ The strspn function returns the length of the substring of the string pointed to by s1 that is made up of only
those characters contained in the string pointed to by s2. In other words, this function returns the index of the
first character in the string s1 that does not match any of the characters in the string s2.

e The null terminator of s2 is not regarded as part of s2.

strcspn

e The strespn function returns the length of the substring of the string pointed to by s1 that is made up of only
those characters not contained in the string pointed to by s2. In other words, this function returns the index of
the first character in the string s1 that matches any of the characters in the string s2.

¢ The null terminator of s2 is not regarded as part of s2.

224 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-9 strpbrk

Character String/Memory Functions

FUNCTION

The string function strpbrk returns a pointer to the first character in a string to be searched that matches any

character in a specified string.

HEADER
string. h

FUNCTION PROTOTYPE

char *strpbrk (const char *sl, const char *s2);

Function

Arguments

Return Value

strpbrk

s1... Pointer to string to be
searched

s2 ... Pointer to string whose
characters are specified for
match

* Pointer to the first character
in the string s1 that
matches any character in
the string s2 if any match is
found

¢ Null pointer if no match is
found

EXPLANATION

* The strpbrk function returns a pointer to the first character in the string pointed to by s1 that matches any
character in the string pointed to by s2.

* If none of the characters in the string s2 is found in the string s1, the function returns a null pointer.

User's Manual U15556EJ1VOUM

225

CHAPTER 10 LIBRARY FUNCTIONS

6-10 strstr Character String/Memory Functions

FUNCTION
The string function strstr returns a pointer to the first occurrence in the string to be searched of a specified
string.

HEADER
string. h

FUNCTION PROTOTYPE

char *strstr (const char *sl, const char *s2);

Function Arguments Return Value

strstr s1... Pointer to string to be ¢ Pointer to the first

searched appearance in the string s1

s2 ... Pointer to specified string of the string s2 if 82 is
found in s1

¢ Null pointer if s2 is not
found in s1

* Value of s1if s2 is a null
string

EXPLANATION
e The strstr function returns a pointer to the first appearance in the string pointed to by s1 of the string pointed
to by s2 (except the null terminator of s2).
* If the string 82 is not found in the string s1, the function returns a null pointer.
e |f the string s2 is a null string, the function returns the value of s1.

226 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-11 striok

Character String/Memory Functions

FUNCTION

The string function strtok returns a pointer to a token taken from a string (by decomposing it into a string

consisting of characters other than delimiters).

HEADER
string. h

FUNCTION PROTOTYPE

char *strtok (char *sl1,

const char *s2);

Function

Arguments

Return Value

strtok

s1... Pointer to string from
which tokens are to be
obtained or null pointer

s2 ... Pointer to string
containing delimiters of token

¢ Pointer to the first character
of a token if it is found

¢ Null pointer if there is no
token to return

EXPLANATION

* Atoken is a string consisting of characters other than delimiters in the string to be specified.

e |f s1is a null pointer, the string pointed to by the saved pointer in the previous strtok call will be decomposed.

However, if the saved pointer is a null pointer, the function returns a null pointer without doing anything.

e |f s1is not a null pointer, the string pointed to by s1 will be decomposed.

* The strtok function searches the string pointed to by s1 for any character not contained in the string pointed

to by s2. If no character is found, the function changes the saved pointer to a null pointer and returns it. If

any character is found, the character becomes the first character of a token.

¢ If the first character of a token is found, the function searches for any characters contained in the string s2

after the first character of the token. If none of the characters is found, the function changes the saved pointer

to a null pointer. If any of the characters is found, the character is overwritten by a null character and a

pointer to the next character becomes a pointer to be saved.

¢ The function returns a pointer to the first character of the token.

User's Manual U15556EJ1VOUM

227

CHAPTER 10 LIBRARY FUNCTIONS

6-12 memset Character String/Memory Functions

FUNCTION
The memory function memset initializes a specified number of bytes in an object in memory with a specified

character.

HEADER
string. h

FUNCTION PROTOTYPE

void *memset (void *s, int ¢, size t n);

Function Arguments Return Value

memset s ... Pointer to object in Value of s
memory to be initialized

¢ ... Character whose value is
to be assigned to each byte

n ... Number of bytes to be
initialized

EXPLANATION
The memset function first converts the character specified by ¢ to unsigned char and then assigns the value of

this character to the n number of bytes from the beginning of the object pointed to by s.

228 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-13 strerror

Character String/Memory Functions

FUNCTION
The strerror function returns a pointer to the location which stores a string describing the error message

associated with a given error number.

HEADER
string. h

FUNCTION PROTOTYPE

char *strerror (int errnum) ;

Function

Arguments

Return Value

strerror errnum ... Error number .

Pointer to string describing
error message if message
associated with error
number exists

Null pointer if no message
associated with error
number exists

EXPLANATION
The strerror function returns a pointer to one of the following strings associated with the value of errnum

(error number):

[0 T “Error 0”

1 (EDOM)........... “Argument too large”
2 (ERANGE)....... “Result too large”

3 (ENOMEM)....... “Not enough memory”

Otherwise, the function returns a null pointer.

User's Manual U15556EJ1VOUM

229

CHAPTER 10 LIBRARY FUNCTIONS

6-14 strlen Character String/Memory Functions

FUNCTION
The string function strlen returns the length of a character string.

HEADER
string. h

FUNCTION PROTOTYPE

size_t strlen (const char *s);

Function Arguments Return Value

strlen s... Pointer to character string | Length of string s

EXPLANATION
The strlen function returns the length of the null terminated string pointed to by s.

230 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

6-15 strcoll Character String/Memory Functions

FUNCTION
strcoll compares two character strings based on the information specific to the locale.

HEADER
string.h

FUNCTION PROTOTYPE

int strcoll (const char *sl, const char *s2) ;

Function Arguments Return Value
strcoll s1 ... Pointer to comparison When character strings s1 and
character string s2 are equal ... 0
s2 ... Pointer to comparison When character strings s1 and
character string s2 are different

... The difference between the
values whose first different
characters are converted to int
(character of s1 — character of
s2)

EXPLANATION
¢ This compiler does not support operations specific to a cultural sphere. The operations are the same as that
of stremp.

User's Manual U15556EJ1VOUM 231

CHAPTER 10 LIBRARY FUNCTIONS

6-16 strxfrm

Character String/Memory Functions

FUNCTION

strxfrm converts a character string based on the information specific to the locale.

HEADER
string.h

FUNCTION

size t strxfrm (char *s1,

const char *s2, size t

Function

Arguments

Return Value

strxfrm

s1 ... Pointer to a compared
character string

s2 ... Pointer to a compared
character string

n ... Maximum number of
characters to s1

Returns the length of the
character string of the result of
the conversion (does not
include a character string to
indicate the end)

If the returned value is n or
more, the contents of the
array indicated by s1 is
undefined.

EXPLANATION

e This compiler does not support operations specific to a cultural sphere. The operations

those of the following functions.

strnepy (s1, s2, ¢) ;
return (strlen (s2)) ;

232

User's Manual U15556EJ1VOUM

are the same as

CHAPTER 10 LIBRARY FUNCTIONS

7-1 acos

Mathematical Functions

FUNCTION
acos finds acos.

HEADER
math.h

FUNCTION PROTOTYPE

double acog (double x);

Function

Arguments

Return Value

acos

X ... Numeric value to perform
operation

When -1 <x <1 ... acos of x
When x < -1, 1 < x, x = NaN
... NaN

EXPLANATION

* Calculates acos of X (range between 0 and p).

¢ When X is non-numeric, NaN is returned.

¢ |n the case of the definition area error of x < —1, 1 < x, NaN is returned and EDOM is set.

User's Manual U15556EJ1VOUM

233

CHAPTER 10 LIBRARY FUNCTIONS

7-2 asin Mathematical Functions

FUNCTION
asin finds asin.

HEADER
math.h

FUNCTION PROTOTYPE

double asin (double x);

Function Arguments Return Value
asin X ... Numeric value to perform When -1 <x <1 ... asin of x
operation When x<-1,1<x, x=NaN
.. NaN

When x=-0...-0
When underflow occurs ...
non-normalized number

EXPLANATION
* Calculates asin (range between —/2 and +m/2) of x.
¢ |nthe case of area error of x <—1, 1 < x, NaN is returned and EDOM is set to errno.
¢ When x is non-numeric, NaN is returned.
¢ When x is =0, —0 is returned.
¢ |f an underflow occurs as a result of conversion, a non-normalized number is returned.

234 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-3 atan

Mathematical Functions

FUNCTION
atan finds atan.

HEADER
math.h

FUNCTION PROTOTYPE

double atan (double x);

Function

Arguments

Return Value

atan

X ... numeric value to perform
operation

Normal ... atan of x
When x = NaN ... NaN
Whenx=-0...-0

EXPLANATION

¢ Calculates atan (range between —m/2 and +m/2) of x.

¢ When x is non-numeric, NaN is returned.

e When x is -0, —0 is returned.

¢ |f an underflow occurs as a result of conversion, a non-normalized number is returned.

User's Manual U15556EJ1VOUM

235

CHAPTER 10 LIBRARY FUNCTIONS

7-4 atan2

Mathematical Functions

FUNCTION
atan2 finds atan of y/x.

HEADER
math.h

FUNCTION PROTOTYPE
double atan2 (double y, double x);

Function Arguments Return Value
atan2 X ... Numeric value to perform Normal ... atan of y/x
operation When both x and y are 0 or
Yy ... Numeric value to perform y/x is the value that cannot be
operation expressed, or either x ory is

NaN and both x and y are *
.. NaN

Non-normalized number ...
When underflow occurs

EXPLANATION

¢ atan (range between —r and +n) of y/x is calculated. When both x and y are 0 or y/x is the value that cannot

be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.

o |If either x or y is non-numeric, NaN is returned.

o If an underflow occurs as a result of the operation, a non-normalized number is returned.

236 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-5 cos

Mathematical Functions

FUNCTION
cos finds cos.

HEADER
math.h

FUNCTION PROTOTYPE

double cos (double x);

Function

cos

Arguments Return Value
X ... Numeric value to perform Normal ... cos of x
operation When x = NaN, x = too ... NaN

EXPLANATION
¢ Calculates cos of x.

¢ |f x is non-numeric, NaN is returned.
¢ |f x is infinite, NaN is returned and EDOM is set to errno.

* If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U15556EJ1VOUM

237

CHAPTER 10 LIBRARY FUNCTIONS

7-6 sin Mathematical Functions

FUNCTION
sin finds sin

HEADER
math.h

FUNCTION PROTOTYPE

double sin (double x);

Function Arguments Return Value
sin X ... Numeric value to perform Normal ... sin of x
operation When x = NaN, x = too ... NaN

When underflow occurs ...
Non-normalized number

EXPLANATION
¢ (Calculates sin of x.
¢ |f x is non-numeric, NaN is returned.
¢ |f x is infinite, NaN is returned and EDOM is set to errno.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.
¢ If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

238 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-7 tan

Mathematical Functions

FUNCTION
tan finds tan.

HEADER
math.h

FUNCTION PROTOTYPE

double tan

(double x) ;

Function

Arguments

Return Value

tan

X ... Numeric value to perform
operation

Normal ... tan of x

When x = NaN, x =+ ... NaN
When underflow occurs ...
Non-normalized number

EXPLANATION

Calculates tan of x.

If x is non-numeric, NaN is returned.

If x is infinite, NaN is returned and EDOM is set to errno.

If an underflow occurs as a result of the operation, a non-normalized number is returned.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U15556EJ1VOUM

239

CHAPTER 10 LIBRARY FUNCTIONS

7-8 cosh

Mathematical Functions

FUNCTION
cosh finds cosh.

HEADER
math.h

FUNCTION PROTOTYPE
double cosh (double x)

7

Function

Arguments

Return Value

cosh

X ... Numeric value to perform
operation

Normal ... cosh of x

When overflow occurs, x =
NaN, x =+~ ... HUGE_VAL
(with positive sign)

x =NaN ... NaN

EXPLANATION
¢ Calculates cosh of x.

¢ |f x is non-numeric, NaN is returned.

¢ If x is infinite, a positive infinite value is returned.

* If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned, and ERANGE is

set to errno.

240

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-9 sinh Mathematical Functions

FUNCTION
sinh finds sinh.

HEADER
math.h

FUNCTION PROTOTYPE
double sinh (double x);

Function Arguments Return Value
sinh X ... Numeric value to perform Normal ... sinh of x
operation When x = NaN ... NaN

When X = 1o ... Foo

When overflow occurs ...
HUGE_VAL (with the sign of
the overflowed value)

When underflow occurs ... +0

EXPLANATION
¢ (Calculates sinh of x.
¢ |f x is non-numeric, NaN is returned.
e |f X is too, +oo is returned.
e If an overflow occurs as a result of the operation, HUGE_VAL with the sign of the overflowed value is
returned, and ERANGE is set to errno.
¢ |f an underflow occurs as a result of the operation, 0 is returned.

User's Manual U15556EJ1VOUM 241

CHAPTER 10 LIBRARY FUNCTIONS

7-10 tanh Mathematical Functions

FUNCTION
tanh finds tanh.

HEADER
math.h

FUNCTION PROTOTYPE
double tanh (double x);

Function Arguments Return Value
tanh X ... Numeric value to perform Normal ... tanh of x
operation When x = NaN ... NaN

When x = teo ... £1
When underflow occurs ... +0

EXPLANATION
¢ (Calculates tanh of x.
¢ |f x is non-numeric, NaN is returned.
e |f X is +oo, +1 is returned.
¢ |f an underflow occurs as a result of the operation, +0 is returned.

242 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-11 exp Mathematical

FUNCTION
exp finds exponent function.

HEADER
math.h

FUNCTION PROTOTYPE
double exp (double x);

Function Arguments Return Value

exp X ... Numeric value to perform Normal ... Exponent function of
operation X

When x = NaN ... NaN

When x = 1o ... £

When overflow occurs ...
HUGE_VQAL (with positive
sign)

When underflow occurs ...
Non-normalized number
When annihilation of valid
digits occurs due to underflow
.. +0

EXPLANATION
* Calculates the exponent function of x.
¢ |f x is non-numeric, NaN is returned.
e |f X is too, oo is returned.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.
 If annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.
* If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is
set to errno.

User's Manual U15556EJ1VOUM 243

CHAPTER 10 LIBRARY FUNCTIONS

7-12 frexp Mathematical Functions

FUNCTION
frexp finds the mantissa and exponent part.

HEADER
math.h

FUNCTION PROTOTYPE

double frexp (double x, int *exp) ;

Function Arguments Return Value
frexp X ... Numeric value to perform Normal ... Mantissa of x
operation When x = NaN, x = too ... NaN
exp ... Pointer to store When x =40 ... 20
exponent part

EXPLANATION
¢ Divides a floating-point number x into mantissa m and exponent n such as x = m*2”n and returns mantissa m.
e Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and
less than 1.0.
¢ |f x is non-numeric, NaN is returned and the value of *exp is 0.
¢ If x is infinite, NaN is returned, and EDOM is set to errno with the value of *exp as 0.
e |f xis +0, +0 is returned and the value of *exp is 0.

244 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-13 Idexp

Mathematical Functions

FUNCTION
Idexp finds x*2/exp.

HEADER
math.h

FUNCTION PROTOTYPE
double ldexp (double x, int exp);

exp ... Exponentiation

Function Arguments Return Value
exp X ... Numeric value to perform Normal ... x*2 A exp
operation When x = NaN ... NaN

When X = 1o ... Feo

When x =40 ... £0

When overflow occurs ...
HUGE_VAL (with the sign of
the overflowed value)

When underflow occurs ...
Non-normalized number
When annihilation of valid
digits occurs due to underflow
0]

EXPLANATION
* Calculates x*27exp
¢ |f x is non-numeric, NaN is returned
e |f X is too, oo is returned.
e If xis #0, +0 is returned.

¢ If an overflow occurs as a result of the operation, HUGE_VAL with the overflowed value is returned and

ERANGE is set to errno.

¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.

 [f annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.

User's Manual U15556EJ1VOUM

245

CHAPTER 10 LIBRARY FUNCTIONS

7-14 log Mathematical Functions

FUNCTION
log finds the natural logarithm.

HEADER
math.h

FUNCTION PROTOTYPE
double log (double x);

Function Arguments Return Value

log X ... Numeric value to perform Normal ... Natural logarithm of
operation X

When x <0 ... HUGE_VAL
(with negative sign)

When x is non-numeric ... NaN
When x is infinite ... +e

EXPLANATION
¢ Finds the natural logarithm of x.
¢ |f x is non-numeric, NaN is returned.
o |f X iS +o0, +o0 is returned.
* In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, EDOM is set to errno.
¢ If x =0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

246 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-15 log10

Mathematical Functions

FUNCTION
log10 finds the logarithm with 10 as the base.

HEADER
math.h

FUNCTION PROTOTYPE
double logl0 (double x) ;

Function Arguments Return Value
log10 X ... Numeric value to perform Normal ... Logarithm with 10 of
operation x as the base

When x<0 ... HUGE_VAL
(with negative sign)

When x is non-numeric ... NaN
When x is infinite ... +oo

EXPLANATION

Finds the logarithm with 10 of x as the base.
If x is non-numeric, NaN is returned.
If X is +o0, +0 is returned.

In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, EDOM is set to errno.
If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

User's Manual U15556EJ1VOUM

247

CHAPTER 10 LIBRARY FUNCTIONS

7-16 modf Mathematical Functions

FUNCTION
modf finds the fraction part and integer part.

HEADER
math.h

FUNCTION PROTOTYPE
double modif (double x, double *iptr);

Function Arguments Return Value
modif X ... Numeric value to perform Normal ... Fraction part of x
operation When x is non-numeric or
iptr ... Pointer to integer part infinite ... NaN
When x is 0 ... £0

EXPLANATION

¢ Divides a floating-point number x into a fraction part and integer part

* Returns the fraction part with the same sign as that of x, and stores the integer part in the location indicated
by the pointer iptr.

¢ |f x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

* If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to
errno.

e |f x =10, £0 is stored in the location indicated by the pointer iptr.

248 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-17 pow

Mathematical Functions

FUNCTION

pow finds the yth power of x.

HEADER
math.h

FUNCTION PROTOTYPE
double pow (double x,

double y) ;

Function

Arguments

Return Value

pow

X ... Numeric value to perform
operation
y ... Multiplier

Normal ... xy

Either when x =NaN ory =
NaN,

X=+candy=0

X < 0 and y= integer,
Xx<0andy = too,
x=0andy <0 .. NaN
When underflow occurs ...
Non-normalized number
When overflow occurs ...
HUGE_VAL (with the sign of
overflowed value)

When annihilation of valid
digits occurs due to underflow
.. 10

EXPLANATION

Calculates x"y.

If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflown value is returned, and

ERANGE is set to errno.

When x = NaN or y = NaN, NaN is returned.
Either when x = +candy =0, x <0 and y # integer, x <0 andy =+~ or x = 0 and y < 0, NaN is returned and

EDOM is set to errno.

If an underflow occurs, a non-normalized number is returned.

If annihilation of valid digits occurs due to underflow, £0 is returned.

User's Manual U15556EJ1VOUM

249

CHAPTER 10 LIBRARY FUNCTIONS

7-18 sqrt

Mathematical Functions

FUNCTION
sqrt finds the square root.

HEADER
math.h

FUNCTION PROTOTYPE
double sqgrt (double x);

Function

Arguments

Return Value

sqrt

X ... Numeric value to perform

operation

When x > 0 ... Square root of x
When x =40 ... 0
When x <0 ... NaN

EXPLANATION

* Calculates the square root of x.

¢ |n the case of an area error of x < 0, 0 is returned and EDOM is set to errno.
¢ |f x is non-numeric, NaN is returned.

o If xis £0, £0 is returned.

250

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-19 ceil

Mathematical Function

FUNCTION
ceil finds the minimum integer no less than x.

HEADER
math.h

FUNCTION PROTOTYPE

double ceil

(double x) ;

Function

Arguments

Return Value

ceil

X ... Numeric value to perform
operation

Normal ... The minimum
integer no less than x

When x is non-numeric or x =
too ... NaN

When x =-0 ... +0

When the minimum integer no
less than x cannot be
expressed ... X

EXPLANATION

Finds the minimum integer no less than x.

If x is non-numeric, NaN is returned.

If x is =0, +0 is returned.
If x is infinite, NaN is returned and EDOM is set to errno.
If the minimum integer no less than x cannot be expressed, x is returned.

User's Manual U15556EJ1VOUM

251

CHAPTER 10 LIBRARY FUNCTIONS

7-20 fabs

Mathematical Functions

FUNCTION

fabs returns the absolute value of the floating-point number x.

HEADER
math.h

FUNCTION PROTOTYPE

double fabs (double x)

Function

Arguments

Return Value

fabs

X ... Numeric value to find the
absolute value

Normal ... Absolute value of x
When x is non-numeric ... NaN
When x=-0 ... +0

EXPLANATION

¢ Finds the absolute value of x.

¢ |f x is non-numeric, NaN is returned.

e If xis -0, +0 is returned.

252

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-21 floor

Mathematical Functions

FUNCTION
floor finds the maximum integer no more than x.

HEADER
math.h

FUNCTION PROTOTYPE

double floor

(double x) ;

Function

Arguments

Return Value

floor

X ... Numeric value to perform
operation

Normal ... The maximum
integer no more than x

When x is non-numeric or x =
too ... NaN

When x=-0 ... +0

When the maximum integer no
more than x cannot be
expressed

EXPLANATION

Finds the maximum integer no more than x.

If x is non-numeric, NaN is returned.

If x is =0, +0 is returned.
If x is infinite, NaN is returned and EDOM is set to errno.
If the maximum integer no more than x cannot be expressed, x is returned.

User's Manual U15556EJ1VOUM

253

CHAPTER 10 LIBRARY FUNCTIONS

7-22 fmod

Mathematical Functions

FUNCTION

fmod finds the remainder of x/y.

HEADER
math.h

FUNCTION PROTOTYPE

double fmod (double x,

double vy) ;

Function

Arguments

Return Value

fmod

X ... Numeric value to perform
operation
y ... Numeric value to perform
operation

Normal ... Remainder of x/y
When x is non-numeric ory is
non-numeric, when y is £0,
when x is £ ... NaN

When x #eo and y = +eo ... X

EXPLANATION

254

Calculates the remainder of x/y expressed with x —i*y. iis an integer.

If y # 0, the return value has the same sign as that of x and the absolute value is less than that of y.
If y is £ 0 or x = =, NaN is returned and EDOM is set to errno.

If x is non-numeric or y is non-numeric, NaN is returned.

If y is infinite, x is returned unless x is infinite.

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-23 matherr Mathematical Functions

FUNCTION

matherr performs exception processing of the library that deals with floating-point numbers.

HEADER
math.h

FUNCTION PROTOTYPE

void matherr (struct exception *x)

7

Function Arguments Return Value
matherr struct exception { None
int type;
char *name;

}
typenumeric value to
indicate

arithmetic exception
name...function name

EXPLANATION

e When an exception is generated, matherr is automatically called in the standard and runtime libraries that
deal with floating-point numbers.

¢ When called from the standard library, EDOM and ERANGE are set to errno.
The following shows the relationship between the arithmetic exception type and errno.

Type Arithmetic Exception Value Set to errno
1 Underflow ERANGE
2 Annihilation ERANGE
3 Overflow ERANGE
4 Zero division EDOM
5 Inoperable EDOM

Original error processing can be performed by changing or creating matherr.

User's Manual U15556EJ1VOUM 255

CHAPTER 10 LIBRARY FUNCTIONS

7-24 acosf

Mathematical Functions

FUNCTION
acosf finds acos.

HEADER
math.h

FUNCTION PROTOTYP
float acosf (fl

E

oat x);

Function

Arguments

Return Value

acosf

X ... Numeric value to perform
operation

When —1 <x <1 ... acos of x
Whenx<-1,1<x,x=...
NaN

EXPLANATION

* Calculates acos (range between 0 and r) of x

¢ |f x is non-numeric, NaN is returned.

¢ In the case of a definition area error of x <—1, 1 < x, NaN is returned and EDOM is set to errno.

256

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-25 asinf

Mathematical Functions

FUNCTION
asinf finds asin.

HEADER
math.h

FUNCTION PROTOTYPE

float asinf

(float x);

Function

Arguments

Return Value

asinf

X ... Numeric value to perform
operation

When —1 <x <1 ... asin of x
When x<-1, 1 < x, x = NaN
.. NaN

x=-0..-0

When underflow occurs ...
Non-normalized number

EXPLANATION

Calculates asin (range between —m/2 and +m/2) of x

If x is non-numeric, NaN is returned.

In the case of definition area error of x <—1, 1 < x, NaN is returned and EDOM is set to errno.

If x = -0, -0 is returned.

If an underflow occurs as a result of the operation, a non-normalized number is returned.

User's Manual U15556EJ1VOUM

257

CHAPTER 10 LIBRARY FUNCTIONS

7-26 atanf

Mathematical Functions

FUNCTION
atanf finds atan.

HEADER
math.h

FUNCTION PROTOTYPE

float atanf (float x);

Function

Arguments

Return Value

atanf

X ... Numeric value to perform
operation

Normal ... atan of x
When x = NaN ... NaN
Whenx=-0...-0

EXPLANATION

* Calculates atan (range between —m/2 and +m/2) of x
¢ |f x is non-numeric, NaN is returned.

e |f x=-0, -0 is returned.

¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.

258

User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-27 atan2f

Mathematical Functions

FUNCTION
atan2f finds atan of y/x.

HEADER
math.h

FUNCTION PROTOTYPE

float atan2f (float vy,

float x);

Function

Arguments

Return Value

atan2f

X ... Numeric value to perform
operation
Yy ... Numeric value to perform
operation

Normal ... atan of y/x

When both x and y are 0 or a
value whose y/x cannot be
expressed, or either x ory is
NaN, both x and y are £ ...
NaN

When underflow occurs ...
Non-normalized number

EXPLANATION

* Calculates atan (range between —r and +7) of y/x. When both x and y are 0 or the value whose y/x cannot

be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.

e When either x or y is non-numeric, NaN is returned.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.

User's Manual U15556EJ1VOUM

259

CHAPTER 10 LIBRARY FUNCTIONS

7-28 cosf Mathematical Functions

FUNCTION
cosf finds cos.

HEADER
math.h

FUNCTION PROTOTYPE
float cost (float x);

Function Arguments Return Value
cosf X ... Numeric value to perform Normal ... cos of x
operation When x = NaN, x = teo ... NaN

EXPLANATION
¢ (Calculates cos of x.
¢ |f x is non-numeric, NaN is returned.
¢ |f x is infinite, NaN is returned and EDOM is set to errno.
* If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

260 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-29 sinf

Mathematical Functions

FUNCTION
sinf finds sin.

HEADER
math.h

FUNCTION PROTOTYPE

float sinf

(float x);

Function

Arguments

Return Value

sinf

X ... Numeric value to perform
operation

Normal ... sin of x

When x = NaN, x = £« ... NaN
When underflow occurs ...
Non-normalized number

EXPLANATION

Calculates sin of x.

If x is non-numeric, NaN is returned.

If x is infinite, NaN is returned and EDOM is set to errno.

If an underflow occurs as a result of the operation, a non-normalized number is returned.

If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

User's Manual U15556EJ1VOUM

261

CHAPTER 10 LIBRARY FUNCTIONS

7-30 tanf Mathematical Functions

FUNCTION
tanf finds tan.

HEADER
math.h

FUNCTION PROTOTYPE
float tanf (float x);

Function Arguments Return Value
tanf X ... Numeric value to perform Normal ... tan of x
operation When x = NaN, x = tco ... NaN

When underflow occurs ...
Non-normalized number

EXPLANATION
¢ (Calculates tan of x.
¢ |f x is non-numeric, NaN is returned.
¢ |f x is infinite, NaN is returned and EDOM is set to errno.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.
¢ If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

262 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-31 coshf

Mathematical Functions

FUNCTION
coshf finds cosh.

HEADER
math.h

FUNCTION PROTOTYPE
float coshf (float x)

I

Function

Arguments

Return Value

coshf

X ... Numeric value to perform
operation

Normal ... cosh of x

When overflow occurs, X = o
... HUGE_VAL (with a positive
sign)

x = NaN ... NaN

EXPLANATION
¢ Calculates cosh of x.

¢ |f x is non-numeric, NaN is returned.

¢ If x is infinite, positive infinite value is returned.

* If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is

set to errno.

User's Manual U15556EJ1VOUM

263

CHAPTER 10 LIBRARY FUNCTIONS

7-32 sinhf Mathematical Functions

FUNCTION
sinhf finds sinh.

HEADER
math.h

FUNCTION PROTOTYPE
float sinhf (float x);

Function Arguments Return Value
sinhf X ... Numeric value to perform Normal ... sinh of x
operation When overflow occurs ...

HUGE_VAL (with a sign of the
overflowed value)

x =NaN ... NaN

When X = teo ... £

When underflow occurs ... +0

EXPLANATION
¢ (Calculates sinh of x.
¢ |f x is non-numeric, NaN is returned.
e |f X is too, +oo is returned.
e If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned
and ERANGE is set to errno.
¢ |f an underflow occurs as a result of the operation, 0 is returned.

264 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-33 tanhf

Mathematical Functions

FUNCTION
tanhf finds tanh.

HEADER
math.h

FUNCTION PROTOTYPE

float tanhf (float x);

Function

Arguments

Return Value

tanhf

X ... Numeric value to perform
operation

Normal ... tanh of x
x = NaN ... NaN
When x = teo ... £1

When underflow occurs ...

+0

EXPLANATION

¢ Calculates tanh of x.

¢ |f x is non-numeric, NaN is returned.

e |f X is +oo, +1 is returned.

¢ |f an underflow occurs as a result of the operation, =0 is returned.

User's Manual U15556EJ1VOUM

265

CHAPTER 10 LIBRARY FUNCTIONS

7-34 expf Mathematical Functions

FUNCTION
expf finds the exponent function.

HEADER
math.h

FUNCTION PROTOTYPE
float expf (float x);

Function Arguments Return Value

expf X ... Numeric value to perform Normal ... Exponent function of
operation X

When overflow occurs ...
HUGE_VAL (with positive sign)
x =NaN ... NaN

When X = 1o ... £

When underflow occurs ...
Non-normalized number
When annihilation of valid
digits occurs due to underflow
.. +0

EXPLANATION
* Calculates exponent function of x.
¢ |f x is non-numeric, NaN is returned.
e |f X is too, oo is returned.
* If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is
set to errno.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.
 [f annihilation of effective digits occurs due to underflow as a result of the operation, +0 is returned.

266 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-35 frexpf

Mathematical Functions

FUNCTION

frexpf finds the mantissa and exponent part.

HEADER
math.h

FUNCTION PROTOTYPE

float frexpf (float x,

int *exp) ;

Function

Arguments

Return Value

frexpf

X ... Numeric value to perform
operation

exp ... Pointer to store exponent
part

Normal ... Mantissa of x
When x = NaN, x = + ..
When x =10 ... 20

. NaN

EXPLANATION

¢ Divides a floating-point number x into mantissa m and exponent n such as x = m*2”n and returns mantissa

m.

* Exponent n is stored in where the pointer exp indicates. The absolute value of m, however, is 0.5 or more

and less than 1.0.

¢ If x is non-numeric, NaN is returned and the value of *exp is 0.

e |f X is 2o, NaN is returned, and EDOM is set to errno with the value of *exp as 0.
e If xis 20, 20 is returned and the value of *exp is 0.

User's Manual U15556EJ1VOUM

267

CHAPTER 10 LIBRARY FUNCTIONS

7-36 ldexpf Mathematical Functions

FUNCTION
Idexpf finds x*2”exp.

HEADER
math.h

FUNCTION PROTOTYPE
float ldexpf (float x, int exp);

Function Arguments Return Value
Idexpf X ... Numeric value to perform Normal ... x*2%exp
operation When x = NaN ... NaN
exp ... Exponentiation When X = oo ... foo

When x =40 ... £0

When overflow occurs ...
HUGE=VAL (with the sign of
overflowed value)

When underflow occurs ...
Non-normalized numberV

When annihilation of valid
digits occurs due to underflow
.30

EXPLANATION
¢ Calculates x*2%exp.
¢ |If x is non-numeric, NaN is returned. If X is +eo, + is returned. If x is 0, 20 is returned.
¢ If overflow occurs as a result of operation, HUGE_VAL with the sign of overflowed value is returned and
ERANGE is set to errno.
¢ |f an underflow occurs as a result of the operation, a non-normalized number is returned.
* [f annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.

268 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-37 logf

Mathematical Functions

FUNCTION
logf finds the natural logarithm.

HEADER
math.h

FUNCTION PROTOTYPE
float logf (float x);

Function

Arguments

Return Value

logf

X ... Numeric value to perform
operation

Normal ... Natural logarithm of x
When x is non-numeric ... NaN
When x is infinite ... +e

When x <0 ... HUGE_VAL
(with negative sign)

EXPLANATION
¢ Finds natural logarithm of x.

¢ |f x is non-numeric, NaN is returned.

e |f X iS +o0, +o0 is returned.

* In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.
¢ If x =0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

User's Manual U15556EJ1VOUM

269

CHAPTER 10 LIBRARY FUNCTIONS

7-38 log10f Mathematical Functions

FUNCTION
log10f finds the logarithm with 10 as the base.

HEADER
math.h

FUNCTION PROTOTYPE
float loglOf (float x);

Function Arguments Return Value
log10f X ... Numeric value to perform Normal ... Logarithm with 10 of
operation x as the base

When x is non-numeric ... NaN
When X = +oo ... o0

When x <0 ... HUGE_VAL
(with negative sign)

EXPLANATION
* Finds the logarithm with 10 of x as the base.
¢ |f x is non-numeric, NaN is returned.
e |f X iS +o0, +o0 is returned.
* In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.
¢ If x =0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

270 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-39 modff Mathematical Functions

FUNCTION
modff finds the fraction part and integer part.

HEADER
math.h

FUNCTION PROTOTYPE
float modff (float x, float *iptr);

Function Arguments Return Value
modff X ... Numeric value to perform Normal ... Fraction part of x
operation When x is non-numeric or

iptr ... Pointer for integer part infinite ... NaN
When x =+0 ... £0

EXPLANATION

Divides a floating-point number x into a fraction part and integer part.

Returns the fraction part with the same sign as that of x, and stores the integer part in the location indicated
by the pointer iptr.

If x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to
errno.

If x = £0, £0 is returned and stored in the location indicated by the pointer iptr.

User's Manual U15556EJ1VOUM 271

CHAPTER 10 LIBRARY FUNCTIONS

7-40 powf Mathematical Functions

FUNCTION
powf finds the yth power of x.

HEADER
math.h

FUNCTION PROTOTYPE
float powf (float x, float y);

Function Arguments Return Value
powf X ... Numeric value to perform Normal ... x*y
operation Either when =
y ... Multiplier x = NaN or y = NaN

X=+4candy=0

X < 0 and y=# integer,
x<0andy =t
x=0andy=0 ... NaN

When underflow occurs ...
Non-normalized number
When overflow occurs ...
HUGE_VAL (with the sign of
overflowed value)

When annihilation of valid
digits occurs due to underflow
.. 10

EXPLANATION

e Calculates x"y.

* If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned,
and ERANGE is set to errno.

* When x = NaN or y = NaN, NaN is returned.

e Eitherwhenx=+~andy=0,x<0andy #integer,x <0andy =+, or x=0and y <0, NaN is returned and
EDOM is set to errno.

¢ |f an underflow occurs, a non-normalized number is returned.

e If annihilation of valid digits occurs due to underflow, 0 is returned.

272 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-41 sqrif

Mathematical Functions

FUNCTION
sqrtf finds the square root.

HEADER
math.h

FUNCTION PROTOTYPE
float sqgrtf (float x);

Function

Arguments

Return Value

sqrtf

X ... Numeric value to perform
operation

When x >0 ... Square root of x
When x =10 ... £0
When x <0 ... NaN

EXPLANATION
* Calculates the square root of x.

¢ |n the case of area error of x < 0, 0 is returned and EDOM is set to errno.
¢ |f x is non-numeric, NaN is returned.

e If xis #0, +0 is returned.

User's Manual U15556EJ1VOUM

273

CHAPTER 10 LIBRARY FUNCTIONS

7-42 ceilf Mathematical Functions

FUNCTION
ceilf finds the minimum integer no less than x.

HEADER
math.h

FUNCTION PROTOTYPE
float ceilf (float x);

Function Arguments Return Value
ceilf X ... Numeric value to perform Normal ... The minimum
operation integer no less than x
When x is non-numeric or x =
te ... NaN

When x=-0 ... +0

When the minimum integer no
less than x cannot be
expressed ... X

EXPLANATION
¢ Finds the minimum integer no less than x.
¢ |f x is non-numeric, NaN is returned.
e If xis -0, +0 is returned.
¢ If x is infinite, NaN is returned and EDOM is set to errno.
¢ |f the minimum integer no less than x cannot be expressed, x is returned.

274 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-43 fabsf

Mathematical Functions

FUNCTION

fabsf returns the absolute value of the floating-point number x.

HEADER
math.h

FUNCTION PROTOTYPE

float fabsf (float x);

Function

Arguments

Return Value

fabsf

X ... Numeric value to find the
absolute value

Normal ... Absolute value of x
When x is non-numeric ... NaN
When x=-0... +0

EXPLANATION

¢ Finds the absolute value of x.

¢ |f x is non-numeric, NaN is returned.

e If xis -0, +0 is returned.

User's Manual U15556EJ1VOUM

275

CHAPTER 10 LIBRARY FUNCTIONS

7-44 floorf Mathematical Functions

FUNCTION
floorf finds the maximum integer no more than x.

HEADER
math.h

FUNCTION PROTOTYPE
float floorf (float x);

Function Arguments Return Value
floorf X ... Numeric value to perform Normal ... The maximum
operation integer no more than x
When x is non-numeric or
infinite ... NaN

Whenx=-0...+0

When the maximum integer no
more than x cannot be
expressed ... X

EXPLANATION
¢ Finds the maximum integer no more than x.
¢ |f x is non-numeric, NaN is returned.
e If xis -0, +0 is returned.
¢ If x is infinite, NaN is returned and EDOM is set to errno.
¢ |f the maximum integer no more than x cannot be expressed, x is returned.

276 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

7-45 fmodf

Mathematical Functions

FUNCTION

fmodf finds the remainder of x/y.

HEADER
math.h

FUNCTION PROTOTYPE
float fmodf (float x,

float y);

Function

Arguments

Return Value

fmodf

X ... Numeric value to perform
operation
Yy ... Numeric value to perform
operation

Normal ... Remainder of x/y
When x is non-numeric ory is

non-numeric

When y is 0, when X is o ...

NaN

When x # e andy =z ...

X

EXPLANATION

* Calculates the remainder of x/y expressed with x —i*y. iis an integer.

e Ify 0, the return value has the same sign as that of x and the absolute value is less than y.
e Ifyis+ 0 orx =z, NaN is returned and EDOM is set to errno.

¢ |f x is non-numeric or y is non-numeric, NaN is returned.

¢ If yisinfinite, x is returned unless x is infinite.

User's Manual U15556EJ1VOUM

277

CHAPTER 10 LIBRARY FUNCTIONS

8-1 _ _ assertfail Diagnostic Functions

FUNCTION
_ _ assertfail supports the assert macro.

HEADER
math.h

FUNCTION PROTOTYPE

int _ _assertfail (char* msg, char* cond, char* file, int 1line);
Function Arguments Return Value
_ _assertfail _ _msg ... Pointer to character | Undefined

string to indicate output
conversion specification to be
passed to printf function

_ _cond ... Actual argument of
assert macro

_ _file ... Source file name

_ _line ... Source line number

EXPLANATION
The _ _ assertfail function receives information from the assert macro (refer to 10.2 Headers (13) assert.h),
calls the printf function, outputs information, and calls the abort function.

The assert macro adds diagnostic functions to a program. When an assert macro is executed, if p is false
(equal to 0), an assert macro passes information related to the specific call that has brought the false value
(actual argument text, source file name, and source line number are included in the information. The other two
respectively) to the

are the values of macro_FILE_ _ and _ _LINE _assertfail function.

— —

278 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

10.5 Batch Files for Update of Startup Routine and Library Functions

This compiler is provided with batch files for updating a part of the standard library functions and the startup
routine. The batch files in the BAT directory are shown in Table 10-3 below.

Caution The file d4025.78k in the BAT directory is used during batch file activation for updating the
library, not for development. When developing a system, it is hecessary to have a device file

(sold separately).

Table 10-3. Batch Files for Updating Library Functions

Batch File Application

mkstup.bat Updates the startup routine (cstart*.asm).
When changing the startup routine, perform assembly using this batch file.

reprom.bat Updates the firmware ROM termination routine (rom.asm).
When changing rom.asm, update the library using this batch file.

repgetc.bat Updates the getchar function.
The default assumption sets PO of the SFR to input port. When it is necessary to change this setting, change
the defined value of EQU of PORT in getchar.asm and update the library using this batch file.

repputc.bat Updates the putchar function.
The default assumption sets PO of the SFR to output port. When it is necessary to change this setting, change
the defined value of EQU of PORT in putchar.asm and update the library using this batch file.

repputcs.bat Updates the putchar function to SM78K4-supporting.
When it is necessary to check the output of the putchar function using the SM78K4, update the library using
this batch file.

repselo.bat Saves/restores the reserved area of the compiler (_@KREGXxx) as part of the save/restore processing of the
setjmp/longjmp functions (the default assumption is to not save/restore).
Update the library using this batch file when the -QR option is specified.

repselon.bat Does not save/restore the reserved area of the compiler (_ @ KREGxx) as part of the save/restore processing
of the setjmp/longjmp functions (the default assumption is to not save/restore).
Update the library using this batch file when the -QR option is not specified.

repvect.bat Updates the address value setting processing of the branch table of the interrupt vector table allocated in the
flash area (vect*.asm).

The default assumption sets the top address of the flash area branch table to 4000H. When it is necessary to
change this setting, change the defined value of EQU of ITBLTOP in vect.inc and update the library using this
batch file.

User's Manual U15556EJ1VOUM 279

CHAPTER 10 LIBRARY FUNCTIONS

10.5.1 Using batch files

Use the batch files in the subdirectory BAT. Because these files are the batch files used to activate the assembler
and librarian, an environment in which the assembler package RA78K4 Ver. 1.50 or later operates is necessary.

Before using the batch files, set the directory that contains the RA78K4 execution format file using the
environment variable PATH.

Create a subdirectory (LIB) of the same level as BAT for the batch files and put the post-assembly files in this
subdirectory.

When a C startup routine or library is installed in a subdirectory LIB that is the same level as BAT, these files are
overwritten.

To use the batch files, move the current directory to the subdirectory BAT and execute each batch file. At this
time, the following parameters are necessary.

Product type = chiptype (classification of target chip)
4026 --- uPD784026, etc.

The following is an illustration of how to use each batch file.
The batch file for:
(1) Startup routine

e For PC-9800 series, IBM PC/AT™ and compatibles
mkstup chiptype

Example mkstup 4026

e For HP9000 series 700™, SPARCstation™ Family
/bin/sh mkstup.sh chiptype

Example /bin/sh mkstup.sh 4026

(2) Firmware ROM routine update

e For PC-9800 series, IBM PC/AT and compatibles
reprom chiptype

Example reprom 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh reprom.sh chiptype

Example /bin/sh reprom.sh 4026

280 User's Manual U15556EJ1VOUM

CHAPTER 10 LIBRARY FUNCTIONS

(3) getchar function update

e For PC-9800 series, IBM PC/AT and compatibles
repgetc chiptype

Example repgetc 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repgetc.sh chiptype

Example /bin/sh repgetc.sh 4026

(4) putchar function update

e For PC-9800 series, IBM PC/AT and compatibles
repputc chiptype

Example repputc 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repputc.sh chiptype

Example /bin/sh repputc.sh 4026

(5) putchar function (SM78K4-supporting) update

e For PC-9800 series, IBM PC/AT and compatibles
repputcs chiptype

Example repputcs 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repputcs.sh chiptype

Example /bin/sh repputcs.sh 4026

User's Manual U15556EJ1VOUM 281

CHAPTER 10 LIBRARY FUNCTIONS

(6) setjmp/longjmp function update (with restore/save processing)

e For PC-9800 series, IBM PC/AT and compatibles
repselo chiptype

Example repselo 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repselo.sh chiptype

Example /bin/sh repselo.sh 4026

(7) setjmp/longjmp function update (without restore/save processing)

e For PC-9800 series, IBM PC/AT and compatibles
repselon chiptype

Example repselon 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repselon.sh chiptype

Example /bin/sh repselon.sh 4026

(8) Interrupt vector table update

e For PC-9800 series, IBM PC/AT and compatibles
repvect chiptype

Example repvect 4026

e For HP9000 series 700, SPARCstation Family
/bin/sh repvect.sh chiptype

Example /bin/sh repvect.sh 4026

282 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

This chapter describes the extended functions unique to this C compiler and not specified in the ANSI (American
National Standards Institute) Standard for C.

The extended functions of this C compiler are used to generate codes for effective utilization of the target devices
in the 78K/IV Series. Not all of these extended functions are always effective. Therefore, it is recommended to use
only the effective ones according to the purpose of use. For the effective use of the extended functions, refer to
CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER along with this chapter.

C source programs created by using the extended functions of the C compiler utilize microcontroller-dependent
functions. As regards portability to other microcontrollers, they are compatible at the C language level. For this
reason, C source programs developed by using these extended functions are portable to other microcontrollers with
easy-to-make modifications.

Remark In the explanation of this chapter, “RTOS” indicates the 78K/IV Series real-time OS.

User's Manual U15556EJ1VOUM 283

CHAPTER 11 EXTENDED FUNCTIONS

11.1 Macro Names

This C compiler has two types of macro names: those indicating the series name for target devices and those
indicating device name (processor type). These macro names are specified according to the option for compilation to
output object code for a specific target device or according to the processor type in the C source. In the example
below, _ _K4_ _and _ _4026_ are specified.

For details of these macro names, see 9.8 Compiler-Defined Macro Names.

[Example]

Option for compilation
>CC78K4 -C4026 prime.c ..

Specification of device type:
#pragma pc (4026)

11.2 Keywords

The following tokens are added to this C compiler as keywords to realize the extended functions. Similarly to
ANSI-C keywords, these tokens cannot be used as labels or as variable names. All the keywords must be described
in lowercase letters. A keyword containing an uppercase letter is not interpreted as a keyword by the C compiler.

This following shows the list of keywords added to this compiler. Of these keywords, ones not starting with “_ _”
can be disabled by specifying the option (-ZA) that enables only ANSI-C language specifications (for the ANSI-C

keywords, refer to 2.1 Keywords).

284 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Table 11-1. List of Added Keywords

Keyword Use

__callt callt callt/_ _callt functions
_ _callf callf callf/_ _callf functions
__sreg sreg sreg/_ _sreg variables
_ _sregl _ _sreg1 variables

noauto noauto functions
_ _leaf norec norec/_ _leaf functions
_ _boolean boolean boolean type/_ _boolean type

bit bit type variables
_ _booleant _ _boolean1 type variables
_ _interrupt Hardware interrupt
_ _interrupt_brk Software interrupt
__asm ASM statements
_ _rtos_interrupt Handler to allocate for RTOS
_ _pascal Pascal function
_ _flash Firmware ROM function
_ _directmap Absolute address allocation specification

(1) Functions
The keywords callt, _ _callt, callf _ _callf, noauto, norec, _ _leaf, _ _interrupt, _ _interrupt_brk,

_ _rtos_interrupt, and _ _flash are attribute qualifiers.

These keywords must be described before any function declaration. The format of each attribute qualifier is

shown below.

Attribute-qualifier ordinary-declarator function-name (parameter type list/identifier list)

_ _callt

int func (int) ;

User's Manual U15556EJ1VOUM 285

CHAPTER 11 EXTENDED FUNCTIONS

Attribute qualifier specifications are limited to those listed below. (The noauto and norec/_ _leaf qualifiers

cannot be specified at the same time.) callt and _ _callt, callf and _ _callf, norec and _ _leaf are regarded as

the same specifications. However, qualifiers that include ‘_ _

are enabled even when the -ZA option is

specified.
e callt
e callf

e mnoauto

e norec

e callt noauto
e callt norec
e noauto callt
e norec callt
e callf noauto
e callf norec
e noauto callf

e norec callf

e _interrupt

e interrupt brk
e rtos_interrupt
e pascal

e pascal noauto
e pascal callt

e pascal callf

e noauto_pascal

e callt pascal

e callf pascal

e callt noauto_ pascal
e callf noauto_ pascal
e flash

(2) Variables

286

The keyword sreg, _ _sreg, or _ _sregl is specified in a similar manner to the register storage class
specifier of C. (For details, see 11.5 (3) How to use the saddr area.)

The keyword bit, boolean, _ _boolean, or _ _boolean1 is specified in a similar manner to the char or int
type specifier of C.

However, these types can be specified only for the variables defined outside a function (external variables).
The same regulations apply to the _ _directmap specification as to the type qualifiers in C language (refer to
11.5 (42) Absolute address allocation specification for details).

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.3 Memory
The memory model is determined by the memory space of the target device.
(1) Memory model
A maximum of 1 MB of program memory space and a maximum of 16 MB of data memory space are available
(for the memory map, refer to the user's manual of each target device).
This compiler has the three types of memory models: small, medium, and large. Objects are changed and output

by specifying each memory model option. For details of each model, refer to Table 11-2.

Table 11-2. Memory Model

Memory Model (Option) Explanation
Small model (-MS) A model with a combined code/data block capacity of 64
KB.
Medium model (-MM) A model with a capacity of up to 1 MB for the code block

and 64 KB for the data block

Large model (-ML) A model with a combined code/data block capacity of 16
MB, including up to 1 MB for the code block and 16 MB for
the data block.

(2) Register bank
* The register bank is set to ‘RBO’ at startup (set in the startup routine of this compiler). Register bank 0 is
made always used (unless the register bank is changed) by this setting.
¢ The specified register bank is set at the start of the interrupt function that has specified the change of the
register bank.

(3) Location function
* With the large model or medium model, the location function (-CS option) allows changing the location of the
internal RAM (including saddr area and sfr area) between 64 KB (LOCATION 00H) and 1024 KB (LOCATION
OFH) (with the small model, the location of the internal RAM is fixed to 64 KB). For the -CS option, refer to the
CC78K4 C Compiler Operation User’s Manual (U15557E).

User's Manual U15556EJ1VOUM 287

CHAPTER 11 EXTENDED FUNCTIONS

(4) Memory space

This C compiler uses memory space as shown in Table 11-3 below.

Table 11-3. Utilization of Memory Space

Address Use Size (Bytes)
00 40to 7FH CALLT table 64
0800 to OFFFH CALLF entry 2048
(F)FD 20 to DFH sreg variables, boolean type variables 192
(F)FD 20 to FFH Arguments of norec functions™°® 8
Consecutive 32-byte area in Automatic variables of norec functions™°t ! 8

the interval above

Note 1

| Register variables 16
(F)FE 00 to 7FH sreg1 variables, boolean1 type variables 128
(F)FE 80 to EFH RB7 to RB1"°* 2 (work registers) 112
FO to FFH RBO (work registers) 16
(F)FF 00 to FFH sfr variables 256
Notes 1. The restore to this area is not processed within the interrupt function when the -qr option is not
specified (default). This reduces the preprocessing/postprocessing of interrupt functions and allows
users to use the areas of Note 1 as sreg variable or boolean type variable areas when using a real-
time OS, etc. For the save/restore processing code output, refer to 11.5 (10) Interrupt function. This
area, as shown in APPENDIX A LIST OF LABELS FOR saddr AREA, defines labels and secures
areas in a library.
Standard library functions setjmp, longjmp refer to a part of this area _ @ KREGO0.
2. Used when a register bank is specified.
288 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.4 #pragma directives

The #pragma directives are preprocessing directives supported by ANSI. A #pragma directive, depending on the
character string to follow #pragma, instructs the compiler to translate using the method determined by the compiler.
If the compiler does not support #pragma directives, the #pragma directive is ignored and compilation is continued.
If keywords are added by a directive, an error is output if the C source includes the keywords. In order to avoid this,
the keywords in the C source should either be deleted or sorted by the #ifdef directive.

This C compiler supports the following #pragma directives to realize the extended functions.

The keywords specified after #pragma can be described either in uppercase or lowercase letters.

For the extended functions using #pragma directives, refer to 11.5 How to Use Extended Functions.

User's Manual U15556EJ1VOUM 289

CHAPTER 11 EXTENDED FUNCTIONS

Table 11-4. List of #pragma Directives

#pragma Directive

Applications

#pragma sfr

Describes SFR name in C — 11.5 (4) How to use the sfr area

#pragma asm

Inserts ASM statement in C source — 11.5 (9) ASM statements

#pragma vect
#pragma interrupt

Describes interrupt processing in C — 11.5 (10) Interrupt functions

#pragma di
#pragma ei

Describes DI/El instructions in C — 11.5 (12) Interrupt functions

#pragma halt
#pragma stop
#pragma nop
#pragma brk

Describes CPU control instructions in C — 11.5 (13) CPU control instruction

#pragma access

Uses absolute address access functions — 11.5 (17) Absolute address access function

#pragma section

Changes compiler output section name and specifies section location
— 11.5 (19) Changing compiler output section name

#pragma name

Changes module name — 11.5 (21) Module name changing function

#pragma rot

Uses rotate function — 11.5 (22) Rotate function

#pragma mul

Uses multiplication function — 11.5 (23) Multiplication function

#pragma div

Uses division function — 11.5 (24) Division function

#pragma opc

Uses data insertion function — 11.5 (25) Data insertion function

#pragma rtos_interrupt

Uses interrupt handler for real-time OS (RX78K/IV)
— 11.5 (26) Interrupt handler for real-time OS (RTOS)

#pragma rtos_task

Uses task function for real-time OS (RX78K/IV)
— 11.5 (28) Task function for real-time OS (RTOS)

#pragma ext_table

Specifies the first address of the flash area branch table
— 11.5 (34) Flash area branch table

#pragma ext_func

Calls a function to the flash area from the boot area
— 11.5 (35) Function call function from the boot area to the flash area.

#pragma inline

Expands the standard library functions memcpy and memset inline
— 11.5 (38) Memory manipulation function

#pragma addnaccess

Uses 3-byte address reference/generation function
— 11.5 (41) Three-byte address reference/generation function

290

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.5 How to Use Extended Functions

This section describes the extended functions in the following format.

FUNCTION:
Outlines the function that can be implemented with the extended function.

EFFECT:
Explains the effect brought about by the extended function.

USAGE:
Explains how to use the extended function.

EXAMPLE:
Gives an application example of the extended function.

RESTRICTIONS:
Explains restrictions if any on the use of the extended function.

EXPLANATION:
Explains the above application example.

COMPATIBILITY:

Explains the compatibility of a C source program developed by another C compiler when it is to be compiled with this
C compiler.

User's Manual U15556EJ1VOUM 291

CHAPTER 11 EXTENDED FUNCTIONS

(1) callt functions

callt Functions callt/_ _callt

FUNCTION
¢ The callt instruction stores the address of a function to be called in an area [40H to 7FH] called the callt table,
so that the function can be called with a shorter code than the one used to call the function directly.
e To call a function declared by the callt (or _ _ callt) (called the callt function), a name with ? prefixed to the
function name is used. To call the function, the callt instruction is used.
¢ The function to be called is not different from the ordinary function.

EFFECT
The object code can be shortened.

USAGE
Add the callt/_ _ callt attribute to the function to be called as follows (described at the beginning).

callt extern type-name function-name
__callt extern type-name function-name

EXAMPLE

__callt void funcl (void) ;

__callt void funcl (void) {

/* function body */

292 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

callt Functions

callt/_ _callt

RESTRICTIONS

The address of each function declared with callt/_ _ callt will be allocated to the callt table at the time of
linking object modules. For this reason, when using the callt table in an assembler source module, the
routine to be created must be made “relocatable” using symbols.

A check on the number of callt functions is made at linking time.

callt is enabled and callt is disabled.

When the -ZF option is specified, callt functions cannot be defined. If a callt function is defined, an error will

When the -ZA option is specified, _ _
occur.

The area of the callt table is 40F to 70F.

When the callt table is used exceeding the number of callt attribute functions permitted, a compilation error
will occur.

The callt table is used by specifying the -QL option. For that reason, the number of callt attributes permitted
per load module and the total in the linking modules is as shown in Table 11-5.

Table 11-5. Number of callt Attribute Functions That Can Be Used When —QL Option Is Specified

Number of Functions That Can Be Used
Memory Model
-QL1 -QL2 -QL3 -QL4
Small model 32 32 15 10
Medium model 32 25 8 3
Large model 32 23 6 1

¢ Cases in which the -QL option is not used and the defaults are as shown below.

Table 11-6. Restriction on callt Function Usage

callt Function

Restriction Value

Number per load module

32 Max.

Total number in linked module

32 Max.

User's Manual U15556EJ1VOUM

293

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

(C source)

__callt extern int tsub ();

void main ()

{

int ret val;

ret val = tsub();

_ _callt int tsub

—_

int wval;

return val;

0

(Output object of assembler)

cal module
EXTRN ?tsub
callt [?tsubl]
ca2 module
PUBLIC _tsub
PUBLIC ?tsub
@@CALT CSEG CALLTO
?tsub: DW _tsub

@@CODE CSEG
_tsub:

Function body

; Declaration
; Call

; Declaration

; Allocation to segment

; Function definition

EXPLANATION

The callt attribute is given to the function tsub() so that it can be stored in the callt table.

COMPATIBILITY
From another C compiler to this C compiler

* Modification is not required if the keyword callt/_ _ callt is not used.

e When changing functions to callt functions, use the method above.

From this C compiler to another C compiler

¢ #define must be used. For details, see 11.6 Modifications of C Source.

294 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(2) Register variables

Register Variables register

FUNCTION

Allocates the declared variables (including arguments of function) to the register (RP3, VP) and saddr2 area
(_L@KREGO00 to _@KREG15). Saves and restores registers or saddr2 area during the preprocessing/
postprocessing of the module that declared a register.

When the -ZO option is specified, register variables are allocated in the order of declaration. When the -ZO
option is not specified (default), on the other hand, the allocation is performed based on the number of
references. Therefore, it is undefined to which register or saddr2 area the register variable is allocated. For
details of the allocation of register variables, refer to 11.7 Function Call Interface.

Register variables are allocated to different areas depending on the compilation condition as shown below (for
each option, refer to the CC78K4 C Compiler Operation User’s Manual (U15557E)).

1. Register variables are allocated to saddr2 area only when the -QR option is specified.

2 When the -QF option is specified and the -ZO option is not specified, register variables are also allocated
also to register UP.

3. When neither the -ZO option nor the -QF option is specified, all the register arguments and register
variables are allocated to registers and saddr2 area. When there is no argument or automatic variable
allocated to the stack area (that is, a stack frame is not generated), register variables are also allocated to
register UP (when the -ML option is specified and the -QR option is not specified, however, register
variables are allocated only if the total size allocated to the register is 6 bytes or less assuming the pointer
is 3 bytes).

User's Manual U15556EJ1VOUM 295

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

These are summarized in Table 11-7.

Table 11-7. Registers to Allocate Register Variables

Without -Z0O
Option Specification Registers to Allocate
Without -QR RP3, VP
With -QR RP3, VP, saddr2 area (_ @KREGO00 to _ @KREG15)
With -QF *1 RP3, VP, UP
Without -QF RP3, VP, UP
and a stack frame not generated *2
Above *1 or *2 and with -QR RP3, VP, UP, saddr2 area (_ @KREGO00 to _ @KREG15)
With -ZO
Option Specification Registers to Allocate
Without -QR RP3, VP
With -QR RP3, VP, saddr2 area (_ @KREGO00 to _ @KREG15)
With -QF *1 RP3, VP
Without -QF RP3, VP
and a stack frame not generated *2
Above *1 or *2 and with -QR RP3, VP, saddr2 area (_ @KREGO00 to _ @KREG15)
EFFECT

¢ |nstructions to the variables allocated to the register or saddr2 area are generally shorter in code length than
those to memory. This helps shorten object code and also improves program execution speed.

296 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

USAGE
Declare a variable with the register storage class specifier as follows.

Register type-name variable-name

EXAMPLE

void main (void)

register unsigned char c;

RESTRICTIONS

If register variables are not used so frequently, object code may increase (depending on the size and contents
of the source).

Register variable declarations may be used for char/int/short/long/float/double/long double and pointer
data types.

With the medium model, function pointers are allocated to saddr2 area for register variables. Function
pointers cannot be allocated to registers.

A char type register variable uses only half the space required for the register variable of any other type. A
long/float/double/long double type variable uses twice the space.

The function pointer type of the medium model and the pointer of the large model use one and a half the
amount of space.

All the types have byte boundaries.

If the register variables exceed the ‘usable number shown in Table 11-8, they are handled the same as
automatic variables without a register storage class specifier and allocated to ordinary memory space.

Up to 20 bytes or 22 bytes can be allocated as register variables (6 bytes when 16 bytes of saddr2 area and
4 bytes of registers or UP are used).

Table 11-8. Restrictions on Register Variables Usage

Data Type Usable Number (Per Function)
int/short 10 variables max.
Function pointer of medium model 5 variables max.
Pointer of large model 6 variables max.
long/float/double/long double 5 variables max.

User's Manual U15556EJ1VOUM 297

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables

register

EXAMPLE 1

1. Example of register variable allocation to register

(With the large model, and when the optimization option is the default)

(C source 1)

void main () {

register int 1,

j = 0;
j=1;
I +=3;

i

(Output object of compiler)

@@CODE CSEG

_main:
push
Push
subw
movw
addw
pop rp3
Pop uup

ret

uup ; Saves register contents at the beginning of the function.

rp3 i
rp3, rp3
up, #01H

;Assigns 0 to i
;Assigns 1toj

rp3, up ; Assigns i to the result of i + j

; Restores register contents at the end of the function.

7

298

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

EXAMPLE 2

2. Example of register variable allocation to register and saddr2 area
(With the large model, and when the optimization option -QR is specified)

(C source 2)

void main ()
register unsigned int a, b, ¢, d;
d =a - b;
d=Db - c;

(Output object of compiler)

EXTRN SADDR2 (_@KREGO00) ; Performs reference declaration of saddr2 area to be used.
PUBLIC main

@@CODE CSEG
_main;
push uup ; Saves register contents at the beginning of the function.
push rp3 ;
push vvVp ;
movw ax, _@KREGOO ; Saves contents of saddr2 are at the beginning of the function.
push ax
movw ax, rp3 ;
subw ax, up ; a—b
movw vp, ax ; Assigns theresultofa-btod
movw ax, up
subw ax, _@KREGOO ; b-c
movw vp, ax ; Assigns the result of b—cto d
pop ax
movw _@KREG0O0, ax ; Restores contents of saddr2 area at the end of the function.
pop vVp
pop rp3
pop uup ; Restores register contents at the end of the function.
ret

User's Manual U15556EJ1VOUM 299

CHAPTER 11 EXTENDED FUNCTIONS

Register Variables register

EXPLANATION
* To use register variables, you only need to declare them with the register storage class specifier.
¢ Label _@KREGOO, etc. includes the modules declared with PUBLIC in the library attached to this C compiler.

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the other C compiler supports register declarations.
* When changing to register variables, add the register declarations for the variables to the program.

From this C compiler to another C compiler
* Modification is not required if the other compiler supports register declarations.
* How many variable registers can be used and to which area they will be allocated depends on the
implementation of the other C compiler.

300 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(3) How to use the saddr area

Usage of saddr Area sreg/_ _sreg

(1) Usage with sreg declaration

FUNCTION

e The external variables and in-function static variables (sreg variables) declared with the keyword sreg or
_ _sreg are automatically allocated to saddr2 [XFD20H to XFDFFH] area with relocatability (X: O or F by
specifying location). When those variables exceed the area shown above, a compilation error occurs.

* The sreg variables are treated in the same manner as the ordinary variables in the C source.

e Each bit of sreg variables of char, short, int, and long type becomes a boolean type variable automatically.

* sreg variables declared without an initial value take 0 as the initial value.

* The area of sreg variables declared in the assembler source that can be referenced is the saddr2 area
[XFD20H to XFDFFH]. When the -QR option is specified, however, the compiler may use up to 32 MB of
saddr2 area, so care must be taken (refer to Table 11-3 Utilization of Memory Space).

EFFECT
¢ |nstructions to the saddr2 area are generally shorter in code length than those to memory. This helps shorten
object code and also improves program execution speed.

USAGE
¢ Declare variables with the keywords sreg and _ _sreg inside a module and a function that defines the
variables. Only a variable with a static storage class specifier can become a sreg variable inside a function.

sreg type-name variable-name / sreg static type-name variable-name
__sreg type-name variable-name / _ sreg static type-name variable-name

¢ Declare the following variables inside a module that refers to sreg external variables. They can be described
inside a function as well.

extern sreg type-name variable-name / extern _ sreg type-name variable-name

User's Manual U15556EJ1VOUM 301

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area sreg/_ _sreg

RESTRICTIONS
If const type is specified, or if sreg/_ _sreg is specified for a function, a warning message is output, and the
sreg declaration is ignored.
Arguments of functions and automatic variables cannot be specified to this area.
char type uses half the space of other types and long/float/double/long double types use twice the space.
Function pointers of the medium model and the large model use one and a half the amount of space as other
types.
All the types have byte boundaries.
When -ZA is specified, only _ _sreg is enabled and sreg is disabled.

The following shows the maximum number of sreg variables that can be used per load module.

Table 11-9. Restrictions on sreg Variable Usage

Data Type Usable Number of sreg Variables (Per Load Module)
int/short Max. 112 (96 when -QR is specified)°*®
Function pointer of medium model Max. 74 (64 when -QR is specified)°*
Pointer of large model Max. 74 (64 when -QR is specified)N°*®

Note When the -QR option is not specified, the reserved area for the argument of the norec function/automatic
variables and register variables (32 bytes of saddr2 area) can be used as sreg variable area. When bit and
boolean type variables are used, the usable number is decreased.

EXAMPLE
The following shows an example when the large model is used.

(C source)

extern sreg int hsmmO;
extern sreg int hsmml;

extern sreg int *hsptr;

void main () {

hsmmO0 -= hsmml;

302 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area

sreg/_ _sreg

(Assembler source)
The following example shows a definition code for an sreg variable that the user creates. If an extern declaration is
not made in the C source, the C compiler outputs the following codes. In this case, the ORG quasi directive will not

be output.
PUBLIC _hsmmO ; Declaration
PUBLIC hsmml ;
PUBLIC _hsptr H
@@DATS DSEG SADDR2 ; Allocation to segment
ORG OFFD20H ;
_hsmmO0: DS (2) i
_hsmml: DS (2) i
_hsptr: DS (3) i
(Output object of compiler)
EXTRN SADDR2 (_hsmm1)
EXTRN SADDR2 (_hsmmo0)
PUBLIC _main
@@CODE CSEG
_main:
subw _hsmm0, _hsmml
ret

COMPATIBILITY

From another C compiler to this C compiler
* Modification is not required if the other compiler does not use the keyword sreg/_ _sreg.

When changing to sreg variable, use the method above.

From this C compiler to another C compiler
e Modifications are made by #define.

For details, refer to 11.6 Modifications of C Source.

modification, sreg variables are handled as ordinary variables.

User's Manual U15556EJ1VOUM

By this

303

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area -RD

(2) Usage with saddr automatic allocation option of external variables/external static variables

FUNCTION
e External variables/external static variables (except const type) are automatically allocated to the saddr2 area
regardless of whether an sreg declaration is made or not.
* Depending on the value of n, the external variables and external static variables to allocate can be specified

as follows.
Table 11-10. Variables Allocated to saddr2 Area by -RD Option
Value of n Variables Allocated to saddr2 Area

If 1 Variables of char and unsigned char types

If 2 Variables if nis 1 and variables of short, unsigned short, int, unsigned int, enum,
small model pointer, and medium model data pointer type

If 4 Variables if n is 2 and variables of long, unsigned long, float, double, long double,
medium model pointer, and large model pointer type

If omitted All variables (including structures, unions, and arrays in this case only)

e Variables declared with the keyword sreg are allocated to the saddr2 area, regardless of the above
specification.

e The above rule also applies to variables referenced by an extern declaration, and processing is performed as
if these variables were allocated to the saddr2 area.

e The variables allocated to the saddr2 area by this option are treated in the same manner as the sreg
variable. The functions and restrictions of these variables are as described in (1).

METHOD OF SPECIFICATION
Specify the -RD [n] (n: 1, 2, or 4) option.

RESTRICTIONS
¢ With the -RD [n] option, modules specifying different n values cannot be linked to each other.

304 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area -RS

(3) Usage with saddr automatic allocation option of internal static variables

FUNCTION
* Automatically allocates internal static variables (except const type) to saddr2 area regardless of an sreg
declaration.
* Depending on the value of n, the internal static variables to allocate can be specified as follows.

Table 11-11. Variables Allocated to saddr2 Area by -RS Option

Value of n Variables Allocated to saddr2 Area
If 1 Variables of char and unsigned char types
If 2 Variables if n is 1 and variables of short, unsigned short, int, unsigned it, enum,

small model pointer, and medium model data pointer type

If 4 Variables if n is 2 and variables of long, unsigned long, float, double, long double,
medium model function pointer, and large model pointer type

If omitted All variables (including structures, unions, and arrays in this case only)

e Variables declared with the keyword sreg are allocated to the saddr2 area regardless of the above
specification.

e The variables allocated to the saddr2 area by this option are handled in the same manner as the sreg
variable. The functions and restrictions for these variables are as described in (1).

METHOD OF SPECIFICATION
Specify the -RS [n] (n: 1, 2, or 4) option.

Remark With the -RS [n] option, modules specifying different n values can also be linked to each other.

User's Manual U15556EJ1VOUM 305

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area _ _sreg1

(4) Usage with _ _sreg1 declaration

FUNCTION

* Variables declared with the keyword _ _sreg1 (called sreg1 variables) are automatically allocated to saddr1
[XFEOOH to XFE7FH] area (x: 0 or F by specifying location) with relocatability. When the sreg1 variable
exceeds the area shown above, a compilation error occurs.

* saddr1 area [XFEOOH to XFEFFH] can be used as sreg1 variables by changing the location of segments in
the assembler source or at the time of linking. However, care must be taken because the compiler uses the
area [XFE80H to XFEFFH] as a general-purpose register area.

* The sreg1 variables are handled in the same manner as ordinary variables in the C source.

* Each bit of sreg1 variables of char/short/int/long type automatically becomes a _ _boolean1 type variable.

* sregl variables declared without an initial value take 0 as the initial value.

EFFECT
¢ |nstructions to the saddr1 area are generally shorter in code length than those to memory. This helps shorten
object code and also improves program execution speed.

USAGE
¢ Declare a variable with the keyword _ _sreg1 inside the module in which the variable is to be defined.

__sregl type-name variable-name

¢ Declare the following variables inside the module in which the sreg1 variable is referenced.

extern _ _sregl type-name variable-name

306 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area _ _sreg1

RESTRICTIONS
* When _ _sregl type is specified for a const type or function, a warning message is output and the _ _sreg1
declaration is ignored.
* Arguments of functions and automatic variables cannot be specified to this area.
» char type uses half the space of other types, and long/float/double/long double types use twice the space.
* All the types have byte boundaries.
Medium model function pointers and large model pointers use one and a half the space of other types.

The following shows the maximum number of sreg variables that can be used per load module.

Table 11-12. Restrictions on sreg1 Variable Usage

Data Type Usable Number of sreg Variables (Per Load Module)
int/short Max. 64"
Medium model function pointer Max. 42"
Large model pointer Max. 42"

Note saddr1 area [XFEOOH to XFE7FH] is used. When _ _boolean1 type variables are used, the usable
number is decreased.

EXAMPLE
The following shows an example when the large model is used.

(C source)
extern _ sregl int s1;
extern _ _sregl int s2;
extern _ sregl int *spr;
void main()

sl -= s2;

User's Manual U15556EJ1VOUM 307

CHAPTER 11 EXTENDED FUNCTIONS

Usage of saddr Area _ _sreg1

(Assembler source)

The following example shows a definition code for a sreg1 variable that the user creates. If an extern declaration is
not made in the C source, the C compiler outputs the codes in the same way as those of assembler source. In this
case, the ORG quasi directive will not be output.

PUBLIC _sl ; Declaration
PUBLIC _s2 ;
PUBLIC _sptr i

@@DATS1 DSEG SADDR ; Allocation to segment
ORG OFFEO0OH ;

_sl: DS (2) i

82 DS (2) H

_sptr: DS (3) i

(Output object of compiler)

EXTRN _s2
EXTRN sl
PUBLIC main

@@CODE CSEG
_main:
subw sl, s2

ret

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the keyword _ _sreg1 is not used in the program.
* When changing to sreg1 variables, use the method above.

From this C compiler to another C compiler

* #define must be used. For details, see 11.6 Modifications of C Source. By this modification, sreg1
variables will be handled as ordinary variables.

308 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(4) How to use the sfr area

Usage of sfr Area sfr

FUNCTION

* The sfr area refers to a group of special function registers such as mode registers and control registers for the
various peripherals of the 78K/IV Series microcontrollers.

* By declaring use of sfr names, manipulations on the sfr area can be described at the C source level.

¢ sfr variables are external variables without initial values (undefined).

* A write check will be performed on read-only sfr variables.

¢ A read check will be performed on write-only sfr variables.

* Assignment of illegal data to an sfr variable will result in a compilation error.

* The sfr names that can be used are those allocated to an area consisting of addresses FFOOH to FFFFH with
the small model, or XFFOOH to XFFFFH with the medium large model. (x: 0 or F by specifying location)

EFFECT
* Manipulations on the sfr area can be described at the C source level.
* Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code
and also improves program execution speed.

USAGE
* Declare the use of an sfr name in the C source with the #pragma preprocessing directive, as follows. (The
keyword sfr can be described in uppercase or lowercase letters.).

#pragma sfr

* The #pragma sfr directive must be described at the beginning of the C source line. If #pragma PC
(processor type) is specified, however, describe #pragma sfr after that.
The following statement and directives may precede the #pragma sfr directive.
Comment statement
Preprocessing directives that do not define or refer to a variable or function
* In the C source program, describe an sfr name that the device has as is (without change). In this case, the
sfr need not be declared.

User's Manual U15556EJ1VOUM 309

CHAPTER 11 EXTENDED FUNCTIONS

Usage of sfr Area sfr

RESTRICTIONS
¢ All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

EXAMPLE
(C source)

#ifdef K4

#pragma sfr
#endif

void main ()

{

CMKOO = 1;
PMO = Ox11;
PO = 10;

(Output object of compiler)
The C compiler outputs no declaration-related code but outputs the following code inside the function.

@@CODE CSEG
_main:

setl CICO00.6

mov PMO, #011H ;17
sub PO, #O0AH ;10
ret

310 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Usage of sfr Area sfr

EXPLANATION
* In the above example, use of sfr variables is declared with the #pragma sfr directive. By this declaration,

"*®) can be used.

special function registers such as PO (port 0) and CICO00 (one of the interrupt control registers

Note Bit 6 of the CICOO0 register has the SFR bit name CMKO00. For sfr, refer to the user's manual of the
target device used.

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if those portions of the C source program do not depend on the device or
compiler.

From this C compiler to another C compiler
* Delete the #pragma sfr statement or sort by #ifdef and add the declaration of the variable that was formerly
an sfr variable. The following shows an example.

#ifdef K4 _

#pragma sfr

else

/* declaration of variables */
unsigned char PO;
#endif

void main(void) {

PO = 0;

¢ |n the case of a device that has the sfr or its alternative functions, a dedicated library must be created to
access that area.

User's Manual U15556EJ1VOUM 311

CHAPTER 11 EXTENDED FUNCTIONS

(5) noauto function

noauto Function

noauto

FUNCTION
e The noauto function sets restrictions for automatic variables not to output the codes of preprocessing/

postprocessing (generation of stack frame).
* All the arguments are allocated to registers. If there is an argument that cannot be allocated to registers, a

compilation error occurs.

(a) When -Z0O option is specified

Arguments are passed via registers.

The locations where arguments are passed to the function call side and the function definition side become
the locations where arguments are allocated.

The save and restore of the register to which arguments are allocated are performed before/after the
function call.

Automatic variables cannot be used.

Arguments are allocated in the same order as ordinary functions.

Table 11-13 shows the registers to which the arguments of the noauto function are passed/allocated.

Table 11-13. Registers Used for noauto Function Arguments (With -ZO)

Data Type First Argument Second Argument Third Argument or Later

char R6 R7 R8, R9, R10, R11

int, short RP3 VP up
(only when -MS -QF is
specified)

long/float/double/ VP (higher 16 bits)

long double RP3 (lower 16 bits)

Small model pointer VP UP (only when —QF is specified) RP3

Large model pointer VVP

312

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function

noauto

(b) When -Z0O option is not specified

* Arguments are passed on the function call side in the same manner as ordinary functions (refer to 11.7.2

Ordinary function call interface).
e The arguments passed via a register or stack are copied to the register shown in Table 11-14 on the
function definition side (copying register is necessary even when an argument is passed via a register
because the registers of the function call side and the function definition side are different).
¢ The save and restore of registers to which arguments are allocated are performed on the function definition

side.
Table 11-14. Registers Used for noauto Function Arguments (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later
char (with 4-byte argument) "*° R10 R11 R6, R7, R8, R9, R10,
char (without 4-byte argument) " R6 R7 R11, R8, R9
int, short, enum
(with 4-byte argument)"** upP RP3 VP
(without 4-byte argument)™* RP3 UP VP
long/float/double/long double VP (higher 16 bits)

RP3 (lower 16 bits)
Small model pointer UP VP RP3
Medium model data pointer
Large model pointer UUP VVP

Note 4-byte arguments are arguments of long, float, double, long double type

Remarks 1. The medium model function pointer cannot be used as an argument to be allocated to a register.

2. The order of the register allocation in this function is the same as the order when the -QF option

specified in ordinary functions.

User's Manual U15556EJ1VOUM

is

313

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function noauto

e Automatic variables can be used only when all the automatic variables can be allocated to the registers
remaining after the argument allocation and to the saddr2 area (_@KREGXX) for register variables.
However, automatic variables are allocated to the saddr2 area for register variables only when the -QR option
is specified during compilation. If the -QRO option is specified during compilation, a warning message is
output and automatic variables are not allocated to saddr2 area.

* Automatic variables are allocated in the same order as arguments are allocated. The automatic variables
allocated to saddr2 area (_ @KREGXX) are allocated in the order of declaration (if they are not allocated, a
compilation error occurs).

¢ The save and restore of _@KREGXX, the register to which automatic variables are allocated, are performed
on the function definition side.

EFFECT
* The object code can be shortened and execution speed can be improved.
USAGE

Declare a function with the noauto attribute in the function declaration, as follows.

noauto type-name function-name

RESTRICTIONS

When the -ZO option is specified, automatic variables cannot be used inside the noauto function, and neither
can the register variables.

When the -ZA option is specified, the noauto function is disabled.

The arguments and automatic variables of the noauto function (only when the -ZO option is specified) have
restrictions on their types and numbers. The following shows the types of arguments that can be used inside
a noauto function.

* Pointer

* char / signed char/ unsigned char

e int / signed int / unsigned int

e short / signed short / unsigned short
® enum

e long / signed long / unsigned long

e float / double / long double

314

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function

noauto

Table 11-15. Restrictions on noauto Function Arguments (With -ZO)

Data Type

Restriction

Type other than pointer

Max. 4 bytes (Max. 6 bytes)""

Small model pointer

Max. 4 bytes (Max. 6 bytes)""

Medium model data pointer

Max. 4 bytes

Large model pointer

Max. 1 variable

Note Up to 6 bytes can be used only when the -MS and -QF options are specified.

Table 11-16. Restrictions on noauto Function Arguments and Automatic Variables (Without -ZO)

Data Type

Restriction

Type other than pointer

Max. 6 bytes (Max. 22 bytes)"™"

Small model pointer
Medium model data pointer

Max. 6 bytes (Max. 22 bytes)"*"

Medium model function pointer

)Note 2

(Max. 5 variables

Large model pointer

Note 3

Max. 2 variables (Max. 7 variables)

Notes 1.

When the -QR option is specified, only automatic variables can be used up to 22 bytes.

2. When the -QR option is specified, only automatic variables can be used up to 5 variables.

medium model function pointer cannot be used as a register argument (not allocated to registers).

3. When the -QR option is specified, only automatic variables can be used up to 7 variables.

These restrictions are checked during compilation.

If arguments and automatic variables are declared with a register (only when the -ZO is not specified), the

register declaration is ignored.

User's Manual U15556EJ1VOUM

315

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function

noauto

EXAMPLE
(C source)

{

1 =

{

m =

noauto short nfunc

short 1, m;

nfunc

rturn (m) ;

void main (void)

static short sl1, s2, s3;

(s1, s2, s3);

noauto short nfunc (short a,

a + b + ¢c;

(short,

short, short);

short b, short c)

(Output object of compiler) With small model, when -ZO option is not specified

@@DATA
1

m

?L0003:
?L0004 :
?L0005:

DS
DS
DS

@@CODES CSEG

_main: s3

push
movw
push
movw
call
pop

movw

ret

DSEG
DS
DS
(2)
(2)
(2)

BASE

ax

ax, !?L0004
ax

ax, !?L0003
! nfunc
ax,de

! 1,bc

(2)

;82

;S1
; Calls nfunc (a, b, c)

; Assigns return value to external variable |

316

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

noauto Function

noauto

(Output object of compiler ... continued)

_nfunc:

push rp3,vp,up ; Saves register for arguments
movw rp3,ax ; Assigns first argument a to RP3
movw ax, [sp+9] ; Assigns second argument b to UP
movw up, ax ;
movw ax, [sp+11] ; Assigns third argument c to VP
movw vVp,ax i
movw ax, rp3 ;To a (RP3)
addw ax,up ; Adds b (UP)
addw ax,vp ;Adds c (VP)
movw I m,ax ; Assigns the result of operation to external variable m
movw bc, ax ; Returns external variable m
pop rp3,Vvp,up ; Restores register for arguments
g

EXPLANATION

* In the above example, the noauto attribute is added at the header part of the C source.
noauto is declared and stack frame formation is not performed.

COMPATIBILITY

From another C compiler to this C compiler

* Modification is not required if the keyword noauto is not used.

e When changing variables to noauto variables, modify the program according to the method above.

From this C compiler to another C compiler

¢ #define must be used. For details, see 11.6 Modifications of C Source.

User's Manual U15556EJ1VOUM

317

CHAPTER 11 EXTENDED FUNCTIONS

(6) norec function

norec Function norec

FUNCTION
A function that does not call another function by itself can be changed to a norec function.
With the norec function, code for preprocessing and postprocessing (stack frame formation) is not output.

(@

318

All the arguments of norec function are allocated to registers and saddr2 area (_ @ NRARGX) for arguments

of the norec function. When the -QR option is not specified during compilation (default), however, saddr2

area is not used.

If arguments cannot be allocated to registers and saddr2 area, a compilation error occurs.

When -ZO option is specified

Arguments are passed via a register and saddr2 area (_ @ NRARGX). When a register is used, arguments
are stored in the same manner as the noauto function (refer to Table 11-13).

If arguments cannot be passed via a register, a register is not used, but arguments are passed via saddr2
area (_@NRARGX) (a register and saddr2 area are not used simultaneously).

When saddr2 area is used, arguments are sequentially stored in ascending order from _@NRARGO
starting from the first argument.

The locations where arguments are passed on the function call side and the function definition side
become the locations where arguments are allocated.

The save and restore of the register to which arguments are allocated are performed before/after the
function call.

Automatic variables are allocated to saddr2 area (_ @NRATXX), and so are the register variables. They
are allocated in the sequence they have been declared in ascending order starting from _ @NRATO00. If
there are excess registers for arguments, automatic variables are allocated to registers first. However,
automatic variables are allocated to saddr2 area only when the -QR option is specified. If automatic
variables cannot be allocated to registers or saddr2 area, a compilation error occurs.

The save and restore of the register to which automatic variables are allocated are performed on the
function definition side.

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

(b) When -Z0O option is not specified

On the function call side, arguments are passed via a register and saddr2 area (_@NRARGX) for the
arguments of norec functions. On the function definition side, the arguments passed via a register are copied
to a register (because the registers of the function call side and the function definition side are different). If
arguments are passed via saddr2 area, the location where arguments are passed becomes the location
where arguments are allocated.

Arguments are allocated to registers first, and then the arguments that cannot be allocated to registers are
allocated to saddr2 area.

The save and restore of registers to store arguments are performed on the function definition side.

Automatic variables are allocated to registers or to saddr2 area (_ @ NRARGX) for the arguments of the norec
function if registers can be used. If the areas above cannot be used, automatic variables are allocated to
saddr2 area (_@NRATXX) for the automatic variables of the norec function in the sequence they have been

declared and in ascending order.

The following shows the registers to be used for passing the arguments of norec functions.

Table 11-17. Registers Used for norec Function Arguments: Passing Side (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later
char A C DE, RP2, saddr2 "
int, short, enum AX DE RP2, saddr2 "
long/float/double/ DE (higher 16 bits) saddr " saddr2
long double AX (lower 16 bits)
Small model pointer AX DE RP2, saddr2 "
Medium model data pointer
Large model pointer TDE saddr2 " saddr2 "

Note When the -QR option is specified, there arguments can be passed via _ @NRARGX (saddr2). Medium
model function pointers (3 bytes) cannot be used as the arguments to be allocated to registers.

User's Manual U15556EJ1VOUM

319

CHAPTER 11 EXTENDED FUNCTIONS

norec Function

norec

Table 11-18. Registers Used for norec Function Arguments: Receiving Side (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later
char (with 4-byte arguments)"*’ R10 R11 R6, R7, R8, R9, saddr2"°*
char (without 4-byte arguments)*®' | R6 R7 R10, R11, R8, R9, saddr2""**
int, short, enum
(without 4-byte arguments)"**’ upP RP3 VP, saddr2"*?

(with 4-byte arguments)"*’ RP3 upP VP, saddr2"*?
long/float/double/long double VP (higher16 bits) saddr2"*? saddr2"*?

RP3 (lower 16 bits)
Small model pointer upP VP RP3, saddr2""?
Medium model data pointer
Large model pointer VVP saddr2"*? saddr2"*?

Notes 1

4-byte arguments are arguments of long, float, double and long double type

2 When the -QR option is specified, these arguments can be passed via _ @NRARGX (saddr2). The

medium model’s function pointer (3 bytes) cannot be used as an argument assigned to the register.

Cautions 1.

EFFECT

The medium model function pointers cannot be used as arguments to be allocated to
registers.

The order of allocating registers of this function is the same as that of an ordinary function
with the -QF option specified.

* The object code can be shortened and program execution speed can be improved.

USAGE

Declare a function with the norec attribute in the function declaration as follows.

norec type-name function-name

e _ _ leaf can also be described instead of norec.

320

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

RESTRICTIONS
* No other function can be called from a norec function.
e There are restrictions on the type and number of arguments and automatic variables that can be used in a
norec function.
¢ When -ZA is specified, norec is disabled and only _ _leaf is enabled.
e The restrictions for arguments and automatic variables are checked during compilation, and an error occurs.
e |f arguments and automatic variables are declared with a register, the register declaration is ignored.
e The following shows the types of arguments and automatic variables that can be used in norec functions.

e Pointer

* char/signed char/unsigned char

e int/signed int/unsigned int

* short/signed short/unsigned short
* long/signed long/unsigned long

e float/double/long double

(a) Restrictions for arguments of function when -ZO option is specified
e The char type arguments do not perform int extension.

Table 11-19. Restrictions on norec Function Arguments (When -ZO Is Specified)

Data Type Restriction
char type Max. 8 variables
int, short, small model pointer type Max. 4 variables
Large model pointer, long, float, double, long double type Max. 2 variables

User's Manual U15556EJ1VOUM 321

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

(b) Restrictions for arguments of function when -ZO option is not specified

Table 11-20. Restrictions on norec Function Arguments (When -ZO Is Not Specified)

Data Type Restriction
Other than pointer Max. 14 bytes (Max. 6 bytes)"™
Small model pointer, medium model data pointer Max. 14 bytes (Max. 6 bytes)"™
Medium model function pointer Max. 2 variables (cannot be used)"™
Large model pointer Max. 3 variables (Max. 1 variable)""

Note The figures enclosed in parentheses indicate values when -QR is not specified.

(c) Restrictions for automatic variables when -ZO option is specified
* Up to 8 bytes of the automatic variables can be used in the norec function.
If there are excess registers used for arguments, they are added to the 8 bytes. Automatic variables are
allocated to saddr2 area in 1-byte alignment.
* In the case that the -QR option is not specified during compilation, if the total size of the arguments and
automatic variables exceeds 4 bytes (6 bytes when -MS -QF is specified), an error occurs.

322 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function

(d) Restrictions for automatic variables when -ZO option is not specified
The automatic variables that can be used are allocated to the registers remaining after allocation of
arguments, saddr2 area (_@NRARGX) for the arguments of norec functions, and saddr2 area (_ @ NRATXX)

for automatic variables of norec functions.

Table 11-21. Restrictions on norec Function Automatic Variables (When -ZO Is Not Specified)

Data Type

Restriction

Other than pointer

Max. 22 bytes (Max. 6 bytes)"™

Small model pointer, medium model data pointer

Max. 22 bytes (Max. 6 bytes)"™

Medium model function pointer

Note

Max. 4 variables (cannot be used)

Large model pointer

Note

Max. 6 variables (Max. 2 variable)

Note The figures enclosed in parentheses indicate values when -QR is not specified.

EXAMPLE
(C source)

norec int rout (int a, int b,

int i, 3;
void main () {

int k, 1, m;

i=1+ rout (k, 1, m)
}
norec int rout (int a, int b,
{

int x, y;

return (x + (a<<2));
}

int c¢);

+ ++k ;

int c¢)

User's Manual U15556EJ1VOUM

323

CHAPTER 11 EXTENDED FUNCTIONS

norec Function

norec

(Output object of compiler) (With large model, when —QR option is specified, and -ZO option is not specified)

EXTRN SADDR2

PUBLIC
PUBLIC
PUBLIC
PUBLIC

@@DATA DSEG

i:

J:

@@CODE

_main:

DS
DS

CSEG

push
subwg
movg
movyg
movw
movw
movw
movw
movw
call
movw
addw
movw
incw
movw
addw
movw
addwg
pop

ret

(_@NRARGO)
_rout

I

_]
_main

(2)

(2)

uup

sp, #06H
whl, sp
uup, whl
ax, [up+2]
rp2, ax
ax, [up]
de, ax

ax, [up+4]
$! rout
ax, [up+2]
bc, ax
ax, [up+4]

ax

[up+4], ax

bc, ax
1 i, be
sp, #06H

uup

; Refers to saddr2 area to be used.

; Stores argument | to register RP2.

; Stores argument m to register DE.

; Stores argument k to register AX.
; Calls norec function

; Adds return value of norec function to I.

;Increments k
;

; Assigns the result of addition to i.

324

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

norec Function norec

(Output object of compiler...continued)

_rout:
push uup Saves register for arguments.
push rp3 ;
push vVp ;
movw rp3, ax ; Assigns the first argument a to RP3.
movw vp, de ; Assigns the third argument c to VP.
movw up, rp2 ; Assigns the second argument b to UP.
movw ax, rp3 ; Receives the first argument a from register RP3.
shlw ax, 2 H
addw ax, _@NRARGO ; Automatic variable x assigned to saddr2
movw bc, ax ; Assigns return value to BC register

L0004 :
pop vVp ; Restores registers for arguments.
pop rp3
pop uup
ret
END

EXPLANATION

In the above example, the norec attribute is added in the definition of the rout function as well to indicate that the
function is norec.

COMPATIBILITY
From another C compiler to this C compiler
e Modification is not required if the keyword norec is not used.
* When changing variables to norec variables, modify the program according to the method above.

From this C compiler to another C compiler
¢ #define must be used. For details, see 11.6 Modifications of C Source.

User's Manual U15556EJ1VOUM 325

CHAPTER 11 EXTENDED FUNCTIONS

(7) bit type variables
bit Type Variables bit
boolean Type Variables boolean
_ _boolean
FUNCTION

* A bit or boolean type variable is handled as 1-bit data and allocated to saddr2 area.

¢ These variables can be handled the same as an external variable that has no initial value (or has an unknown
value).

* The C compiler outputs the following bit manipulation instructions for these variables.

MOV1, AND1, OR1l, XOR1l, SET1, CLR1l, NOT1l, BT, BF instructions

EFFECT

* Programming at the assembler source level can be performed in C, and the saddr and sfr areas can be
accessed in bit units.

USAGE

* Declare a bit or boolean type inside the module in which the bit or boolean type variable is to be used, as
follows.
e _ _boolean can also be described instead of bit.

Bit variable-name
Boolean variable-name
__boolean variable-name

* Declare a bit or boolean type inside the module in which the bit or boolean type variable is to be used, as
follows.

extern bit variable-name
extern boolean variable-name
extern _ _boolean variable-name

¢ char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and
8-bit sfr variables can be automatically used as bit type variables.

variable-name .n (where n = 0 to 31)

326

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
_ _boolean

RESTRICTIONS

An operation on two bit or boolean type variables is performed by using the carry flag.

For this reason, the contents of the carry flag between statements are not guaranteed.
Arrays cannot be defined or referenced.

A bit or boolean type variable cannot be used as a member of a structure or union.

This type of variable cannot be used as the argument type of a function.

The variable cannot be declared with an initial value.

If the variable is described along with a const declaration, the const declaration is ignored.

Only operations using 0 and 1 can be performed by the operators and constants shown in the following table.

*, & (pointer reference, address reference), and sizeof operations cannot be performed.
When the -ZA option is specified, only _ _boolean is enabled.

Table 11-22. Operators That Use Only Constants 0 or 1 (When Using bit Type Variable)

Classification Operator Classification Operator
Assignment =
Bitwise AND &, &= Bitwise OR I, =
Bitwise XOR A A=
Logical AND && Logical OR I
Equal == Not Equal I=

User's Manual U15556EJ1VOUM

327

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
_ _boolean

Table 11-23. Number of Usable bit Type Variables

Condition Restrictions (Per Load Module)

When -QR option is specified Max. 1536 variables can be used.
(saddr2 area [XFD20H to XFDDFH])

When -QR option is not specified Max. 1792 variables can be used.
(saddr2 area [XFD20H to XFDFFH])

The number of usable bit type variables is decreased if sreg variables are used or the -RD and -RS (automatic
saddr allocation option) options are specified.

EXAMPLE
(C source)

#define ON 1
#define OFF O

extern void testb (void) ;
extern void chgb (void) ;
extern bit datal;
extern _ boolean data2;
void main ()
datal = ON;
data2 = OFF;
while (datal) {
datal = data2;
testb () ;
}
if (datal && data2)
chgb () ;

328 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
_ _boolean

(Assembler source)
Indicates the case where the user creates a definition code of a bit type variable. The following example shows
the case of the large model (-ML) and the location OFH (-CS15). In this example, if the compiler output section
name @@ BITS is used, a link error occurs since the bit segment is changed to the AT attribute. Therefore,
other segment names should be used (if the attribute is saddr2, the @ @BITS segment name can be used).

PUBLIC _datal ; Declaration
PUBLIC _data2

BIT SEG BSEG AT OFFD20H ; Allocation to segment
_datal DBIT
_data2 DBIT

(Output object of compiler)
If an extern declaration is not added, the compiler outputs the codes shown below. The following shows the
case of the large model.

EXTRN _testb
EXTRN chgb
PUBLIC _datal
PUBLIC _data2
PUBLIC main

@@BITS BSEG SADDR2
_datal DBIT
_data2 DBIT

User's Manual U15556EJ1VOUM 329

CHAPTER 11 EXTENDED FUNCTIONS

bit Type Variables bit
boolean Type Variables boolean
_ _boolean

(Output object of compiler...continued)

@@CODE CSEG

_main:
setl _datal ; Initialize by 1
clrl _data2 ; Initialize by 0
L0003:
bf _datal, $L0004 ;Judgment
movl CY, _data2 ; Assignment
movl _datal, CY ; Assignment
call !l testb
br $L0003
L0004 :
bf _datal, $L0005 ;Logical AND expression
bf _data2, $L0005 ;Logical AND expression
call !l _chgb
L0005:
L0006:
ret
END

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the keyword bit, boolean, or _ _boolean is not used.
e When changing variables to bit or boolean type variables, modify the program according to the method
above.

From this C compiler to another C compiler

* #define must be used. For details, see 11.6 Modifications of C Source (As a result of this modification,
the bit or boolean type variables are handled as ordinary variables.).

330 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(8) _ _boolean1 type variables

_ _boolean1 type variables _ _boolean1i
FUNCTION
e _ _boolean1 type variables are handled as 1-bit data and allocated to saddr1 area.
e _ _boolean1 type variables are handled in the same manner as external variables without an initial value
(undefined).

¢ The compiler outputs the following bit manipulation instructions for these bit variables.

MOV1, AND1, OR1l, XOR1l, SET1, CLR1l, NOT1l, BT, BF instructions

EFFECT
* Programming at the assembler source level and bit access to saddr1 area are enabled by C description.

USAGE
e Declares _ _boolean1 type in the module that uses _ _boolean1 type variables.

| __booleanl variable-name

¢ Declares the extern _ _boolean1 in the module that refers to _ _boolean1 type variables.

| extern _ _booleanl variable-name

* The sreg1 variables (except the element of an array and member of a union) of char/int/short/long types are
automatically enabled to be used as _ _boolean1 type variables.

variables-name.n (nis 0 to 31)

User's Manual U15556EJ1VOUM 331

CHAPTER 11 EXTENDED FUNCTIONS

_ _boolean1 type variables

_ _booleani

RESTRICTIONS

e The operations between _ _boolean1 type variables can be performed using carry flags. Therefore, the
contents of the carry flag between statements are not guaranteed.

e _ _boolean1 type variables cannot define/reference or array.

e _ _boolean1 type variables cannot be used as a member of a structure or union.
* _ _boolean1 type variables cannot be used as an argument type of a function.

e _ _boolean1 type variables cannot be used as a return value of a function.

e _ _boolean1 type variables cannot declare with an initial value.

* |f described with the const declaration, the const declaration is ignored.

* Only operations using 0 and 1 can be performed by the operators and constants shown in the following table.

e * & (pointer reference, address reference), and sizeof operations cannot be performed.

Table 11-24. Operators That Use Only Constants 0 or 1 (When Using bit Type Variables)

Classification Operator Category Operator
Assignment =
AND in bit units &, &= OR in bit units I, |
XOR in bit units A
Logical AND && Logical OR I
Equal == Not equal I=

332

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

_ _boolean1 type variables _ _boolean1i

The following shows the number of usable _ _boolean1 type variables.

Table 11-25. Number of Usable _ _boolean1 Type Variables

Condition Restrictions (Per Load Module)

When using saddr1 area [XFEOOH to XFE7FH] Max. 1024 variables can be used.

When sreg1 variables are used, however, the number of usable _ _boolean1 type variables is decreased.

EXAMPLE

(C source)
#define ON 1
#define OFF 0

extern void testb (void) ;

extern void chgb (void) ;

extern _ _booleanl datal;

extern booleanl data2 ;

void main() {
datal = ON;
data2 = OFF
while (datal) {
datal = data2;
testb () ;

if (datal && data2)
chgb () ;

User's Manual U15556EJ1VOUM

333

CHAPTER 11 EXTENDED FUNCTIONS

_ _boolean1 type variables _ _boolean1i

(Assembler source)
Indicates the case where the user creates a definition code of a _ _boolean1 type variable. The following

example shows the case of the large model (-ML) and the location OFH (-CS15). In this example, if the compiler
output section name @ @ BITS1 is used, a link error occurs since the bit segment is changed to an AT attribute.
Therefore, other segment names should be used (if the attribute is saddr, the segment name @ @BITS1 can be

used).

PUBLIC _datal ; Declaration
PUBLIC _data2

BIT1 SEG BSEG AT OFFEOOH ; Allocation to segment
_datal DBIT
_data2 DBIT

(Output object of compiler)
The compiler outputs the following codes if an extern declaration is not added. The following shows the case of

the large model.

EXTRN _testb
EXTRN _chgb
PUBLIC datal
PUBLIC data2
PUBLIC main

@@BITS 1 BSEG SADDR
_datal DBIT
_data2 DBIT

334 User’'s Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

_ _boolean1 type variables _ _boolean1i

(Output object of compiler...continued)

@@CODE CSEG

~main :
setl _datal ; Initialize by 1
clrl _data2 ; Initialize by 0
L0003
bf _datal, $L0004 ;Judgment
movl CY, data2 ; Assignment
movl _datal, CY ; Assignment
call !l testb
br $L0003
L0004
bf _datal, $L0005 ;Logical AND expression
bf _data2, $L0005 ;Logical AND expression
call !l _chgb
L0005
L0006
ret
END

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the keyword _ _boolean1 is not used.
¢ When changing to _ _boolean1 type variables, modify the program according to the method above.

From this C compiler to another C compiler

* Changes are made by #define. For details, refer to 11.6 Modifications of C Source (by these changes,
_ _boolean1 type variables are handled as ordinary variables).

User's Manual U15556EJ1VOUM 335

CHAPTER 11 EXTENDED FUNCTIONS

(9) ASM statements

ASM Statements #asm, #endasm
_asm

FUNCTION
(a) #asm - #tendasm
¢ The assembler source program described by the user can be embedded in an assembler source file to be
output by this C compiler by using the preprocessing directives #asm and #endasm.
e #asm and #endasm lines will not be output.

(b) __asm
* An assembly instruction is output and inserted in an assembler source by describing an assembly code for
a character string literal.

EFFECT
¢ Global variables of the C source can be manipulated in the assembler source
* Functions that cannot be described in the C source can be implemented
e The assembler source output by the C compiler can be manually optimized and embeded it in the C source
(to obtain efficient objects)

USAGE
(a) #asm - #tendasm
¢ Indicate the start of the assembler source with the #asm directive and the end of the assembler source
with the #endasm directive. Describe the assembler source between #asm and #endasm.

#asm
/* assembler source */

#endasm

336 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

ASM Statements #asm, #endasm

_asm

(b) __asm

Use of _ _asm is declared by the #pragma asm specification made at the beginning of the module in
which the ASM statement is to be described (the uppercase letters and lowercase letters are distinguished
for the keywords following #pragma).

The following items can be described before #pragma asm.

e Comment

* Other #pragma directive

* Preprocessing directive not creating variable definition/reference or function definition/reference

The ASM statement is described in the following format in the C source.

__asm (string literal) ;

The description method of the character string literal conforms to ANSI, and a line can be continued by using

an escape character string (\n: line feed, \t: tab) or *, or character strings can be linked.

RESTRICTIONS
Nesting of #asm directives is not allowed.
If ASM statements are used, no object module file will be created. Instead, an assembler source file will be

created.
Only lowercase letters can be described for _ _asm. If _ _asm is described with uppercase and lowercase

characters mixed, it is regarded as a user function.

When the -ZA option is specified, only _ _asm is enabled.

#asm - #endasm and the _ _asm block can only be described inside a function of the C source. Therefore,
the assembler source is output to CSEG (with medium/large model) of the segment name @ @CODE or
@ @CODES CSEG BASE (with small model).

User's Manual U15556EJ1VOUM 337

CHAPTER 11 EXTENDED FUNCTIONS

ASM Statements #asm, #endasm
_asm

EXAMPLE

(a) #asm - #endasm
(C source)

void main () {
#asm
callt [60H]

#endasm

(Output object of compiler)
The assembler source written by the user is output to the assembler source file.

@@CODE CSEG

_main:
callt [60H]
ret
END
EXPLANATION

* In the above example, statements between #asm and #endasm will be output as an assembler source
program to the assembler source file.

338 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

ASM Statements #asm, #endasm
__asm
(b) __asm
(C source)

#pragma asm

int a, b;

void main() {

__asm(“\tmovw ax, ! a\t;ax <- a”);

_ _asm(“\tmovw ! b, ax\t;b <- ax”);

(Assembler source)

@@CODE CSEG

_main:
movw ax, ! _a ;jax <- a
movw ! b, ax ;b <- ax
ret
END

COMPATIBILITY

e With a C compiler that supports #asm, modify the program according to the format specified by the C
compiler.

* If the target device is different, modify the assembler source part of the program.

User's Manual U15556EJ1VOUM 339

CHAPTER 11 EXTENDED FUNCTIONS

(10) Interrupt functions

Interrupt Functions #pragma vect

#pragma interrupt

FUNCTION

The address of a described function name is registered to an interrupt vector table corresponding to a
specified interrupt request name.

An interrupt function outputs a code to save or restore the following data (except that used in the ASM
statement) to or from the stack at the beginning and end of the function (after the code if a register bank is
specified).

—_
—
~

Registers
saddr area for register variables
saddr2 area for arguments/auto variables of norec function (regardless of whether the arguments or

CRC)

variables are used)

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is

performed differently, as follows.

340

If no change is specified, codes that change the register bank or save/restore register contents, and that
save/restore the contents of the saddr2 area are not output regardless of whether the codes are used or not.
If a register bank is specified, a code to select the specified register bank is output at the beginning of the
interrupt function, therefore the contents of the registers are not saved or restored.

If “no change” is not specified and if a function is called in the interrupt function, however, the entire register
area is saved or restored, regardless of whether use of registers is specified or not.

If the -QR option is not specified during compilation, the saddr2 area for register variables and the saddr2
area for the arguments/auto variables of the norec function is not used; therefore, the saved/restored code is
not output.

If the size of the saved code is smaller than that of the restored code, the restored code is output.

Table 11-26 summarizes the above and shows the save/restore area.

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect
#pragma interrupt

Table 11-26. Save/Restore Area When Interrupt Function Is Used

Function Called Function Not Called
NO
BANK Without -QR With -QR Without -QR With -QR
Save/Restore Area Stack | RBn | Stack | RBn | Stack | RBn | Stack | RBn
Register used X X X X X O X O X
All registers X ©) X O X X X X X
saddr2 area for register variable used X X X O O X X O O
Entire saddr2 area for argument/auto X X X O O X X X X
variable of norec function
Stack: Use of stack is specified. O: Saved
RBn: Register bank is specified. x: Not saved

Caution If there is an ASM statement in an interrupt function, and if the area reserved for registers of the
compiler is used in that ASM statement, the area must be saved by the user.

EFFECT
* Interrupt functions can be described at the C source level.
* Because the register bank can be changed, codes that save the registers are not output; therefore, object
codes can be shortened and program execution speed can be improved.
* You do not have to be aware of the addresses of the vector table to recognize an interrupt request name.

User's Manual U15556EJ1VOUM 341

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions

#pragma vect
#pragma interrupt

USAGE
Specify an interrupt request name, a function name, stock switching registers, and whether the saddr2 area is

saved/restored, with the #pragma directive. Describe the #pragma directive at the beginning of the C source.
The #pragma directive is described at the start of the C source (for the interrupt request names, refer to the
user's manual of the target device used). For the software interrupt BRK, describe BRK_I.

To describe #pragma PC (processor type), describe this #pragma directive after that. The following items
can be described before this #pragma directive.

¢ Comment statements

* Preprocessing directive that neither defines nor references a variable or a function

#pragma A vect (or interrupt) A interrupt request name A function name A

[stack change specification] A stack use specification

no change specification
register bank specification

Interrupt request name:

Function name:

Stack change specification:

Stack use specification:
No change specification:

Register bank specification:

Al

Described in uppercase letters. Refer to the user's manual of the target
device used (example: NMI, INTPO, etc.).

For the software interrupt BRK, describe BRK_I.

Name of the function that describes interrupt processing

SP = array name [+ offset location] (example: SP = buff + 10)

Define the array by unsigned char (example: unsigned char buff [10];).
STACK (default)

NOBANK

RB0/RB1/RB2/RB3/RB4/RB5/RB6/RB7

Space

Caution The startup routine of this compiler is initialized to register bank 0. Therefore, specifying
register banks 1 to 7 is necessary.

342

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect

#pragma interrupt

RESTRICTIONS

An interrupt request name must be described in uppercase letters.

A duplication check on interrupt request names will be made within only one module.

If the same or another interrupt occurs because of the contents of the priority specification flag register and
interrupt mask flag register while a vectored interrupt is being processed, the contents of the registers may be
changed if a register bank is specified or no change is specified, resulting in an error. The compiler, however,
cannot check this error.

callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _rtos_interrupt/_ _pascal/_ _flash cannot be specified
as the interrupt function.

An interrupt function is specified with void type (example: void func (void);) because it cannot have an
argument or a return value.

Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas are
not output. If an area reserved for the compiler is used in the ASM statement in the interrupt function,
therefore, or if a function is called in the ASM statement, the user must save the registers and variable areas
on their own responsibility.

If a function specifying no change, register bank, or stack change as the saving destination via a #pragma
vect/#pragma interrupt specification is not defined in the same module, a warning message is output and
the stack change is ignored. In this case, the default stack is used.

When stack change is specified, the stack pointer is changed to the location where offset is added to the array
name symbol. The area of the array name is not secured by the #pragma directive. It needs to be defined
separately as a global unsigned char type array.

The code that changes the stack pointer is generated at the start of a function, and the code that sets the
stack pointer back is generated at the end of a function.

When the keywords sreg/_ _sreg are added to the array for stack change, it is regarded that two or more
variables with the different attributes and the same name are defined, and a compilation error occurs. It is
possible to allocate an array in saddr area using the -RD option, but code and speed efficiency will not be
improved because the array is used as a stack. It is recommended to use the saddr area for purposes other
than a stack.

A stack change cannot be specified simultaneously with “no change”. If specified so, an error occurs.

The stack change must be described before the stack use/register bank specification. If the stack change is
described after the stack use/register bank specification, an error occurs.

User's Manual U15556EJ1VOUM 343

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma vect
#pragma interrupt

EXAMPLE
(C source 1)

#pragma interrupt NMI inter rbl

void inter ()

{
/* interrupt handling to NMI pin input */

(Output object of compiler)

@@BASE CSEG BASE

_inter:
Register bank switching code
Save code of saddr area for use by C compiler
Interrupt handling to NMI input (function body)
Restore code of saddr area for use by C compiler
reti

@@VECTO02 CSEG AT 02H ; NMI

DW _inter

(C source 2)

(When stack change and register bank are specified)

#pragma interrupt INTPO inter sp=buff+l10 rb2

unsigned char buff[10];
void func() ;
void inter () ;

{

func() ;

344 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions

#pragma vect
#pragma interrupt

(Output object of compiler) With large model

@@BASE CSEG

_inter:
sel
push
movg
movg
push
call
pop
movg
pop

reti

@@VECTO06
DW

BASE

RB2

whl

whl, sp

sp,# buff+10
whl

!l _func

whl

sp,whl

whl

AT 0006H

_inter

; Changes register bank
; Changes stack pointer

7

; Sets back stack pointer

7

COMPATIBILITY

From another C compiler to this C compiler

¢ Modification is not required if interrupt functions are not used at all.

e When changing an ordinary function to an interrupt function, modify the program according to the method

above.

From this C compiler to another C compiler

* Aninterrupt function can be used as an ordinary function by deleting its specification with the #pragma

vect, #pragma interrupt directive.

e When an ordinary function is to be used as an interrupt function, change the program according to the

specifications of each compiler.

User's Manual U15556EJ1VOUM

345

CHAPTER 11 EXTENDED FUNCTIONS

(11) Interrupt function qualifier (_ _interrupt interrupt_brk)

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

FUNCTION

* A function declared with the _ _interrupt qualifier is regarded as a hardware interrupt function, and execution
is returned by the return RETI instruction for non-maskable/maskable interrupt functions.

e By declaring a function with the _ _interrupt_brk qualifier, the function is regarded as a software interrupt
function, and execution is returned by the return instruction RETB for software interrupt functions.

* A function declared with this qualifier is regarded as a (non-maskable/maskable/software) interrupt function,
and saves or restores the registers and variable areas (1) and (3) below, which are used as the work area of
the compiler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

(1) Registers
(2) saddr area for register variables
(3) saddr area for arguments/auto variables of norec function (regardless of usage)

Remark If the -QR option is not specified (default) during compilation, codes to save or restore areas (2) and (3)
are not output because these areas are not used.

EFFECT

¢ By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be
described in separate files.

346 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

USAGE
e Describe either _ _interrupt or _ _interrupt_brk as the qualifier of an interrupt function.

(For non-maskable/maskable interrupt function)
__interrupt void func() {processing}

(For software interrupt function)
__interrupt brk void func() {processing}

RESTRICTIONS
¢ callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _rtos_interrupt/_ _pascal/_ _flash cannot be specified

for the interrupt function.

CAUTIONS

¢ The vector address is not set by merely declaring this qualifier. The vector address must be separately set by
using the #pragma vect/interrupt directive or assembler description.

* The saddr area and registers are saved to the stack.

e Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the
change in the saving destination is ignored if there is no function definition in the same file, and the default
stack is assumed.

¢ To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the
function name specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this
qualifier is not described (for details of #pragma vect/interrupt, refer to 11.5 (10) Interrupt functions).

User's Manual U15556EJ1VOUM 347

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

EXAMPLE
Declare or define interrupt functions in the following format. The code to set the vector address is generated by
#pragma interrupt.

#pragma interrupt INTPO inter RB1

#pragma interrupt BRK I inter b RB2 /* Note */
__interrupt void inter(); /* prototype declaration */
__interrupt brk void inter b(); /* prototype declaration */
__interrupt void inter() {processing}; /* function body */
__interrupt brk void inter b() {processing}; /* function body */

Note The interrupt request name of the software interrupt is “BRK_I.”

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required unless interrupt functions are supported.
* Modify the interrupt functions, if necessary, according to the method above.

From this C compiler to another C compiler
¢ #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.
* To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of
each compiler.

348 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(12) Interrupt functions

Interrupt Functions #pragma DI

#pragma EI

FUNCTIONS

Codes DI and El are output to an object and an object file is created.

If the #pragma directive is missing, DI() and EI() are regarded as ordinary functions.

If “DI();” is described at the beginning in a function (except for the declaration of an automatic variable, a
comment, or a preprocessing directive), the DI code is output before the preprocessing of the function
(immediately after the label of the function name).

To output the code of DI after the preprocessing of the function, open a new block before describing “DI();”
(delimit this block with ‘().

If “EI();” is described at the end of a function (except for comments and preprocessing directives), the El
code is output after the postprocessing of the function (immediately before the code RET).

To output the El code before the postprocessing of a function, close a new block after describing “EI();”
(delimit this block with ‘}).

EFFECT

A function disabling interrupts can be created.

USAGE

Describe the #pragma DI and #pragma El directives at the beginning of the C source. However, the
following statement and directives may precede the #pragma DI and #pragma El directives.

e Comment statement

» Other #pragma directives

* Preprocessing directive that neither defines nor references a variable or function

Describe DI(); or EI(); in the source in the same manner as a function call.

DI and El can be described in either uppercase or lowercase letters after #pragma.

User's Manual U15556EJ1VOUM 349

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma DI
#pragma EI

RESTRICTIONS
* When using these interrupt functions, DI and El cannot be used as function names.
¢ DI and El must be described in uppercase letters. If described in lowercase letters, they will be handled as
ordinary functions.

EXAMPLE
(C source 1)

#pragma DI

#pragma EI

void main ()

{
DI ();
Function body
EI ();

(Output object of compiler)

_main:
di
Preprocessing
Function body
Postprocessing
ei

ret

350 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Functions #pragma DI
#pragma EI

<To output DI after preprocessing and El before postprocessing>

(C source 2)

#pragma DI
#pragma EI

void main ()

{

DI();
Function body
EI();

(Output object of compiler)

_main:
Preprocessing
di
Function body
el
Postprocessing

ret

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if interrupt functions are not used at all.
¢ When changing an ordinary function to an interrupt function, modify the program according to the method

above.

From this C compiler to another C compiler
Delete the #pragma DI and #pragma El directives or invalidate these directives by separating them with
#ifdef. DI and El can be used as ordinary function names (example: #ifdef__K4_ _ ... #endif).
When an ordinary function is to be used as an interrupt function, modify the program according to the

specifications of each compiler.

User's Manual U15556EJ1VOUM 351

CHAPTER 11 EXTENDED FUNCTIONS

(13) CPU control instruction

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

FUNCTION
* The following codes are output to an object to create an object file.

Instruction for HALT operation™*®"

(1)

(2) Instruction for STOP operation"**?
(8) BRK instruction
“4)

NOP instruction

Notes 1. The setting of STOP mode and selection of the internal system clock is possible using the STBC
register. The C compiler reads STBC, checks the CK1/CKO value of the internal system clock
selection, and accordingly outputs the instruction to set the value for HALT to STBC.

2. The C compiler reads STBC, checks the CK1/CKO value of the internal system clock selection, and
accordingly outputs the instruction to set the value for STOP to STBC.

EFFECT
e The standby function of a microcontroller can be used with a C program.
¢ A software interrupt can be generated.
e The clock can continue without the CPU operating.

USAGE

* Describe the #pragma HALT, #pragma STOP, #pragma NOP, and #pragma BRK instructions at the
beginning of the C source.

¢ The following items can be described before the #pragma directive.
e Comment statement
* Other #pragma directive
* Preprocessing directive that neither defines nor references a variable or function

¢ The keywords following #pragma can be described in either uppercase or lowercase letters.

352 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

* Describe as follows in uppercase letters in the C source in the same format as a function call.

1) HALT () ;
2) STOP () ;
3) BRK() ;
4) NOP () ;

_~ o~ o~ o~

RESTRICTIONS
e When this feature is used, HALT(), STOP(), BRK(), and NOP() cannot be used as function names.
e Describe HALT, STOP, BRK, and NOP in uppercase letters. If they are described in lowercase letters, they
are handled as ordinary functions.

EXAMPLE
(C source)

#pragma HALT
#pragma STOP
#pragma BRK
#pragma NOP

void main ()

{
HALT () ;
STOP () ;
BRK () ;
NOP () ;

User's Manual U15556EJ1VOUM 353

CHAPTER 11 EXTENDED FUNCTIONS

CPU Control Instructions

#pragma HALT/STOP/BRK/NOP

(Output object of compiler) With large model

@@CODE CSEG
_main
; line 7 HALT () ;
mov a, STBC
bt a,4,s$s+12
bt a.5,$s+24
mov STBC, #01H
br SS+21
bt a.5,$%+49
mov STBC, #011H
br $S+12
mov STBC, #031H
br $3+6
mov STBC, #021H
; line 8 STOP ()
mov a, STBC
bt a.4,$s+12
bt a.5,$s+24
mov STBC, #02H
br SS+21
bt a.5,$%+49
mov STBC, #012H
br $S+12
mov STBC, #032H
br $3+6
mov STBC, #022H
; line 9 BRK ()
brk
; line 10 NOP () ;
nop
ret

’

7

354

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the CPU control instructions are not used.
When the CPU control instructions are used, modify the program according to the method above.

From this C compiler to another C compiler
If “#pragma HALT", “#pragma STOP”, “#pragma BRK”, and “#pragma NOP” statements are deleted or

delimited with #ifdef, HALT, STOP, BRK, and NOP can be used as function names.
To use these instructions as CPU control instructions, modify the program according to the specifications

of each compiler.

User's Manual U15556EJ1VOUM

355

CHAPTER 11 EXTENDED FUNCTIONS

(14) calif functions

callf Functions callf/ _ _callf

FUNCTION

The callf instruction stores the body of a function in the callf area. This makes code shorter than ordinary call
instructions.

If a function stored in the callf area is to be referenced without a prototype declaration, the function must be
called by an ordinary call instruction.

The callee (the function to be called) is the same as an ordinary function.

EFFECT

The object code can be shortened.

USAGE

Add the callf attribute or _ _callf attribute to the beginning of a function at the time of the function declaration
as follows.

callf extern type-name function-name

__callf extern type-name function-name

RESTRICTIONS

356

Functions declared with callf will be located in the callf entry area. At which address in the area each
function is to be located will be determined at the time of linking object modules. For this reason, when using
any callf function in an assembler source module, the routine to be created must be made “relocatable” using
symbols.

A check on the number of callf functions is made at linking time.

callf entry area: 800H to FFFH

The number of functions that can be declared with the callf attribute is not limited.

The total number of functions with the callf attribute is not limited as long as the first function is within the
range of [800H to FFFH].

When the -ZA option is specified, only _ _callf is enabled.

User's Manual U15556EJ1VOUM

CHAPTER 11

EXTENDED FUNCTIONS

callf Functions

callf/ _ _callf

EXAMPLE
(C source 1)

(C source 2)

_ _callf extern int fsub();

void main ()

{

int ret_val;

ret val = fsub();

_ _callf int fsub()

int wval;

return val;

(Output object of compiler) With large model

<C source 1>
EXTRN _fsub ; Declaration
Callf ! fsub ; Call

<C source 2> (to be allocate to callf entry area)
PUBLIC _fsub ; Declaration

@@CALF CSEG
_fsub:

FIXED

Function body

; Function definition

COMPATIBILITY
From another C compiler to this C compiler

¢ Modification is not required if the keyword callf/_ _callf is not used.

* When changing functions to callf functions, modify the program according to the method above.

From this C compiler to another C compiler

¢ #define must be used to allow callf functions to be handled as ordinary functions.

User's Manual U15556EJ1VOUM

357

CHAPTER 11 EXTENDED FUNCTIONS

(15) 16 MB expansion space utilization

16 MB Expansion Space Utilization
16 MB expansion -ML

FUNCTION
* An object file that can linearly access a 16 MB expansion space is created.

EFFECT
e The 16 MB expansion space can be accessed in the same manner as 16-bit addressing (64 KB) mode.

USAGE
* Specify the -ML option (default) during compilation.

RESTRICTIONS

¢ When the -MS option is specified at the time of startup:
Small model: Combined code/data block capacity of 16 KB

¢ When the -MM option is specified at the time of startup:
Medium model: Capacity of up to 1 MB for the code block and 16 KB for the data block

¢ When the -ML option is specified at the time of startup:
Large model: Combined code/data block capacity of 16 MB, including up to 1 MB for the code block and 16
MB for the data block.

EXAMPLE
(C source)

sreg int *ladr;

int *grob;

void main () {

int atval;

*ladr

atval;

*grob = atval;

358 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

16 MB Expansion Space Utilization

16 MB expansion -ML

(Output object of compiler)

With small model

@@CODES CSEG BASE

_main
push rp3 ; Preprocessing of function
movw ax, rp3
movw [ladr],ax ; *ladr = atval
movw hl,! grob
movw ax,rp3
movw [hl],ax ;*grob = atval
pop rp3 ; Postprocessing of function
ret

With medium model

@@CODE CSEG

_main:
push rp3 ; Preprocessing of function
movw de, ladr
movw ax, rp3
movw [del, ax ; *ladr = atval
movw de,!! grob
movw ax,rp3
movw [de] ,ax ;*grob = atval
pop rp3 ; Postprocessing of function
ret

User's Manual U15556EJ1VOUM

359

CHAPTER 11 EXTENDED FUNCTIONS

16 MB Expansion Space Utilization 16 MB expansion -ML

(Output object of compiler)
With large model

@@CODE CSEG

~main :
push rp3 ; Preprocessing of function
movw ax, rp3
movw [$_ladr],ax ;*ladr=atval

movg whl,!! grob

movw [h1l],ax ; *grob = atval
pop rp3 ; Postprocessing of function
ret

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if it has been re-compiled with the -ML option added during compilation, when
the 16 MB expansion space is to be used.

From this C compiler to another C compiler
* The source program need not be modified if it is re-compiled with each compiler.

360 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(16) Allocation function

Allocation Function Allocation function -CS

FUNCTION
e With the medium model (when the -MM option is specified) or with the large model (when the -ML option is
specified), the allocation of the saddr area can be changed by using the -CS option.

EFFECT
¢ When the -CS15 option is specified, the code space can be continuously used.

USAGE
* The -CS option is specified during compilation.

The -CS option performs the following operation.

-CS0: Allocates saddr area to OFD20H to OFFFFH
-CS15/-CSOFH: Allocates saddr area to OFFD20H to OFFFFFH
-CSA: Does not check with compiler but with linker

RESTRICTIONS
* Use the startup routine included with to this compiler that specifies the location specified by the -CS option.
The LOCATION instruction is described in the startup routine (for details of the startup routine, refer to the
CC78K4 C Compiler Operation User’s Manual (U15557E)).

EXAMPLE
(C source)

void main () {

/* function body */

(Output object of compiler)
With large model (-ML) and location 0 (-CS0) specified

SCHGSFR (0)
$PROCESSOR (4026)
;Variable declaration etc.
@@CODE CSEG
_main:
; Function preprocessing
; Function body processing
; Function postprocessing

ret

User's Manual U15556EJ1VOUM 361

CHAPTER 11 EXTENDED FUNCTIONS

Allocation Function Allocation function -CS

With large model (-ML) and location 15 (-CS15) specified

$CHGSFR (15)
$PROCESSOR 4026)
; Variable declaration etc.
@@CODE CSEG
_main:
; Function preprocessing
; Function body processing
; Function postprocessing

ret

With large model (-ML) and without compile check (-CSA) specified

$CHGSFRA
$PROCESSOR (4026)
; Variable declaration etc.
@@CODE CSEG
_main:
; Function preprocessing
; Function body processing
; Function postprocessing

ret

COMPATIBILITY
From another C compiler to this C compiler
¢ When using the medium model or large model, modification is not required if the location position is
specified by the -CS option during compilation and the source program is re-compiled.

From this C compiler to another C compiler
¢ The source program need not be modified if it is re-compiled with each compiler.

362 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(17) Absolute address access function

Absolute Address Access Function #pragma access

FUNCTION
¢ A code to access the ordinary RAM space is output to the object with direct inline expansion, not by function
call, and an object file is created.
e |If the #pragma directive is not described, a function accessing an absolute address is regarded as an
ordinary function.

EFFECT
* A specific address in the ordinary memory space can be easily accessed using C description.

USAGE
* Describe the #pragma access directive at the beginning of the C source.
* Describe the directive in the source in the same format as a function call.
¢ The following items can be described before #pragma access.
Comment statement
Other #pragma directives
Preprocessing directive that neither defines nor references a variable or function
¢ The keywords following #pragma can be described in either uppercase or lowercase letters.

The following four function names are available for absolute address accessing.

peekb, peekw, pokeb, pokew

User's Manual U15556EJ1VOUM 363

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function

#pragma access

[List of functions for absolute address accessing]

(@

(b)

()

(d)

unsigned char peekb (addr) ;
unsigned int addr; (small model)
unsigned long addr; (medium model/large model)

Returns 1-byte contents of address addr.

unsigned int peekw (addr) ;
unsigned int addr; (small model)
unsigned long addr; (medium model/large model)

Returns 2-byte contents of address addr.

void pokeb (addr, data);
unsigned int addr; (small model)
unsigned long addr; (medium model/large model)

unsigned char data;

Writes 1-byte contents of data to the position indicated by address addr.
void pokew (addr, data);

unsigned int addr; (small model)

unsigned long addr; (medium model/large model)

unsigned int data;

Writes 2-byte contents of data to the position indicated by address addr.

RESTRICTIONS

364

A function name for absolute address accessing must not be used.

Describe functions for absolute address accessing in lowercase letters.

letters are handled as ordinary functions.

User's Manual U15556EJ1VOUM

Functions described in uppercase

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function #pragma access

EXAMPLE
(C source)

#pragma access

char a;

int b;

void main ()

{

= peekb (0x1234) ;
= peekb (0xfe23);
peekw (0x1256) ;
peekw (0xfe68) ;

o o 9 9
]

pokeb (0x1234, 5);
pokeb (0xfe23, 5);
pokew (0x1256, 100) ;
pokew (0xfe68, 100) ;

User's Manual U15556EJ1VOUM 365

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Access Function #pragma access

(Output object of compiler)
With large model

@@CODE CSEG

-main:
mov a, !01234H
mov 'l a,a
mov a, !0FE23H
mov 'l a,a
movw ax, !01256H
movw 'l b,ax
movw ax, OFE68H
movw 'l b,ax
mov a, #0S5H ;5
mov 101234H, a
mov IOFE23H, a
movw ax, #064H ;100
movw 101256H, ax
movw IOFE68H, ax
ret

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if a function for absolute address accessing is not used.
¢ Modify the program according to the method above if a function for absolute address accessing is used.

From this compiler to another C compiler
¢ Delete the “#pragma access” statement or delimit with #ifdef. The function name of absolute address
accessing can be used as a function name.
* When using a function for absolute address accessing, modify the program according to the specifications
of each compiler (#asm, #endasm, asm();,etc.)

366 User's Manual U15556EJ1VOUM

CHAPTER 11

EXTENDED FUNCTIONS

(18) Bit field declaration

Bit Field Declaration

Bit field declaration

(1) Extension of type specifier

FUNCTION

e The bit field of unsigned char type is not allocated straddling over a byte boundary.

¢ The bit field of unsigned int type is not allocated straddling over a word boundary, but can be allocated

straddling over a byte boundary.

¢ The bit fields of the same type are allocated in the same byte units (or word units). If the types are different,

the bit fields are allocated in different byte units (or word units).

EFFECT

* The memory can be saved, the object code can be shortened, and the execution speed can be improved.

USAGE

* As a bit field type specified, unsigned char type can be specified in addition to unsigned int type. Declare as

follows.

struct tag-name {

unsigned char field-name: bit-width;
unsigned char field-name: bit-width;

unsigned int field-name: bit-width;

}i

EXAMPLE

struct tagname {
unsigned char A:1;

unsigned char B:1;

unsigned int C:2;

unsigned int D:1;

User's Manual U15556EJ1VOUM

367

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required.
* Change the type specifier to use unsigned char as the type specifier.

From this C compiler to another C compiler
¢ Modification is not required if unsigned char is not used as a type specifier.
* Change unsigned char, if it is used as a type specifier, to unsigned int.

(2) Allocation direction of bit field

FUNCTION
* The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB side
when the -RB option is specified.
» If the -RB option is not specified, the bit field is allocated from the LSB side.

USAGE
* The -RB option is specified during compilation to allocate the bit field from the MSB side.
* Do not specify the option to allocate the bit field from the LSB side.

EXAMPLE 1
(Bit field declaration)

struct t {

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char

e O S = O =

0 Q00 0w

unsigned char

368 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

EXPLANATION
Because a through h are 8 bits or less, they are allocated in 1-byte units.
If the bit field is allocated to saddr2 or saddr1 area by the keywords sreg/_ _sreg/_ _sreg1, a bit manipulation
instruction is output, and codes can be reduced.

Figure 11-1. Bit Allocation by Bit Field Declaration (Example 1)

Bit allocation from MSB Bit allocation from LSB

with -RB option specified without -RB option specified
MSB LSB MSB LSB
lalbolclalelt[g[n] [nlgltflelalclblal

EXAMPLE 2
(Bit field declaration)

struct t {
char a;
unsigned char b:2;
unsigned char c:3;
unsigned char d:4;
Int e;
unsigned int f:

5

unsigned int g:6;

unsigned char h:2
2

unsigned int i:

}i

EXPLANATION
If the bit field is allocated to saddr2 or saddr1 area by the keywords sreg/_ _sreg/_ _sreg1, the code efficiency
can be improved.

User's Manual U15556EJ1VOUM 369

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

Figure 11-2. Bit Allocation by Bit Field Declaration (Example 2) (1/2)

Bit allocation from MSB Bit allocation from LSB
with -RB option specified without -RB option specified
MSB LSB MSB LSB
b c Vacant a Vacant c b a
EEEEEEEEEEEE NN LI PP
1 0 1 0

Member a of char type is allocated to the first byte unit. b and ¢ are allocated from the next byte unit. If the
vacancy has run short, the members are allocated to the next byte unit. Because the vacancy is 3 bits and d is 4
bits in this example, d is allocated to the next byte unit.

e d Vacant e Vacant d
L] LI
3 2 3 2

g Vacant e g f e
L] LI
5 4 5 4

The 78K/IV Series has 1-byte alignment; therefore, e (2 bytes) can straddle over a byte boundary.

h Vacant f g Vacant h Vacant g

HEEEN RN HEEEEEEEEEEE NN
7

7 6 6

Because g is an unsigned int type bit field, it can be allocated across byte boundary. h is an unsigned char

type bit field; it is therefore allocated to the next byte unit, instead to the same byte unit as g, which is an
unsigned int type bit field.

h Vacant Vacant Vacant Vacant i

HENEEEEN RN HEEEEEEEEEEEEE
8

9 8 9

i is an unsigned int type bit field and can be allocated to the next word unit.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the
structure.

370 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

When the -RA option or -RP option is specified, the bit field is made 2-byte alignment. The location of the bit
field above is as follows.

Figure 11-2. Bit Allocation by Bit Field Declaration (Example 2) (2/2)

Bit allocation from MSB Bit allocation from LSB
with -RB option specified without -RB option specified
MSB LSB MSB LSB
b c Vacant a Vacant c b a
EREENEEEEE NN HEEREEEEENEE NN
1 0 1 0
e d Vacant Vacant Vacant d
EREEEEEEEEE NN LI
3 2 3 2
e e e e
EREENEEEEEE NN LI
5 4 5 4
f g g Vacant Vacant g g f
EREEEEEEEEE R LI
7 6 7 6
Vacant h Vacant Vacant Vacant h
EEEEEEEEEEE R LI
9 8 9 8
i Vacant Vacant Vacant Vacant i
EEEEEEEEEEE NN LI
11 10 11 10

User's Manual U15556EJ1VOUM 371

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

EXAMPLE 3

(Bit field declaration)

struct

char

a
unsigned int b:6;
unsigned int c:7;
unsigned int d:4;
unsigned char e:3;
unsigned int £f:10;
unsigned int g:2;
unsigned int h:5;
unsigned int i:6;
bi
Figure 11-3. Bit Allocation by Bit Field Declaration (Example 3) (1/2)
Bit allocation from MSB Bit allocation from LSB
with —RB option specified without —RB option specified
MSB LSB MSB LSB
c Vacant a c b a
NN RN I I I O O
Vacant b c Vacant d Vacant c
I I I O I I I I A

Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.
Since d is also a bit field of type unsigned int, it is allocated from the next word unit.

e Vacant d Vacant Vacant e Vacant

Since e is a bit field of type unsigned char, it is allocated to the next byte unit.

372 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

Figure 11-3. Bit Allocation by Bit Field Declaration (Example 3) (2/2)

Bit allocation from MSB Bit allocation from LSB
with —RB option specified without —RB option specified
MSB LSB MSB LSB
f f | g | Vacant Vacant | g | f f
NN RN RN RN
h i i Vacant Vacant i i h
RN RN RN RN,

fand g, and h and i are each allocated to separate word units.

When the —RA option or —RP option is specified, the bit field is made 2-byte alignment. The location of the bit
field above is as follows.

structure.

Vacant a Vacant a
NN NN
Vacant [¢ Vacant Vacant c c b
NN NN NN
d Vacant Vacant Vacant d d
I I O A I I O A
Vacant e Vacant Vacant Vacant e
I I I RN
f f | g | Vacant Vacant | g | f f
NN NN [Pl
h i i Vacant Vacant i i h
I I I A RN

User's Manual U15556EJ1VOUM

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

373

CHAPTER 11 EXTENDED FUNCTIONS

Bit Field Declaration Bit field declaration

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required.

From this C compiler to another C compiler

* Modification is required if the -RB option is used and coding is performed taking the bit field allocation
sequence into consideration.

374 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(19) Changing compiler output section name

#pragma section... #pragma section

FUNCTION

* A compiler output section name is changed and a start address is specified. If the start address is omitted,
the default allocation is assumed. For the compiler output section name and default location, refer to
APPENDIX B LIST OF SEGMENT NAMES. In addition, the location of sections can be specified by omitting
the start address and using the link directive file at the time of link. For the link directives, refer to the
RA78K4 Assembler Package Operation User’s Manual.

* To change section names @ @CALT and @ @CALF with an AT start address specified, the callt and callf
functions must be described before or after the other functions in the source file.

* |f data is described after the #pragma directive is described, that data is located in the data change section.
Another change instruction is possible, and if data is described after the rechange instruction, that data is
located in the rechange section. If data defined before a change is redefined after the change, it is located in
the rechanged section. Note that this is valid in the same way for static variables (within the function).

EFFECT
* Changing the compiler output section repeatedly in one file enables location of each section independently, so
that data can be located independently in the desired data unit.

USAGE
* Specify the name of the section to be changed, a new section name, and the start address of the section, by
using the #pragma directive as indicated below.
Describe this #pragma directive at the beginning of the C source.
Describe this #pragma directive after #pragma PC (processor type).
The following items can be described before this #pragma directive.
e Comment statement
¢ Preprocessing directive that neither defines nor references a variable or a function

However, all the sections in BSEG and DSEG, and the @ @CNST, @ @CNSTS and @ @CNSTM sections in
CSEG can be described anywhere in the C source, and rechange instructions can be performed repeatedly. To

return to the original section name, describe the compiler output section name in the changed section name.

Declare as follows at the beginning of the file.

#pragma section compiler-output-section-name new section-name [AT start address]

* Of the keywords to be described after #pragma, be sure to describe the compiler output section name in
uppercase letters. section, AT can be described in either uppercase or lowercase letters, or in a combination
of these.

User's Manual U15556EJ1VOUM 375

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section

¢ The format in which the new section name is to be described conforms to the assembler specifications (up to
eight letters can be used for a segment name).

* Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be
described as the start address.

[Hexadecimal numbers of C language]

Oxn / Oxn...n
0Xn / O0xn...n
(n =20,1,2,3,4,5,6,7,8,9,7A,B,C,D,E,F)

[Hexadecimal numbers of assembler]

nH/n...nH
nh/n...nh
(n =0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

¢ The hexadecimal number must start with a numeral.

Example To express a numeric value with a value of 255 in hexadecimal numbers, specify zero before F.
It is therefore OFFH.

* When the -QR option is not specified, the start address specification is within the following range.
O0XFE2C to OXFE7F

¢ For sections other than the @ @CNST, @ @CNSTS and @ @CNSTM sections in CSEG, that is, sections
which locate functions, this #pragma directive cannot be described at other than the beginning of the C
source (after the C text is described). If described, it causes an error.

* If this #pragma directive is executed after the C text is described, an assembler source file is created without
an object module file being created.

* |If this #pragma directive is described after the C text is described, a file that contains this #pragma directive
and that does not have the C text (including external reference declarations for variables and functions)
cannot be included. This results in an error (refer to ERROR DESCRIPTION EXAMPLE 1).

* An #include statement cannot be described in a file that executes this #pragma directive following the C text
description. If described, it causes an error (refer to ERROR DESCRIPTION EXAMPLE 2).

» [f #include statement follows the C text, this #pragma directive cannot be described after this description. If
described, it causes an error. (Refer to ERROR DESCRIPTION EXAMPLE 3).

376 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section

EXAMPLE 1

Section name @ @CODE is changed to CC1 and address 2400H is specified as the start address.

(C source)

#pragma section @@CODE

void main ()

{
Function body

CCl AT 2400H

(Output object)

CC1 CSEG AT 2400H

_main:
Preprocessing
Function body
Postprocessing

ret

EXAMPLE 2

This example shows a description in which this #pragma directive is described following the C text. The

statement beginning with the double slashes (/) indicates the section to be located.

#pragma section @@DATA ??DATA
int ail;
_sreg int bl;
int ¢cl1 = 1;
const int dl = 1;
#pragma section @@DATS ?7?DATS
int a2;
_sreg int b2;
int c2 = 2;
const int d2 = 2;
#pragma section @@DATA ?7?DATA2
int a3;
_sreg int b3;
int ¢3 = 3;

const int d3 = 3;

/[??DATA

/I @ @DATS

/l @@INIT and @ @R_INIT
/Il @ @CNST

/[?7DATA

/[?7DATS

// @@INIT and @ @R_INIT

/l @ @CNST

// ?7?DATA is closed automatically and ??DATA2 becomes valid.
/ ?77DATA2

/[?7DATS

// @@INIT and @ @R_INIT

/I @ @CNST

User's Manual U15556EJ1VOUM 377

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section

#pragma

#pragma
#pragma

section @@DATA @@DATA

section @@INIT ??INIT
section @@R_INIT ??R_INIT

int a4;

_sreg int b4;

int c4 = 4;

const int d4 = 4;

#pragma
#pragma

#pragma

#pragma

section @@INIT @@INIT
section @@R_INIT @@R_INIT

section @@BITS ??BITS
_boolean e4;
section @@CNST ??CNST

char*const p = “Hello”;

/ ??7DATAZ2 is closed and processing returns to the default
/l @ @DATA.

//If both names @ @INIT and @ @R_INIT are not changed,
// ROMization becomes invalid.

/| @ @DATA

/ 7?DATS

/I 2?INIT and ??R_INIT

/l @ @CNST

/1 ?2?INIT and ??R_INIT are closed and return to the defaults

/I 7?BITS

// both p and “Hello” ??CNST

EXAMPLE 3

#pragma
#pragma
#pragma

#pragma
#pragma
#pragma

#pragma
#pragma
#pragma

#pragma
#pragma
#pragma

section @@INIT ??INIT1
section @@R_INIT ??R_INT1
section @@DATA ??DATAl
char c1;

int i2;

section @@INIT ??INIT2
section @@R_INIT ??R_INT2
section @@DATA ??DATA2
char c1;

int i2 = 1;

section @@DATA ??DATA3
section @@INIT ??INIT3
section @@R_INIT ??R_INT3
extern char cl;

int i2;

section @@DATA ??DATA4
section @@INIT ??INIT4
section @@R_INIT ??R_INT4

/I 77DATA3
/I ??INIT3 and ??R_INT3

378

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section

EXAMPLE 4
(Method to specify the location of a section by link directives)

1. Change the section name whose location is to be changed in the C source.
(In this example, @ @DATA is changed to DAT1, and @ @INIT is changed to DAT2)

(C source)

#pragma section @@DATA DAT1
#pragma section @@INIT DAT2

unsigned int dil,d2,d3;
unsigned long 11, 12;

unsigned int i =1;

(Output object of compiler)

@@R_INT CSEG ;
DW 01H ;1

DAT2 DSEG

DAT1 DSEG

_dl : Ds (2)
~d2 : DS (2)
~d3: DS (2)
11 : DS (4)
12 : Ds (4)

2. Create a link directive file.

(Link directive file 1k78k4.job)

memory EXTRAM1: (0F0000h , 01000h)
memory EXTRAM2: (0F1000h , 01000h)

merge DAT1 : = EXTRAM1
merge DAT2 : AT (0F1000h) = EXTRAM2

User's Manual U15556EJ1VOUM 379

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section

3. Link by specifying the link directive file using the linker option -D.

> 1k78k4 s4.rel sample.rel -BCl4.1lib -D1k78k4.job -S

The following example explains the restrictions on describing this #pragma directive following the C text.

ERROR DESCRIPTION EXAMPLE 1

al.h
#pragma section @@DATA ??DATA1l // File with a #pragma section only.

a2.h

extern int funcl (void) ;

#pragma section @@DATA ??DATA2 // File where there is C text and this #pragma directive follows

// after.

a3.h
#pragma section @@DATA ??DATA3 // File with a #pragma section only.

a4d.h
#pragma section @@DATA ??DATA3
extern int func2 (void) ; // File that includes C text.

#include “al.h”
#include “a2.h”
#include “a3.h” /l < Error.

/I There is C text in a2.h and after that this #pragma directive is

// included, so the file that includes this #pragma directive only, //

a3.h, cannot be included.
#include “a4.h”

380 User's Manual U15556EJ1VOUM

CHAPTER 11

EXTENDED FUNCTIONS

#pragma section...

#pragma section

ERROR DESCRIPTION EXAMPLE 2

bl.h

const int i;

b2.h
const int j;
#include “bl.h”

const int k;
#pragma section @@DATA ??DATAl
#include “b2.h”

/I There is C text and there is no file (b.c) where this #pragma
// directive is executed after it, so there is no error.

/I «Error.

/I There is C text, and in the file following it where this #pragma
/I directive is executed (b.c), a subsequent #include statement
// cannot be described.

ERROR DESCRIPTION EXAMPLE 3

cl.h
extern int j;

#pragma section @@DATA ??DATAl

c2.h
extern int k;

#pragma section @@DATA ??DATA2

c3.h
#include “cl.h”
extern int i;
#include “c2.h”
#pragma section @@DATA ??DATA3

/I This #pragma directive is included and processed before ¢3.h
processing, so there is
/I no error.

/I « Error.

/I There is C text in ¢3.h and after that there is an #include
/I statement, so this #pragma directive cannot be included after
// that.

/] < Error.
// There is C text, and after that there is an #include statement, so
// this #pragma directive cannot be included after that.

User's Manual U15556EJ1VOUM 381

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section

#include “c3.h”

#pragma section @@DATA??DATA4 /I « Error.
/I There is C text in c3.h and after that there is an #include
/I statement, so this #pragma directive cannot be included after
// that.

inti;

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the section name change function is not supported.
* When changing the section name, modify the program according to the method above.

From this C compiler to another C compiler
¢ Delete #pragma section ... or delimit it with #ifdef.
¢ When changing the section name, modify the program according to the specifications of each compiler.

RESTRICTIONS
* A section name that indicates a segment for the vector table (e.g., @ @ VECT02) must not be changed.
¢ If two or more sections with the same name as the one specifying the AT start address exist in another file, a
link error occurs.
* When changing compiler output section names @ @DATS, @ @BITS, and @ @INIS, limit the range of the
specified address within saddr2 area.
(saddr2 area)
0xFD20 to OxFDFF (With the small model, or when -CS0 of the medium model/large model is specified)
0xFFD20 to OxXFFDFF (When -CS15 of the medium model/large model is specified or default)
* When changing compiler output section names @ @DATS1, @ @BITS1, and @ @INIS1, limit the range of the
specified address within saddr1 area.
(saddr1 area)
0xFEOQO to OXFEFF (With the small model, or when -CS0 of the medium model/large model is specified)
O0xFFEOO to OXFFEFF (When -CS15 of the medium model/large model is specified or default)

Remark Of the areas shown above, OxXFE80 to OXxXFEFF (When -CS0 is specified: X = 0, when -CS15 is
specified: X = F) are areas for registers. Care must be taken when specifying these areas.

* When the -CSA option is specified, the following addresses cannot be specified for the start address

specification.
0xFDOO0 to OxFEFF, OxFFDOQO to OxFFEFF

382 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

CAUTION
* A section is equivalent to a segment of the assembler.
¢ The compiler does not check whether the new section name is duplicated with another symbol. Therefore,
the user must check that the section name is not duplicated by assembling the output assembile list.
* If a section name (*) related to ROMization is changed by using #pragma section, the startup routine must be
changed by the user on his/her own responsibility.

(*) ROMization-related section name

@@R_INIT, @@R_INIS, @@RSINIT, @@RSINIS
@@INIT, @@INIS, @@RSINS1l, @@R INS1, @@INIS1

The startup routine to be used when a section related to ROMization is changed, and an example of changing
the end module are described below.

User's Manual U15556EJ1VOUM 383

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

[Examples of Changing Startup Routine in Connection with Changing Section Name Related to ROMization]

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and end module (rom.asm) in
connection with changing a section name related to ROMization.

(C source)

#pragma section @@R_INIT RTT1
#pragma section @@INIT TT1

If a section name that stores an external variable with an initial value has been changed by describing #pragma
section indicated above, the user must add to the startup routine the initial processing of the external variable to
be stored in the new section.

Therefore, add the declaration of the first label of the new section and the portion that copies the initial value to
the startup routine, and add the portion that declares the end label to the end module, as described below.
RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the
names of the first and end labels of section TT1.

(Changing startup routine cstartx.asm)

(1) Add the declaration of the end label of the section whose name has been changed.

EXTRN _main, @STBEG, _hdwinit
EXTRN RTT1_E, TT1l_E <« Add EXTRN declaration of RTT1_E, TT1_E

384 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

(2) Add the portion that copies the initial value from the RTT1 section whose name has been changed to the TT1
section.
The initial value copying processing codes differ depending on the memory model. Initial value copying
processing can easily be added by copying the corresponding portion (initial value copying processing code)
from the startup routine referring to the memory model specified by $_IF, changing the symbols of the changed
section _@R_INIT, _?R_INIT, etc. to RTT1_S, RTT1_E, etc., and adding the changed branch symbol (to LTT1,
etc.).

MOV [DE+],A
BR $LDATS11
LDATS12

; RTT1-> part added with TT1 copying processing (start)

MOVG TDE, #TT1_S —

MOVG WHL, #RTT1_S Add portion that copies initial value
LTT1 from RTT1 section to TT1 section

SUBG WHL, #RTT1_E

BE SLTT2

ADDG WHL, #RTT1_E

MOV A, [HL+]

MOV [DE+] ,A

BR SLTT1 |
LTT2

; RTT1 -> part added with TT1 copying processing (end)

$ IF(SMALL)

CALL ! main ;main () ;
SELSE

CALL !l main ;main () ;
SENDIF

BR $s

User's Manual U15556EJ1VOUM 385

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

(3) Set the first label of the section whose name has been changed. For the attribute of segment, refer to
APPENDIX B LIST OF SEGMENT NAMES.

$_IF(SMALL)

@@RSINS1 CSEG BASE
$ELSE

@@R_INS1 CSEG

$SENDIF

_@R_INSI:

@@INIS1 DSEG SADDR
_@INISI:

@@DATS1 DSEG SADDR
_@DATS1:

RTT1 CSEG
RTT1_S: Add setting of label indicating beginning of section RTT1

TT1 DSEG
TT1_S: Add setting of label indicating beginning of section TT1

$_IF(SMALL) BASE
@@CALFS CSEG FIXEDA
@@CNSTS CSEG BASE
SENDIF

$_IF(MEDIUM)

@@CODE CSEG

END

386 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section...

#pragma section...

(Changing end module rom.asm)

(1) Declare the label indicating the end of the section whose name has been changed.

$ELSE

$ENDIF

NAME

@rom

PUBLIC ?R INIT, ?R INIS
PUBLIC ?INIT, ?DATA, ?INIS, ?DATS
PUBLIC ?R INS1, ?INIS1, ?DATS1

PUBLIC RTT1_E,

TT1 E <« AddRTT1_Eand TT1_E

SELSE
@@INIT

DSEG

_?INIT:

@@DATA

_?DATA:

$ENDIF
@@INIS

DSEG

_?INIS:

@@DATS

DSEG

__?DATS:
@eR_INS1

_?R_INSI:
@@INIS1 DSEG
_?INIS1:
@@DATS1 DSEG
_?DATS1:

SENDIF

I

DSEG

SADDR2

SADDR2

CSEG

SADDR

SADDR

User's Manual U15556EJ1VOUM

387

CHAPTER 11 EXTENDED FUNCTIONS

#pragma section... #pragma section...

(2) Set the label indicating the ends.

RTT1 CSEG Add setting of label indicating end of section RTT1
RTTL E:
TT1 DSEG Add setting of label indicating end of section TT1
TTL E:

END

388 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(20) Binary constant

Binary Constant Binary constant Obxxx

FUNCTION
* Describes binary constants at the location where integer constants can be described.

EFFECT
* Constants can be described in bit strings without being replaced with octal or hexadecimal numbers.
Readability is also improved.

USAGE
* Describe binary constants in the C source. The following shows the description method for binary constants.

0b binary number
0B binary number

Remark Binary number: Either ‘0’ or ‘1’

¢ A binary constant has Ob or OB at the start and is followed by the list of numbers 0 or 1.
¢ The value of a binary constant is calculated with 2 as the base.
* The type of a binary constant is the first one that can express the value in the following list.
Non-subscripted binary number: int,
unsigned int,
long int
unsigned long int
Subscripted u or U: unsigned int,
unsigned long int
Subscripted | or L: long int
unsigned long int
Subscripted u or U and subscripted | or L: unsigned long int

User's Manual U15556EJ1VOUM 389

CHAPTER 11 EXTENDED FUNCTIONS

Binary Constant Binary constant Obxxx
EXAMPLE
(C source)
unsigned i;

i = 0b11100101;
Output object of compiler is the same as the following case.
Unsigned i;

i = OxE5;

COMPATIBILITY
From another C compiler to this C compiler
* Modifications are not needed.

From this C compiler to another C compiler
¢ Modification is required to meet the specifications of the compiler if the compiler supports binary constants.
* Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the compiler
does not support binary constants.

390 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(21) Module name changing function

Module Name Changing Function #pragma name
FUNCTION
¢ Outputs the first eight letters of the specified module name to the symbol information table in an object module
file.

¢ Outputs the first eight letters of the specified module name to the assemble list file as symbol information
(MOD_NAM) when —=G2 is specified and as the NAME quasi directive when -NG is specified.

¢ If a module name with nine or more letters is specified, a warning message is output.

e |f unauthorized letters are described, an error occurs and the processing is aborted.

* If more than one of this #pragma directive exists, a warning message is output, and whichever is described
later is enabled.

EFFECT

e The module name of an object can be changed to any name.

USAGE
¢ The following shows the description method.

#pragma name module name

A module name must consist of the characters that the OS authorizes as a file name except ‘(‘ ‘). Upper case
and lowercase letters are distinguished.

EXAMPLE

#pragma name modulel

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the compiler does not support the module name changing function.
* When changing a module name, modify the program according to the method above.

From this C compiler to another C compiler
e Delete #pragma name ... or delimit it with #ifdef.
* When changing a module name, modify the program according to the specification of each compiler.

User's Manual U15556EJ1VOUM 391

CHAPTER 11 EXTENDED FUNCTIONS

(22) Rotate function

Rotate Function #pragma rot

FUNCTION
¢ Qutputs the code that rotates the value of an expression to the object with direct inline expansion instead of
function call and generates an object file.
* If there is not a #pragma directive, the rotate function is regarded as an ordinary function.

EFFECT
* The rotate function can be realized using C source or ASM description without describing the processing to
perform rotate.

USAGE
¢ Describe in the source in the same format as a function call. There are the following four function names.

rorb, rolb, rorw, rolw

[List of functions for rotate]

(a) unsigned char rorb (x, vy) ;
unsigned char x ;
unsigned char y ;
Rotates x to the right y times.

(b) unsigned char rolb (x, vy) ;
unsigned char x ;
unsigned char y ;
Rotates x to the left y times.

(¢) unsigned int rorw (x, y) ;
unsigned int x ;
unsigned char y ;
Rotates x to the right y times.

(d) unsigned int rolw (x, y)
unsigned int x ;

unsigned char y ;

Rotates x to the left y times.

392 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Rotate Function

#pragma rot

¢ Declare the use of the function for rotate by the #pragma rot directive of the module.
However, the following items can be described before #pragma rot.

e Comments
e Other #pragma directives

* Preprocessing directives that neither define nor reference variables or functions.
* Keywords following #pragma can be described in either uppercase or lowercase letters.

EXAMPLE
(C source)

#pragma rot

unsigned char a = 0x11;
unsigned char b = 2;
unsigned char c;

void main () {

¢ = rorb(a, b);

(Output assembler source) with large model

_main:
mov c,!!' b
mov a,!! a
ror a,l
dbnz c,$8-2
mov 'l ¢,a
ret

User's Manual U15556EJ1VOUM

393

CHAPTER 11 EXTENDED FUNCTIONS

Rotate Function #pragma rot

RESTRICTIONS
* The function names for rotate cannot be used as the function names.
¢ The function names for rotate must be described in lowercase letters. If the functions for rotate are described
in uppercase letters, they are handled as ordinary functions.

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the compiler does not use the functions for rotate.
¢ When changing to functions for rotate, modify the program according to the method above.

From this C compiler to another C compiler
e Delete the #pragma rot statement or delimit it with #ifdef.
¢ When using as a function for rotate, modification is required according to the specification of each compiler
(#asm, #endasm or asm() ; , etc.).

394 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(23) Multiplication function

Multiplication Function #pragma mul

FUNCTION
¢ Qutputs the code that multiplies the value of an expression to an object with direct inline expansion instead of
function call and generates an object file.
* If there is not a #pragma directive, the multiplication function is regarded as an ordinary function.

EFFECT
* Codes utilizing the data size of the multiplication instruction I/O are generated. Therefore, codes with faster
execution speed and smaller size than the description of ordinary multiplication expressions can be
generated.

USAGE
* Describe in the same format as that of a function call in the source. There are the following three functions for
multiplication.

mulu, muluw, mulw

[List of multiplication functions]
(a) unsigned int mulu (x, vy);
unsigned char x;

unsigned char y;

Performs unsigned multiplication of x and y.
(b) unsigned long muluw (x, Vy);

unsigned int x;

unsigned int vy;

Performs unsigned multiplication of x and y.
(¢) long mulw (x, vy);

int x;

int y;

Performs signed multiplication of x and y.

User's Manual U15556EJ1VOUM 395

CHAPTER 11 EXTENDED FUNCTIONS

Multiplication Function #pragma mul

¢ Declare the use of functions for multiplication with the #pragma mul directive of the module.
However, the following items can be described before #pragma mul.
e Comments
* Other #pragma directives
* Preprocessing directives that neither define nor reference variables or functions.
* Keywords following #pragma can be described in either uppercase or lowercase letters.

RESTRICTIONS
¢ Multiplication functions are handled as ordinary function if the target device does not have multiplication
instructions.
¢ The function names for multiplication cannot be used as the function names (when #pragma mul is declared).
¢ The functions for multiplication must be described in lowercase letters. If they are described in uppercase
letters, they are handled as ordinary function.

EXAMPLE
(C source)

#pragma mul

unsigned char a = 0x11;
unsigned char b = 2;
unsigned int I;

void main ()

{

i = mulu(a, b);

(Output object of compiler)

_main:
mov a,!! b
mov b, !! .
mulu b
movw !l i,ax
ret

396 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Multiplication Function #pragma mul

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the compiler does not use the functions for multiplication.
* When changing to functions for multiplication, modify the program according to the method above.

From this C compiler to another C compiler
Delete the #pragma mul statement or delimit it with #ifdef. Function names for multiplication can be used

as the function names.
When using as functions for multiplication, modification is required according to the specification of each

compiler (#asm, #endasm or asm() ;, etc.).

User's Manual U15556EJ1VOUM 397

CHAPTER 11 EXTENDED FUNCTIONS

(24) Division function

Division Function #pragma div

FUNCTION
¢ Qutputs the code that divides the value of an expression to an object with direct inline expansion instead of
function call and generates an object code file.
* If there is not a #pragma directive, the function for division is regarded as an ordinary function.

EFFECT
e Codes utilizing the data size of the division instruction I/O are generated. Therefore, codes with faster
execution speed and smaller size than the description of ordinary division expressions can be generated.

USAGE
¢ Describe in the same format as that of a function call in the source. There are the following two functions for
division.

divuw, moduw

[List of division functions]

(@) unsigned int divuw(x, v);
unsigned int x;

unsigned char vy;

Performs unsigned division of x and y and returns the quotient.

(b) unsigned char moduw(x, V) ;
unsigned int x;

unsigned char y;

Performs unsigned division of x and y and returns the remainder.

* Declare the use of the functions for division with the #pragma div directive of the module.
However, the following items can be described before #pragma div.
e Comments
* Other #pragma directives
* Preprocessing directives that neither define nor reference variables or functions.
¢ Keywords following #pragma can be described in either uppercase or lowercase letters.

398 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Division Function #pragma div

RESTRICTIONS
e The division function is handled as an ordinary function if the target device does not have division instructions.
¢ The function names for division cannot be used as the function names.
e The function names for division must be described in lowercase letters. If they are described in uppercase
letters, they are handled as ordinary functions.

EXAMPLE
(C source)

#pragma div
unsigned int a = 0x1234;
unsigned char b = 0x12;
unsigned char c;
unsigned int I;
void main ()
i = divuw(a, b);
¢ = moduw(a, b);

}

(Output object of compiler) With large model

_main:

mov b,!' b
movw ax,!! a
divuw b

movw ' di,ax
mov b,!' b
movw ax,!! a
divuw b

mov 'l ¢,b

ret

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the compiler does not use the functions for division.
* When changing to functions for division, modify the program according to the method above.

From this C compiler to another C compiler
¢ Delete the #pragma div statement or delimit it with #ifdef. The function names for division can be used
as the function names.
¢ When using as a function for division, modification is required according to the specification of each
compiler (#asm, #endasm or asm() ; , etc.).

User's Manual U15556EJ1VOUM 399

CHAPTER 11 EXTENDED FUNCTIONS

(25) Data insertion function

Data Insertion Function #pragma opc

FUNCTION
* Inserts constant data into the current address.
¢ When there is not a #pragma directive, the function for data insertion is regarded as an ordinary function.

EFFECT
* Specific data and instructions can be embedded in the code area without using the ASM statement.
When ASM is used, an object cannot be obtained without going through the assembler. On the other hand, if
the data insertion function is used, an object can be obtained without going through the assembler.

USAGE
¢ Describe using uppercase letters in the source in the same format as that of a function call.
* The function name for data insertion is _ _OPC.

[List of data insertion functions]

(@) void _ _OPC (unsigned char x,...);
Insert the value of the constant described in the argument to the current address.
Arguments can describe only constants.

* Declare the use of functions for data insertion with the #pragma opc directive.
However, the following items can be described before #pragma opc.
e Comments
* Other #pragma directives
* Preprocessing directives that neither define nor reference variables or functions.
¢ Keywords following #pragma can be described in either uppercase or lowercase letters.

400 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Data Insertion Function #pragma opc

RESTRICTIONS
e The function names for data insertion cannot be used as the function names (when #opc is specified).
e _ _OPC must be described in uppercase letters. If it is described in lowercase letters, it is handled as an
ordinary function.

EXAMPLE

(C source)

#pragma opc

void main () {
__OPC(0xBF) ;
__OPC(0xAl, 0x12);
__OPC(0x10, 0x34, 0x12);

(Output object of compiler)

_main:
; line 4 : __OPC (OxBF);
DB OBFH
; line 5 : OPC (0xAl, 0x12);
DB OAlH
DB 012H
; line 6 : __OPC (0xl1l0, 0x34, 0x12);
DB 010H
DB 034H
DB 012H
ret

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the compiler does not use the functions for data insertion.
¢ When changing to functions for data insertion, modify the program according to the method above.

From this C compiler to another C compiler
¢ Delete the #pragma opc statement or delimit it with #ifdef.
¢ Function names for data insertion can be used as function names. When using as a function for data
insertion, modification is required according to the specification of each compiler (#asm, #endasm or
asm() ;, etc.).

User's Manual U15556EJ1VOUM 401

CHAPTER 11 EXTENDED FUNCTIONS

(26) Interrupt handler for real-time OS (RTOS)

Interrupt Handler for RTOS #pragma rtos_interrupt ...

FUNCTION

* Interprets the function name specified by the #pragma rtos_interrupt directive as the interrupt handler for the
78K/IV Series RTOS (real-time OS) RX78K/IV.

* Registers the address of the described function name to the interrupt vector table for the specified interrupt
request name.

* When a stack change is specified, the stack pointer is changed to the location where the offset is added to the
array name symbol. The area of the array name is not secured by the #pragma directive. It needs to be
defined separately as a global unsigned char type array.

The two system call calling functions ret_int/ret_wup can be called in the interrupt handler for RTOS (for the
details of the system call calling function, refer to the List of RTOS System Call Calling Functions described
later).

If the prototype declaration or the entity definition of ret_int/ret_wup and ret_int/ret_wup are called outside
the interrupt handler for RTOS, an error occurs.

The two RTOS system call calling functions ret_int/ret_wup are called by an unconditional branch instruction.
If there is neither ret_int nor ret_wup in the interrupt handler for RTOS, an error occurs.

If the interrupt request name and thereafter is omitted, only the two functions ret_int/ret_wup are enabled.
The interrupt handler for RTOS generates codes in the following order.

(1
@
@3
4
(5
(
(
(

Saves all the registers

Changes the stack pointer (only when stack change is specified)
Secures the local variable area (only when there is a local variable)
The function body

Releases the local variable area (only when there is a local variable)
6
7
8

Sets back the stack pointer (only when stack change is specified)
Restores all the registers
reti

= = = = DO =~

For ret_int/ret_wup described in the middle of the function, the codes in (5) and (6) are generated immediately
before the unconditional branch instruction each time.
If a function ends with ret_int/ret_wup, the codes in (7) and (8) are not generated.

402 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler for RTOS #pragma rtos_interrupt ...

EFFECT
e The interrupt handler for RTOS can be described at the C source level.
¢ Because the interrupt request name is identified, the address of the vector table does not need to be
identified.

USAGE
¢ The interrupt request name, function name, and stack change is specified by the #pragma directive.
e This #pragma directive is described at the start of the C source.
When #pragma PC (type) is described, the main #pragma directive is described after #pragma PC.
The following items can be described before #pragma directive.
e Comments
* Preprocessing directives that neither define nor reference variables or functions.

#pragmaArtos_interrupt [A Interrupt request name A function name A [stack change specification]]

Remark Stack change specification: SP = array name [+ offset location]

e Of the keywords to be described following #pragma, the interrupt request name must be described in
uppercase letters. The other keywords can be described either in uppercase or lowercase letters.

[List of RTOS system call calling functions]

(1) void ret _int ();
Calls RTOS system call ret_int.

(2) void ret wup (x);

char *x;

Calls RTOS system call ret_wup with x as an argument.

User's Manual U15556EJ1VOUM 403

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler for RTOS #pragma rtos_interrupt ...

RESTRICTIONS

Interrupt request names are described in uppercase letters.

Software interrupts and non-maskable interrupts cannot be specified for the interrupt request names. If
specified so, an error occurs.

A duplication check on interrupt request names will be made within only one module.

If an interrupt (the same or another interrupt) is generated in duplicate during vector interrupt processing due
to the contents of the priority specification flag register, interrupt mask flag register, etc., if the stack change is
specified, the contents of the stack are updated, which may cause problems. However, this cannot checked
by the compiler, so care must be taken.

callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _interrupt/_ _interrupt_brk/_ _pascal/_ _flash cannot be
specified for the interrupt handler for RTOS.

The RTOS system call calling function names ret_int/ret_wup cannot be used for the function names.

If the functions that specified the stack change via the #pragma rtos_interrupt specification are not defined
in the same module, a warning is output and the stack change specification is ignored.

The interrupt handler for RTOS is not supported when the static model is specified.

EXAMPLE

(a) When stack change is not specified

(C source)

#pragma rtos_interrupt INTPO intp

int I;

void intp () {
int aj;
a = 1;
if (1 == 1) {

ret int () ;

404

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(Output object of compiler)
When -ML, -QV is specified (default)

@@BASE CSEG BASE
_intp:
push whl ; Saves register
push tde
push uup
push vvVp
push ax,bc,rp2,rp3

movw rp3, #01H ; Allocates RP3 to variable a "
movw ax,!! i
cmpw ax, rp3
bne SLO003
br !l ret int
L0003;
pop ax,bc,rp2,rp3 ;Restores register
pop vvp
pop uup
pop tde
pop whl
reti
@@VECTO06 CSEG AT 0006H
_@vect06:
DW _intp

Note When the -QV option is not specified, the securing/releasing codes of the local variables are output after
saving the register/before restoring the register, respectively.

User's Manual U15556EJ1VOUM 405

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(b) When the stack change is specified

(C source)

#pragma rtos_interrupt INTPO intp sp=buff+10
int I;
unsigned char buff [10];
extern unsigned short TaskID1;
void intp ()

int a;

a = 1;

if (i == 1) {

ret wup (&TaskID1) ;

(Output object of compiler)
When -ML, -QV is specified (default)

@@BASE CSEG BASE
_intp
push whl ; Saves register
push tde
push uup
push vvVp
push ax,bc,rp2,rp3
movg whl, sp

movg sp, # buff+10 ; Changes stack pointer

push whl

movw rp3, #01H ; Allocates RP3 to variable a "
movw ax,!! ;

cmpw ax, rp3

bne $L,0003

movg uup, #_ TaskID1

Note When the -QV option is not specified, the securing/releasing codes of the local variable area are output.

406 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(Output object of compiler)
When -ML, -QV is specified (default)

pop whl ; Sets back stack pointer
movg sp,whl
br !l _ret wup
L0003
pop whl ; Sets back stack pointer
movg sp,whl
pop ax,bc, rp2, rp3 ; Restores register
pop vVvp
pop uup
pop tde
pop whl
reti
@@VECTO06 CSEG AT 0006H
_@vect06:
DW _intp

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the compiler does not support the interrupt handler for RTOS.
* When changing to the interrupt handler for RTOS, modify the program according to the method above.

From this C compiler to another C compiler
* Handled as an ordinary function if the #pragma rtos_interrupt specification is deleted.
* When using as an interrupt handler for RTOS, modification is required according to the specification of each
compiler.

User's Manual U15556EJ1VOUM 407

CHAPTER 11 EXTENDED FUNCTIONS

(27) Interrupt handler qualifier for real-time OS (RTOS)

Interrupt Handler Qualifier for RTOS __rtos_interrupt

FUNCTION

¢ The function declared with the _ _rtos_interrupt qualifier is interpreted as an interrupt handler for RTOS.

* The two RTOS system call calling functions ret_int/ret_wup can be called in the function declared with the
keywords _ _rtos_interrupt (for details of the RTOS system call calling functions, refer to List of RTOS
System Call Calling Functions described later).

If the prototype declaration or the entity definition of ret_int/ret_wup and ret_int/ret_wup are called outside
the interrupt handler for RTOS, an error occurs.

e The functions to call the two RTOS system call calling functions ret_int/ret_wup are called by an
unconditional branch instruction.

e |f there is neither ret_int nor ret_wup in the interrupt handler for RTOS, an error occurs.

EFFECT

* The setting of the vector table and the definition of the interrupt handler function for RTOS can be described in
separate files.

USAGE
e _ _rtos_interrupt is added to the qualifier of the interrupt handler for RTOS.

__rtos_interrupt void func () { Processing }

[List of the system call calling functions for RTOS]
(@) void ret_int () ;
Calls system call ret_int for RTOS.

(b) void ret wup (x) ;

char *x ;

Calls system call ret_wup for RTOS with x as an argument.

408 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Interrupt Handler Qualifier for RTOS __rtos_interrupt

RESTRICTIONS
callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/ _ _interrupt/_ _interrupt_brk/ _ _ pascal/_ _ flash cannot be
specified for the interrupt handler for RTOS.

* The RTOS system call calling function names ret_int/ret_wup cannot be used for the function names.

CAUTIONS
* Vector addresses cannot be set only by declaring this qualifier.
The setting of the vector address must be performed separately by the #pragma directive, assembler
description, etc.
e When the interrupt handler for RTOS is defined in the same file as the one in which the #pragma
rtos_interrupt --- is specified, the function name specified with #pragma rtos_interrupt is judged as an
interrupt handler for RTOS even if this qualifier is not described.

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the compiler does not support interrupt handler for RTOS.
* When changing to interrupt handler for RTOS, modify the program according to the method above.

From this C compiler to another C compiler
* Changes can be made by #define (for details, refer to 11.6 Modifications of C Source). By these
changes, interrupt handler qualifiers for RTOS are handled as ordinary variables.
* When using as an interrupt handler for RTOS, modification is required according to the specification of
each compiler.

User's Manual U15556EJ1VOUM 409

CHAPTER 11 EXTENDED FUNCTIONS

(28) Task function for real-time OS (RTOS)

Task Function for RTOS #pragma rtos_task

FUNCTION
e The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.
¢ If the function name is specified and the entity definition is not in the same file, an error occurs.
e The preprocessing of the task function for RTOS does not save the registers for frame pointer/register
variables. The postprocessing is not output.
e The following RTOS system call calling functions can be used.

[RTOS system call calling functions]

(a) void ext tsk (void);

Calls RTOS system call ext_tsk.

However, when ext_tsk is called in the ext_tsk prototype declaration or entity definition, interrupt function, or

interrupt handler for RTOS, an error occurs.

* The RTOS system call calling function of ext_tsk is called by an unconditional branch instruction. If ext_tsk
is issued after the function, the postprocessing is not output.

* When there is no ext_tsk in the task function for RTOS and the -W2 option is specified, a warning message is
output.

EFFECT
* The task function for RTOS can be described at the C source level.
* The saving and postprocessing of the register frame pointer/register variable are not output, so the code
efficiency is improved.

410 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Task Function for RTOS #pragma rtos_task

USAGE
* Specifies the function name for the following #pragma directives.
* The #pragma directives are described at the start of the C source.
However, the following items can be described before the #pragma directive.
e Comments
* Preprocessing directives that neither define nor reference variables or functions.
¢ Keywords following #pragma can be described either in uppercase or lowercase letters.

#ipragmaArtos_task [Atask-function-name]

RESTRICTIONS
e callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _interrupt/_ _interrupt brk/_ _rtos_interrupt/ _ _ pascal/_ _
flash cannot be specified for the task function for RTOS.
¢ The task function for RTOS cannot be called in the same manner as ordinary functions.
The RTOS system call calling function name ext_tsk cannot be used for a function name.
The task function for RTOS is not supported when the medium model is specified.

EXAMPLE

(C source)

#pragma rtos_task func
void main () {
int a;
a = 1;
ext _tsk ();
}
void func () {
register int r;
int x;
X = 1;
r = 2;

ext tsk ();

User's Manual U15556EJ1VOUM 411

CHAPTER 11 EXTENDED FUNCTIONS

Task Function for RTOS

#pragma rtos_task

(Output object of compiler)
When -ML, -QV is specified (default)

@@CODE

~main :
push
movw
br

_func :
movw
movw
br
END

CSEG

rp3
rp3,#01H
Il _ext_tsk

up, #01H
rp3, #02H
Il _ext_tsk

i1

; Epilogue is not output.

; Frame pointer is not saved.
i1

;2

; Epilogue is not output.

COMPATIBILITY

From another C compiler to this C compiler

* Modification is not required if the compiler does not support the task function for RTOS.

* When changing to the task function for RTOS, modify the program according to the method above.

From this C compiler to another C compiler

If the #pragma rtos_task specification is deleted, the RTOS task function is used as an ordinary function.

To use as RTOS task function, modification is required according to the specification of each compiler.

412

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(29) Changing function call interface

Changing Function Call Interface -Z0

FUNCTION
* Arguments are passed in accordance with the former function interface specifications (in CC78K4 V1.00
compatible products, only the stack is used). For details of the function interface, refer to 11.7 Function Call
Interface.

USAGE
* The -ZO option is specified during compilation.

RESTRICTION

* Modules to which the -ZO option is specified and modules to which the -ZO option is not specified cannot be
linked to one another.

User's Manual U15556EJ1VOUM 413

CHAPTER 11 EXTENDED FUNCTIONS

(30) Changing the method of calculating the offset of arrays and pointers

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

FUNCTIONS

When calculating the offset of arrays and pointers (distance from the start of the array or pointer), if the index
is an int/short type variable, it is regarded as unsigned int/unsigned short, and if the index is a char type
variable, it is regarded as unsigned char.

Calculates the offset as a positive 64 KB or less.

However, the ordinary offset calculation is performed if the index is a long type variable or a constant.

EFFECT

The code efficiency is improved by performing unsigned offset calculation.

USAGE

The -QH option is specified during compilation.

RESTRICTIONS

Access to an object by array elements and pointers can be performed only when the offset is 64 KB or less.
The offset for the minus direction cannot be calculated.

COMPATIBILITY
From another C compiler to this C compiler

* When the index to arrays and pointers is a int/short type variable or char type variable and there is
access to a minus-direction object or access to an object of more than 64 KB, the index is changed to a
long type variable. Otherwise, the -QH option should not be specified.

From this C compiler to another C compiler

414

¢ Modification is not required.

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers -QH
EXAMPLE
(C source)
int tabi [100];
char tabc [100];
int *iptr;
void main (void)
long I = 50;
int i = 30;
char ¢ = 2;
tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */
tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */
tabi [1] = 3; /* signed offset calculation */
* (iptr + 1) = 4; /* unsigned offset calculation, 64 KB or less */
(iptr + (-1i)) = 5; / offset calculation, positive 64 KB or less */
* (iptr - 1) = 6; /* signed offset calculation */
* (iptr -10) = 7; /* signed offset calculation */
* (iptr + (-10)) = 8; /* signed offset calculation */
}
(Output object of compiler)
When -ML, -QH is specified (1/3)
@@CODE CSEG
_main:
push uup
push rp3
push vvp
; line 6: long 1 = 50;
movw rp3,#032H ;50
subw vp, Vp
; line 7: int i = 30;
movw up, #01EH ;30
; line 8: char c¢= 2;
mov c,#02H ;2
; line 9:
; line 10 tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */
movw hl,up
User’'s Manual U15556EJ1VOUM 415

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)
When -ML, -QH is specified (2/3)

Addw hl,hl ; Offset calculation only for the lower 2 bytes
Movw ax,#01H i1
Movw _tabi[hl], ax
; line 11 : tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */
mov a,c
xch a,b
mov a,c
mov _tabc[b],a ; Offset calculation only for the least significant byte
; line 12 : tabi [1] = 3; /* signed offset calculation */
movw hl, rp3
mov a,r8
mov w,a
addg whl,whl ; Offset is 3 bytes, sign is considered
addg whl, # tabi
movw ax, #03H ; 3
movw [h],ax
; line 13 : * (iptr + 1) = 4; /* unsigned offset calculation, 64 KB or less */
movw hl,up
movg tde, !! iptr
addw hl,hl ; Offset calculation only for the lower 2 bytes

addg tde,whl

incw ax

movw [de] ,ax
; line 14 *(iptr + (-1i)) = 5; /* offset calculation, positive 64 KB or less */
subw ax,ax

subw ax,up

movg whl,!! iptr

movw de, ax

mov t,#00H ;0

addw de, de ; Offset calculation only for the lower 2 bytes
addg whl, tde

movw ax, #05H ;5

movw [hl],ax

416 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers -QH
(Output object of compiler)
When -ML, -QH is specified (3/3)

; line 15 * (iptr - 1) = 6 ; /* signed offset calculation */
movw hl,up
mov a,h
cvtbw
mov w,a
movyg tde, !'! iptr
addg whl, whl ; Offset is 3 bytes
subg tde,whl
movw ax, #06H ; 6
movw [de] , ax

; line 16 * (iptr - 10) = 7 ; /* signed offset calculation */
movyg whl,!! iptr
incw ax
addg whl, #O0FFFFECH ; -20 ; Offsetis a signed constant (-20)
movw [hl],ax

; line 17 ; *(iptr + (-10)) = 8 ; /* signed offset calculation */
movg whl, ! liptr
incw ax
addg whl, #0FFFFECH ; -20 ; Offsetis a signed constant (-20)
movw [h1l],ax

; line 18 ;
pop vVp
pop rp3
pop uup
ret

User’'s Manual U15556EJ1VOUM 417

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers

-QH

(Output object of compiler)
When -ML, -QH is not specified (1/3)

@@CODE CSEG

_main
push uup
push rp3
push vVp
; line 6: long I = 50;
movw rp3,#032H ;50
subw vp,Vp
; line 7: int i = 30;
movw up, #01EH ;30
; line 8: char c¢= 2;
mov c, #02H i2
; line 9:
; line 10 tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */
movw hl,up
mov a,h
cvtbw
mov w,a
addg whl, whl
addg whl, # tabi
movw ax, #01H i1
movw [h1l],ax
; line 11 tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */
mov a, ¢
cvtbw
movw hl,ax
mov w,a
addg whl, # tabc
mov a, c
mov [h1l],a
; line 12 tabi [1] = 3; /* signed offset calculation */
movw hl, rp3
mov a,r8
mov w,a
addg whl, whl
addg whl, # tabi
movw ax, #03H ;3
movw [h1l],ax

418

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)
When -ML, -QH is not specified (2/3)

I

I

7

line

line

line

13
movw
movg
mov
cvtbw
mov
addg
addg
movw
movw
14
subw
subw
movg
movw
cvtbw
mov
addg
addg
movw
movw
15
movw
mov
cvtbw
mov
movg
addg
subg
movw

movw

* (iptr + 1) = 4; /* unsigned offset calculation, 64 KB or less */
hl,up
tde, !! iptr
a,h

w,a
whl,whl
tde,whl
ax,#04H ; 4
[de] ,ax
* (iptr + (-1i)) = 5; /*offset calculation positive 64 KB or less */
ax,ax
ax,up
whl,!! iptr

de, ax

t,a
tde, tde
whl, tde
ax, #05H ; 5
[hl],ax
(iptr - i) = 6; / signed offset calculation */
hl,up
a,h

w,a

tde, !! iptr
whl,whl

tde,whl

ax, #06H i 6

[del,ax

User's Manual U15556EJ1VOUM

419

CHAPTER 11 EXTENDED FUNCTIONS

Changing the Method of Calculating the Offset of Arrays and Pointers

-QH

(Output object of compiler)
When -ML, -QH is not specified (3/3)

; line 16 : * (iptr - 10) = 7; /* signed offset calculation */
movyg whl,!! iptr
incw ax
addg whl, #OFFFFECH ;-20
movw [hl],ax
; line 17 : * (iptr + (-10)) = 8; /* signed offset calculation */
movg whl,!! iptr
incw ax
addg whl, #OFFFFECH ;-20
movw [h1l],ax
; line 18 : }
pop Nalgel
pop rp3
pop uup
ret

COMPATIBILITY
From another C compiler to this C compiler

¢ When the index to arrays and pointers is a int/short type variable or char type variable and there is

access to a minus-direction object or access to an object of more than 64 KB, the index is changed to a

long type variable. Otherwise, the -QH option should not be specified.

From this C compiler to another C compiler
¢ Modification is not required.

420 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(31) Pascal function

Pascal Function _ _pascal

FUNCTION
* Generates the code that corrects the stack used for placing of arguments when a function is called on the
called function side, not on the side calling the function.

EFFECT
* Object code can be shortened if a lot of function calls appear.

USAGE
¢ When a function is declared, a _ _pascal attribute is added to the beginning.

RESTRICTIONS

* The pascal function does not support variable length arguments. If a variable length argument is defined, a
warning is output and the _ _pascal keyword is disregarded.

¢ |n a pascal function, the keywords norec/_ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash cannot be
specified. If they are specified, in the case of the norec keyword, the _ _pascal key word is disregarded and
in the case of the _ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash keywords, an error is output.

* The old specification function interface specification option (-ZO) does not support the pascal function. When
pascal functions are used, if -ZO is specified, a warning message is output at the first place where a
_ _pascal key word appears and the _ _pascal keywords in the input file are disregarded.

* |If a prototype declaration is incomplete, it won’t operate normally, so a warning message is output when a
pascal function’s physical definition or prototype declaration is missing.

EXPLANATION
* The -ZR option enables the change of all functions to the pascal function. However, if the pascal function is
used to change functions that have few function calls, object code may increase.

EXAMPLE
(C source)

_ _pascal int func(int a, int b, int c);

void main ()

{

int ret val;

ret val = func(5, 10, 15);

User's Manual U15556EJ1VOUM 421

CHAPTER 11 EXTENDED FUNCTIONS

Pascal Function _ _pascal

(C source) (continued)

}

_ _pascal int func(int a, int b, int c)

{

return (a + b + c¢);

(Output object of compiler)
With large model

_main:
push rp3
movw ax,#0FH ;
push ax ;
mov X, #0AH ;
push ax ;
mov x,#05H ; With the argument, a 4-byte stack is consumed.
call $! func
; Here stack correction is not performed.
movw rp3,bc
pop rp3
ret
_func:
push rp3
movw rp3,ax
movw ax, [sp+5]
addw ax,rp3
movw bc,ax
movw ax, [sp+7]
addw bc,ax
pop rp3
pop whl ; Obtain the return address.
pop ax,rp2 ; The 4-byte stack consumed on the calling side is corrected.
br whl ; Branch to the return address.

422 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Pascal Function _ _pascal

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the reserved word _ _ pascal is not used.
 When changing to the pascal function, modify the program according to the method above.

From this C compiler to another C compiler

o Compatibility is maintained by using #define.
e By this conversion, the pascal function is regarded as an ordinary function.

User's Manual U15556EJ1VOUM

423

CHAPTER 11 EXTENDED FUNCTIONS

(32) Automatic pascal functionization of the function call interface

Automatic Pascal Functionization of the Function Call Interface -ZR

FUNCTION

e With the exception of norec/_ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash and functions with
variable length arguments, _ _pascal attributes are added to all functions.

USAGE
e The -ZR option is specified during compilation.

RESTRICTIONS

* The old specification function interface specification option (-ZO) cannot be used at the same time. If this is
used, a warning message is output and the -ZR option is ignored.

¢ Modules in which the -ZR option is specified and modules in which the -ZR option is not specified cannot be
linked. If a link is executed, it results in a link error.

Remark For details of the pascal function call interface, refer to 11.7.5 Pascal function call interface.

424 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(33) Flash area allocation method

Flash Area Allocation Method -ZF

Caution Do not use this flash function for devices that have no flash area self-rewrite function.
Operation is not guaranteed if it is used.
This function enables the flash memory rewrite function of devices.

FUNCTIONS
¢ Generates an object file located in the flash area.
¢ External variables in the flash area cannot be referenced from the boot area.
* External variables in the boot area can be referenced from the flash area.
* The same external variables and the same global functions cannot be defined in a boot area program and a

flash area program.
EFFECT

e Enables locating a program in the flash area.
e Enables using function linking with a boot area object created without specifying the -ZF option.

USAGE
¢ The -ZF option is specified during compilation.

RESTRICTION
Use startup routines or library for the flash area.

User's Manual U15556EJ1VOUM 425

CHAPTER 11 EXTENDED FUNCTIONS

(34) Flash area branch table

Flash Area Branch Table #pragma ext_table

Caution Do not use this flash function for devices that have no flash area self-rewrite function.
Operation is not guaranteed if it is used.
This function enables the flash memory rewrite function of devices.

FUNCTIONS

¢ Determines the first address of the branch table for the startup routine, the interrupt function, or the function
call from the boot area to the flash area.

¢ The branch instruction, which is one of the branch table elements, occupies 4 bytes of area. 32 from the first
address of the branch table are reserved as dedicated interrupt functions. Ordinary functions are located after
the “first address of branch table +4 * 32.”

* The branch table occupies 4* (32 + ext_func ID max. value + 1) bytes of area. For the ext_func ID value,
refer to 11.5 (35) Function call function from the boot area to the flash area.

EFFECT
¢ A startup routine and interrupt function can be located in the flash area.
* A function call can be performed from the boot area to the flash area.

USAGE
¢ The following #pragma directive specifies the first address of the flash area branch table.

#pragma Aext table A branch-table-first-address

Describe the #pragma directive at the beginning of the C source.
* The following items can be described before the #pragma directive.
e Comments
e #pragma directive other than #pragma ext_func, #pragma vect with —ZF specification, #pragma
interrupt, or #pragma rtos_interrupt.
* Directives not to generate the definition/reference of variables or functions among the preprocessing
directives.

426 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Flash Area Branch Table #pragma ext_table

RESTRICTIONS

e The branch table is located at the first address of the flash area.

e If #pragma ext_table does not exist before #pragma ext_func, #pragma vect with —ZF specification,
#pragma interrupt, or #pragma rtos_interrupt, an error occurs.

¢ The first address of the branch table is assumed to be 0x80 to 0xff80. However, match the first address value
with the flash start address which is specified by the -ZB linker option. If the address does not match, it results
in a link error.

e It is necessary to reconfigure the library for interrupt vectors (_@vect100 to _@vect3e) in accordance with
the specified first address of the branch table. The default is 4000H in the interrupt vector library. To specify a
value other than 0x4000, reconfigure the library as shown below.

1. Change the place of H in ITBLTOP EQU 4000H of vect.inc in the \NECTools32\SRC\CC78K4\SRC directory
to the specified address.

2. Run \NECToo0ls32\SRC\CC78K4\BAT/repvect.bat in DOS prompt, and update library using the assembler, etc.
Copy the updated library \NECTo0ls32\SRC\CC78K4\LIB to \NECTo0ls32\LIB78K4 to be used for linking.

Caution The above directory may differ depending on the installation method.

COMPATIBILITY

From another C compiler to this C compiler
¢ Modification is not required if #pragma ext_table is not used.
* When specifying the first address of the flash area branch table, change the address according to the
method above.

From this C compiler to another C compiler

* Delete the #pragma ext_table instruction or delimit it with #ifdef.
¢ When specifying the first address of the flash area branch table, the following modification is required.

User's Manual U15556EJ1VOUM 427

CHAPTER 11 EXTENDED FUNCTIONS

Flash Area Branch Table #pragma ext_table

EXAMPLE
To generate the branch table after the address 4000H and allocate the interrupt function.

(C source)

#pragma ext table 0x4000
#pragma interrupt INTPO intp

void intp ()
{
!

(Output object of compiler)
(a) To allocate the interrupt function to the boot area (no -ZF specification).

PUBLIC _@vect06
PUBLIC _intp
@@BASE CSEG BASE
_intp:
reti
@@VECT06 CSEG AT 0006H
_@vect06:
DW _intp

e Set the first address of the interrupt function in the interrupt vector table.

428

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Flash Area Branch Table

#pragma ext_table

(b) To allocate the interrupt vector table to the flash area (-ZF specified).

PUBLIC _intp
@ECODE CSEG
_intp:

reti

@EVECTO06 CSEG AT
br !l _intp

(Library for interrupt vector 06)
PUBLIC _@vectO06
@@VECTO06 CSEG AT 0006H

_vect06:
DW 400CH

0400CH

e Set the first address of the interrupt function in the branch table.

* The first address of the branch table is 4000H and the interrupt vector address (2 bytes) is
0006H, so the address of the branch table becomes 4000H + 4*(0006H/2).

» Setting the 400CH address in the interrupt vector table is performed by the interrupt vector

library.

User's Manual U15556EJ1VOUM

429

CHAPTER 11 EXTENDED FUNCTIONS

(35) Function call function from the boot area to the flash area

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

Caution Do not use this flash function for devices that have no flash area self-rewrite function.

Operation is not guaranteed if it is used.
This function enables the flash memory rewrite function of devices.

FUNCTIONS

Function calls from the boot area to the flash area are executed via the flash area branch table.
Functions in the boot area can be called directly from the flash area.

EFFECT

It becomes possible to call a function in the flash area from the boot area.

USAGE

The following #pragma directive specifies the function name and ID value in the flash area called from the

boot area.

#ipragma A ext func A function-name A ID value

This #pragma directive is described at the beginning of the C source. The following items can be described before

this #pragma directive.

Comments
Directives that do not generate the definition/reference of variables or functions among the preprocessing

directives.

RESTRICTIONS

(@

(b)

430

The ID value is set to 0 to 255 (OxFF).

If #pragma ext_table does not exist before #pragma ext_func, it results in an error.

If the same function has a different ID value or a different function has the same ID value, an error occurs. (a)
and (b) below are errors.

#pragma ext func f1 3

#pragma ext func f1 4

#pragma ext func f1 3

#pragma ext func f2 3

If a function is called from the boot area to the flash area and there is no corresponding function definition in
the flash area, the linker cannot conduct a check. This is the user’s responsibility.

The callt and callf functions can only be located in the boot area. If the callt and callf functions are defined in
the flash area (when the -ZF option is specified), it results in an error.

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

COMPATIBLITY
From another C compiler to this C compiler
¢ Modification is not required if the #pragma ext_func is not used.
* When performing the function call from the boot area to the flash area, modify the program according to
the method above.
From this C compiler to another C compiler
¢ Delete the #pragma ext_func instruction or delimit it with #ifdef.
* When performing the function call from the boot area to the flash area, the following modification is
required.

EXAMPLE
In the case that the branch table is generated after address 4000H and functions f1 and 2 in the flash area are called

from the boot area.

(C source)

(1) Boot area side

#pragma ext table 0x4000
#pragma ext func f1 3
#pragma ext func f2 4

extern void f1 (void) ;

extern void f2 (void) ;

void func ()

{

£10);
£2();

}

User's Manual U15556EJ1VOUM 431

CHAPTER 11 EXTENDED FUNCTIONS

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

(2) Flash area side
#pragma ext table 0x4000
#pragma ext func f1 3
#pragma ext func f2 4

void f£1()

e #pragma ext_func f1 3 means that the branch destination to function f1 is located in branch table address
4000H + 4*32 + 4*3.

e #pragma ext_func f2 4 means that the branch destination to function f2 is located in branch table address
4000H + 4*32 + 4*4.

* 4*32 bytes from the beginning of the branch table is exclusively for interrupt functions (including the startup
routine).

(Output object of compiler)

(1) Boot area side (without -ZF specification)

@@CODE CSEG
_func:
call 10408CH
call '04090H
ret

(2) Flash area side (with -ZF specification)

@ECODE CSEG
_f1:
ret
_f2:
ret
@EXTO03 CSEG AT 0408CH
br 1f1
br 1f2

432 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(36) Firmware ROM function

Firmware ROM Function __flash

Caution Do not use this flash function for devices that have no flash area self-rewrite function.
Operation is not guaranteed if it is used.
This function enables the flash memory rewrite function of devices.

FUNCTIONS
e This calls a firmware ROM function that self-writes to the flash memory via the interface library positioned

between the firmware ROM function and the C language function.
* In the interface library call interface, the first argument is passed via the register and the second and
subsequent arguments are transferred to the stack. The first argument’s register is as follows.

1, 2-byte integer AX
3-byte integer WHL
4-byte integer AX (lower integer), RP2 (higher integer)

¢ The size of the pointer passed to the stack after the second argument is three bytes.

EFFECT
¢ Operations related to the firmware ROM function can be described at the C source level.

USAGE
e _ _flash attributes are added to the top during an interface library prototype declaration.

RESTRICTIONS
* Function calls by a function pointer are not supported.
* When the old specification function interface specification option (-ZO) is specified, it results in an error.
¢ When a function with _ _flash is defined, it results in an error.

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the reserved word _ _flash is not used.
* When changing the firmware ROM function, modify the program according to the method above.

From this C compiler to another C compiler
* Possible using #define (refer to 11.6 Modifications of C Source).
¢ Ina CPU with a firmware ROM function or substitute function, it is necessary for the user to create an

exclusive library to access that area.

User's Manual U15556EJ1VOUM 433

CHAPTER 11 EXTENDED FUNCTIONS

(37) Method of int expansion limitation of argument/return value

Method of int Expansion Limitation of Argument/Return Value -ZB

FUNCTION

 When the type definition of the function return value is char/unsigned char, the int expansion code of the
return value is not generated.

o When the prototype of the function argument is defined and the argument definition of the prototype is
char/unsigned char, the int expansion code of the argument is not generated.

EFFECT

e The object code is reduced and the execution speed improved since the int expansion codes are not
generated.

USAGE
e The -ZB option is specified during compilation.

EXAMPLE

(C source)

unsigned char funcl (unsigned char x, unsigned char y);
unsigned char c, d, e;
void main ()
{
c = funcl (d, e);
c = func2 (d, e);
}

unsigned char funcl (unsigned char x, unsigned char y)

{

return x + y;

434 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Method of int Expansion Limitation of Argument/Return Value -ZB

(Output object of compiler)
When -ZB is specified

_main:

; line 5: ¢ = funcl (d, e);
mov x, !l e ; Do not execute int expansion
push ax ; Do not execute int expansion
mov x, !l d

call $!_ funcl

pop ax
mov 'l ¢, c
; line 6 c = func2 (d, e);
mov x, Il e
mov a, #00H ; 0 ; Execute int expansion since there is no prototype declaration
push ax
mov x, !l d
call !l _func2
pop ax
mov 'l ¢,c
; line 7: }
ret

RESTRICTIONS
o |[f the files are different between the definition of the function body and the prototype declaration to this
function, the program may operate incorrectly.

COMPATIBILITY
From another C compiler to this C compiler
o If the prototype declarations for all definitions of function bodies are not correctly performed, perform
correct prototype declaration. Alternatively, do not specify the -ZB option.

From this C compiler to another C compiler
¢ No modification is required.

User's Manual U15556EJ1VOUM 435

CHAPTER 11 EXTENDED FUNCTIONS

(38) Memory manipulation function

Memory Manipulation Function #pragma inline

FUNCTION
e An object file is generated by the output of the standard library memory manipulation functions memcpy,
memset, memchr, and memcmp with direct inline expansion instead of function call.
 When there is no #pragma directive, the code that calls the standard library functions is generated.

EFFECT
o Compared with when a standard library function is called, the execution speed is improved.
o Object code is reduced if a constant is specified for the specified character number.

USAGE
e The function is described in the source in the same format as a function call.
¢ The following items can be described before #pragma inline.
e Comments
e Other #pragma directives
e Preprocessing directives that do not generate variable definitions/references or function
definitions/references

EXAMPLE

(C source)

#pragma inline
char aryl[100], ary2[100];
void main()
{
memset (aryl, ‘A’, 50);
memcpy (aryl, ary2, 50);

436 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Memory Manipulation Function

#pragma inline

(Output object of compiler)
When -MS is specified

_main:

; line 7
movw
mov
mov
mov
dbnz

; line 8
movw
mov
movw
mov
mov
dbnz

; line 9

; line 10
mov
movw
mov
cmp
bz
incw
dbnz
subw

L0006
movw

; line 11
mov
movw
movw
mov
sub
bnz
dbnz

L0008
subc
xch
movw

; line 12

ret

memset (aryl, 'A', 50);
de, # aryl

c,#032H ; 50

a,#041H ; 65

[de+] ,a

c,$5-1

memcpy (aryl, ary2, 50);
de, # aryl

c,#032H ; 50

hl,# ary2

a, [hl+]

[de+] ,a

c, $$_2

p = memchr (aryl, 'B', 50);
c,#032H ; 50

de,# aryl

a,#042H ; 66

a, [del

SL0006

de

c,$$-5

de, de

! p,de

i = memcmp (aryl, ary2, 100);
c,#064H ; 100

de, # aryl

hl,# ary2

a, [de+]

a, [hl+]

$L0008

c,$$-5

X, X
a,x

! i,ax

User's Manual U15556EJ1VOUM

437

CHAPTER 11 EXTENDED FUNCTIONS

Memory Manipulation Function

#pragma inline

(Output object of compiler)
When -MM is specified

_main:
; line 7 memset (aryl, 'A', 50);
movw de, #LOWW _aryl
mov c,#032H ; 50
mov a,#041H ; 65
mov [de+],a
dbnz c,$8-1
; line 8 memcpy (aryl, ary2, 50);
movw de, #LOWW _aryl
mov c,#032H ; 50
movw hl, #LOWW _ary?2
mov w,#0FH ; 15
mov a, [hl+]
mov [de+],a
dbnz c,$8-2
; line 9
; line 10 p = memchr (aryl, 'B', 50);
mov c,#032H ; 50
movw de, #LOWW _aryl
mov a,#042H ; 66
cmp a, [del]
bz SL0006
incw de
dbnz c,$$-5
subw de, de
L0006 :
movw !l p,de
; line 11 i = memcmp (aryl, ary2, 100);
mov c,#064H ; 100
movw de, #LOWW _aryl
movw hl, #LOWW _ary?2
mov w,#0FH ; 15
mov a, [de+]
sub a, [h1l+]
bnz $L.0008
dbnz c,$$-5
L0008 :
subc X, X
xch a,x
movw 1 i,ax
; line 12
ret
438 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Memory Manipulation Function

#pragma inline

(Output object of compiler)
When -ML is specified

_main:

; line

; line

; line

; line

L0006

; line

L0008:

; line

movg
mov
mov
mov
dbnz

movg
mov
movg
mov
mov
dbnz

10
mov
movg
mov
cmp
bz
incg
dbnz
subg

movg
11
mov
movg
movg
mov
sub
bnz
dbnz

subc

xch

movw
12

memset (aryl, 'A', 50);
tde, # aryl

c,#032H ; 50

a,#041H ; 65

[de+] ,a

c,$5-1

memcpy (aryl, ary2, 50);
tde, # aryl

c,#032H ; 50
whl, # ary2

a, [hl+]

[de+] ,a

c, $$_2

p = memchr(aryl, 'B', 50);
c,#032H ; 50

tde, # aryl

a,#042H ; 66

a, [del

SL0006

tde

c,$%$-6

tde, tde

!l p,tde

i = memcmp (aryl, ary2, 100);
c,#064H ; 100

tde, # aryl

whl, # ary2

a, [de+]

a, [hl+]

$L0008

c,$$-5

X, X
a,x

1 i,ax

User's Manual U15556EJ1VOUM

439

CHAPTER 11 EXTENDED FUNCTIONS

Memory Manipulation Function #pragma inline

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the memory manipulation function is not used.
 When changing the memory manipulation function, modify the program according to the method above.

From this C compiler to another C compiler
o Delete the #pragma inline directive or delimit it with #ifdef.

440 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(39) callf two-step branch function

callf Two-Step Branch Function -ZG

FUNCTION
* A function body to which the callf/_ _callf attribute is added is not allocated to the callf area from 800H to
OFFFH, a branch instruction to the function body is allocated to the callf area, and the code to call the branch
instruction using the callf instruction is generated.

EFFECT
e Compared to the case when allocating a function body to the callf area, the callf/_ _callf attribute can be
added to many more functions. Therefore, this function can shorten the object code if many functions that
include call functions are frequently used.

USAGE
e The -ZG option is specified during compilation.

RESTRICTIONS
¢ Modules in which the -ZG option is specified and modules in which the -ZG option is not specified cannot be
linked.
¢ The two-step branch table consumes 4 bytes per function when the -MM/ML option is specified, and 3 bytes
when the -MS option is specified. The maximum number of callf functions that can be allocated when the
-ZG option is specified per load module and the total number of callf functions per linked module are as
follows.

- When the -MM/ML option is specified: 512
- When the -MS option is specified: 682

EXAMPLE
(C source 1)

_ _callf extern int fsub();
void main ()
{

int ret val;

ret _val = fsub();

User's Manual U15556EJ1VOUM 441

CHAPTER 11 EXTENDED FUNCTIONS

callf Two-Step Branch Function

(C source 2)

__callf int fsub()

{
int val = 1;

return val;

(Output object of compiler)
With large or medium model

(C source 1)

EXTRN ?fsub ; Declaration

callf 1?fsub ; Call

(C source 2)

PUBLIC _fsub ; Declaration
PUBLIC ?fsub ; Declaration
@@CALF CSEG FIXED
?fsub: br Il _fsub ; Branch table

@@CODE CSEG
_fsub: ; Function definition

Function body

442 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

callf Two-Step Branch Function -ZG

(Output object of compiler)
With small model

(C source 1)

EXTRN ?fsub ; Declaration

Callf 1?fsub ; Call

(C source 2)

PUBLIC _fsub ; Declaration
PUBLIC *?fsub ; Declaration
@@CALFS CSEG FIXEDA
?fsub: br ! _fsub ; Branch table
@@CODES CSEG BASE ; Function definition

_fsub:

Function body

User's Manual U15556EJ1VOUM 443

CHAPTER 11 EXTENDED FUNCTIONS

(40) Automatic callf functionization of function call interface

Automatic Callf Functionization of Function Call Interface -ZH

FUNCTION

e The _ _callf attribute is added to all functions except for the callt/_ _callt/_ _interrupt/_ _interrupt_brk/_
_rtos_interrupt functions.

USAGE
e The -ZH option is specified during compilation.

RESTRICTIONS
e The -ZF option for the flash area allocation specification cannot be specified at the same time.
If specified, a warning message is output and the -ZH option is ignored.
e The standard library that supports the -ZF option is not available. Sources that include the standard library
cannot be linked using the -ZF option during compilation.

444 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(41) Three-byte address reference/generation function

Three-Byte Address Reference/Generation Function #pragma addraccess

FUNCTION
* A code that references the highest byte and the lower 2 bytes of a 3-byte address, and a code that generates
a 3-byte address from the value of the highest byte and the lower 2 bytes are output to an object directly with
inline expansion and an object file is created.
o If the #pragma directive is not added, the three-byte address reference/generation function is regarded as an
ordinary function.

EFFECT
e Three-byte address reference/generation can be performed with a short code without using a complex cast
description.

USAGE
¢ Describe the #pragma addraccess directive at the beginning of the C source.

Describe the #pragma addraccess directive in the C source in the same manner as a function call.

The following items can be described before the #pragma addraccess directive.
(1) Comments
(2) Other #pragma directives
(3) Among the preprocessing directives, those that do not generate a variable definition/reference or
function definition/reference.

The keywords following #pragma addraccess can be described in either uppercase or lowercase letters.

The following three names can be used for the three-byte address reference/generation function name.

® FP_SEG
e FP_OFF
e MK FP

[List of function names for three-byte address reference/generation]

(1) unsigned char FP_SEG(void *addr);
The value of the most significant byte of a three-byte address pointed by addr is obtained.
(2) unsigned int FP_OFF(void *addr);
The values of the lower 2 bytes of a three-byte address pointed by addr are obtained.
(3) void *MK_FP(unsigned char seg, unsigned int offset);
The address value of the three-byte address having the value pointed by seg as the most significant byte, and
the value pointed by offset as the lower 2 bytes.

User's Manual U15556EJ1VOUM 445

CHAPTER 11 EXTENDED FUNCTIONS

Three-Byte Address Reference/Generation Function

#pragma addraccess

RESTRICTIONS

e The function names for three-byte address reference/generation cannot be used as the function names.

* Describe the three-byte address reference/generation function in uppercase letters. If lowercase letters are

used, it is regarded as an ordinary function.

o When the small or medium model is specified, #pragma addraccess is ignored and the three-byte address

reference/generation function is not supported.

EXAMPLE

#pragma addraccess

unsigned char seg;

unsigned int
unsigned char
unsigned char
void main ()
{

seg

offset

MK

o

ffset;

ary[10];
*p,-

FP (seg,

FP_SEG (ary) ;
FP_OFF (ary) ;

offset) ;

/*
/* Value of lower 2 bytes */

Most significant byte value =*/

/* Generates 3-byte address */

(Output object of compiler)

@@CODE CSEG

_main:

; line 8 seg = FP_SEG(ary) ; /* Most significant byte value */
mov a,#HIGHW _ary
mov 'l seg,a

; line 9 offset = FP_OFF (ary) ; /* Value of lower 2 bytes */
movw ax, #LOWW _ary
movw !l _offset,ax

; line 10

; line 11 p = MK FP(seg, offset); /* Generates 3-byte address */
mov a,!! seg
mov w,a
movw hl,!! offset
movg !l p,whl

; line 12 }
ret

446 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Three-Byte Address Reference/Generation Function #pragma addraccess

COMPATIBILITY
From another C compiler to this C compiler
* Modification is not required if the three-byte address reference/generation function is not used.
* When specifying the three-byte address reference/generation function, modify the function according to

the method above.

From this C compiler to another C compiler
* Delete the #pragma addraccess statement or delimit it with #ifdef.
The three-byte address reference/generation function name can be used as the function name.
* When specifying the three-byte address reference/generation function, modify the function conforming to

the specification of the C compiler.

User's Manual U15556EJ1VOUM 447

CHAPTER 11 EXTENDED FUNCTIONS

(42) Absolute address allocation specification

Absolute Address Allocation Specification _ _directmap

FUNCTION

e The initial value of an external variable declared by _ _directmap and a static variable in a function is
regarded as the allocation address specification, and variables are allocated to the specified addresses.

e The _ _directmap variable in the C source is treated as an ordinary variable.

e Because the initial value is regarded as the allocation address specification, the initial value cannot be
defined and remains an undefined value.

e The specifiable address specification range, secured area range linked by the module for securing the area
for the specified addresses, and variable duplication check range are shown below.

With small model

Address Specification Range Secured Area Range Duplication Check Range

0x80 to OxFFFF 0xFDOO to OXFEFF 0xFO000 to OXFEFF

With large model (-CSO0 specified)

Address Specification Range Secured Area Range Duplication Check Range

0x80 to OXFFFFFF 0xFDOO to OXFEFF 0xFO000 to OXFEFF

With large model (-CS15 specified)

Address Specification Range Secured Area Range Duplication Check Range

0x80 to OXFFFFFF 0xFFDOO to OXFFEFF 0xFFO000 to OXFFEFF

With medium model (-CS0 specified)

Address Specification Range Secured Area Range Duplication Check Range

0xF000 to OXxFFFF 0xFDOO to OXFEFF 0xFO000 to OXFEFF

With medium model (-CS15 specified)

Address Specification Range Secured Area Range Duplication Check Range

0xFFO000 to OXFFFFF 0xFFDOO to OXFFEFF 0xFFO000 to OXFFEFF

« If the address specification is outside the address specification range, an F799 error is output.

o |[f the allocation address of a variable declared by _ _directmap is duplicated and is within the duplication
check range, a W762 warning message is output and the name of the duplicated variable is displayed.

o |If the address specification range is inside the saddr1 area, the _ _sreg1 declaration is made automatically
and the saddr1 instruction is generated. If the address specification range is inside the saddr2 area, the _
_sreg declaration is made automatically and the saddr2 instruction is generated.

¢ When the -CSA option is specified, a W338 warning message is output and the _ _directmap declaration in
the file is ignored.

EFFECT
One or more variables can be allocated to the same arbitrary address.

448 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Allocation Specification _ _directmap

USAGE

Declare _ _directmap in the module in which the variable to be allocated in an absolute address is to be
defined.

__directmap Type name Variable name = Allocation address specification;
__directmap static Type name Variable name = Allocation address specification;
_ _directmap _ _sreg Typename Variable name = Allocation address specification;
_ _directmap _ _sreg static Type name Variable name = Allocation address specification;
_ _directmap _ _sregl Type name Variable name = Allocation address specification;
__directmap _ _sregl static Type name Variable name = Allocation address specification;

f _ _directmap is declared for a structure/union/array, specify the address in braces {}.

_ _directmap does not have to be declared in a module in which a _ _directmap external variable is
referenced, so only declare extern.

extern Type name Variable name;

extern _ _sreg Typename Variable name;

extern _ _sregl Type name Variable name;

To generate the saddr2 instruction in a module in which a _ _directmap external variable allocated inside the

saddr2 area is referenced sreg must be used together to make extern_ _sreg Type name Variable

name;.
To generate the saddr1 instruction in a module in which a _ _directmap external variable allocated inside the
saddr1 area is referenced, _ _sreg1 must be used together to make extern_ _sreg1 Type name Variable

name;.

EXAMPLE

(C source)

_ _directmap char c = 0xff000;

_ _directmap _ _sreg char d = 0xffd20;
_ _directmap _ _sreg char e = 0xffd21l;
_ _directmap struct x

char a;

char b;

char c;

} xx = {oxffe30};

void main ()

{

d = 0x12;

XxX.a = 5;

xx.c = 10;

User's Manual U15556EJ1VOUM 449

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Allocation Specification

_ _directmap

(Output object)

C EQU
EQU
EQU

XX EQU
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

@@CODE CSEG

_main:
; line 11
mov
; line 12
mov
; line 13
setl
; line 14
mov
; line 15
mov
; line 16
ret

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

XX
_main
OFFO000H
OFFD20H
OFFD21H
OFFE30H
__mffd20
_ _mffd21
_ _mffe30
~mffe3l
_ _mffe32

c =1
!_c,#01H
d = 0x12
_d,#012H
e.5 =1
_e.5
Xxx.a =5
_xx, #05H
xx.c = 10

_xx+2, #0AH

; Addresses for variables declared by _ _directmap

; are defined by EQU

; EXTRN output for linking secured area modules

; saddr2 instruction output because address

; specified in saddr2 area

; Bit manipulation possible because _ _sreg also used

; saddr1 instruction output because address specified

; in saddr1 area

; saddr1 instruction output because address specified

; in saddr1 area

450

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

Absolute Address Allocation Specification _ _directmap

RESTRICTIONS
e _ _directmap cannot be specified for function arguments, return values, or automatic variables. If it is
specified in these cases, an error occurs.
e If an address outside the secured area range is specified, the variable area will not be secured, making it
necessary to either describe a directive file or create a separate module for securing the area.

COMPATIBILITY
From another C compiler to this C compiler
¢ Modification is not required if the keyword _ _directmap is not used.
e When changing to the _ _directmap variable, modify the program according to the method above.

From this C compiler to another C compiler
o Compatibility can be attained using #define (refer to 11.6 Modifications of C Source for details).
e When _ _directmap is being used as the absolute address allocation specification, modify the program
according to the specifications of each compiler.

User's Manual U15556EJ1VOUM 451

CHAPTER 11 EXTENDED FUNCTIONS

11.6 Modifications of C Source

By using the extended functions of this C compiler, efficient object generation can be realized. However, these
extended functions are intended to cope with the 78K/IV Series. So, to use them for other devices, the C source may
need to be modified. Here, how to make the C source portable from another C compiler to this C compiler and vice
versa is explained.

From another C compiler to this C compiler
o #pragma™™
If the other C compiler supports the #pragma preprocessing directive, the C source must be modified. The
method and extent of modifications to the C source depend on the specifications of the other C compiler.
¢ Extended specifications
If the other C compiler has extended specifications such as addition of keywords, the C source must be
modified. The method and extent of modifications to the C source depend on the specifications of the other C

compiler.

Note #pragma is one of the preprocessing directives supported by ANSI. The character string following
#pragma is identified as a directive to the compiler. If the compiler does not support this directive, the
#pragma directive is ignored and compilation will continue until it properly ends.

From this C compiler to another C compiler
Because this C compiler has added keywords as the extended functions, the C source must be made portable to
the other C compiler by deleting such keywords or delimiting them with #ifdef.

EXAMPLE

<1> To invalidate a keyword (same applies to callf, sreg, noauto, and norec etc.)
#ifndef k4

#define callt /* makes callt an ordinary function */
#endif

<2> To change from one type to another
#ifndef K4

#define bit char /* changes bit type to char type variable */
#endif

452 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.7 Function Call Interface

The following items will be explained concerning the interface between functions when a function is called.

1. Return value (common in all the functions)

2. Ordinary function call interface
e Passing arguments
e Location and order of storing arguments
* Location and order of storing automatic variables

3. noauto function call interface
e Passing arguments
* Location and order of storing arguments
e Location and order of storing automatic variables

4. norec function call interface
e Passing arguments
e Location and order of storing arguments
* Location and order of storing automatic variables

5. Pascal function call interface

User's Manual U15556EJ1VOUM 453

CHAPTER 11 EXTENDED FUNCTIONS

11.7.1 Return value

The function called stores the return value in the registers and carry flags as shown in Table 11-27.

Table 11-27. Storage Location of Return Values

RP2 (Higher)

RP2 (Higher)

Model Small Model Medium Model Large Model
Type
1-byte integer BC BC BC
2-byte integer
4-byte integer BC (Lower) BC (Lower) BC (Lower)

RP2 (Higher)

Pointer

BC

BC (data pointer)
WHL (function pointer)

TDE

Structure, union

BC (structure copied to the
area specific to the function,
the start address of the union)

BC (structure copied to the
area specific to the function,
the start address of the union)

TDE (structure copied to the
area specific to the function,
the start address of the union)

1 bit

CY (carry flag)

CY (carry flag)

CY (carry flag)

Floating-point number
(float type)

BC (Lower)
RP2 (Higher)

BC (Lower)
RP2 (Higher)

BC (Lower)
RP2 (Higher)

Floating-point number
(double type)

BC (Lower)
RP2 (Higher)

BC (Lower)
RP2 (Higher)

BC (Lower)
RP2 (Higher)

454

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.7.2 Ordinary function call interface

When all the arguments are allocated to registers and there is no automatic variable, the ordinary function call
interface is the same as noauto function call interface.

(1) Passing arguments

(a) When the -ZO option is not specified (default)

* On the function call side, both the arguments declared with registers and the ordinary arguments are
passed in the same manner. The second and subsequent arguments are passed via a stack, and the first
argument is passed via a register or stack.

* The location where the first argument is passed is shown in Table 11-28.

Table 11-28. Location Where First Argument Is Passed (On Function Call Side)

Option
Pl When -ZO Is Not Specified When -ZO Is Specified

Type

1-byte integer"™® AX Passed via a stack
2-byte integer

3-byte integer WHL Passed via a stack

Small model is passed via a stack

4-byte integer™™® AX, RP2 Passed via a stack
Floating-point number (float type) AX, RP2 Passed via a stack
Floating-point number (double type) AX, RP2 Passed via a stack
Other Passed via a stack Passed via a stack

Note 1-to 4-byte data includes structures, unions, and pointers.
(b) When the -ZO option is specified

* On the function call side, arguments declared with a register are passed via a register, and ordinary
arguments are passed via a stack. For the registers used for passing, refer to Table 11-30.

User's Manual U15556EJ1VOUM 455

CHAPTER 11 EXTENDED FUNCTIONS

(2) Location and order of storing arguments
e There are two types of arguments: arguments allocated to registers and ordinary arguments. Arguments
allocated to registers are the arguments declared with registers and the arguments when -QV is specified.
e The arguments not allocated to registers are allocated to stacks. The arguments allocated to stacks are
placed on the stack sequentially from the last argument.

(a) When the -ZO option is not specified

e Saving and restoring registers to which arguments are allocated is performed on the function definition
side.

* When -QV option is specified, the ordinary arguments are also allocated to registers regarding they are
declared with registers.

e The ordinary arguments are allocated to a stack. When the arguments are passed via stacks, the area
where the arguments are passed (stack) is used as the area to which arguments are allocated.

* On the function definition side, the arguments that are passed via a register or stack are stored in the area
to which arguments are allocated.

* Arguments with more references together with register variables are allocated to registers. When the -QF
and -ML options are specified, however, a second or subsequent argument whose size is less than 4-bytes
and number of references is two or less is not always allocated to a register.

Table 11-29. List of Storing Arguments (On Function Definition Side, When -ZO Is Not Specified)

Model
) ode Small Model, Medium Model"*® Large Model
Option
When -QF is specified RP3, VP, UP RP3, VVP, UUP
When -QF is not specified RP3, VP RPS3, VVP

Note With the medium model, the function pointer (3 bytes) cannot be used as a register argument.

(Order of allocation)
¢ With small model, medium model, when -QF is specified
char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP
char, int, short, enum type: If there is no long, float, double type argument, in the order of RP3, UP,
VP
Pointer type: In the order of UP, VP, RP3
long, float, double type: RP3 (lower), VP (higher)
¢ With small model, medium model, when -QF is not specified
char, int, short, enum type: In the order of RP3, VP
Pointer type: In the order of VP, RP3
long, float, double type: RP3 (lower), VP (higher)
* With large model, when -QF is specified
char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP
char, int, short, enum type: If there is no long, float, double type argument, in the order of RP3, UP,
VP
Pointer type: In the order of UUP, VVP
long, float, double type: RP3 (lower), VP (higher)

456 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

* With large model, when -QF is not specified
char, int, short, enum type: In the order of RP3, VP
Pointer type: In the order of VVP
long, float, double type: RP3 (lower), VP (higher)

(b) When the -ZO option is specified

¢ The locations where arguments are passed on the function call side and the function definition side are the

location where arguments are allocated.

* Aslong as there are allocable registers, the arguments declared with registers are allocated to registers.
* The saving and restoring of registers to which arguments are allocated is performed before and after the

function call.

Table 11-30. List of Storing Arguments (On Function Definition Side, When -ZO Is Specified)

Model
. ode Small Model Large Model
Option
When -QF is specified RP3, VP, UP RP3, VVP
When -QF is not specified RP3, VP RP3, VVP

(Order of allocation)

¢ With small model, when -QF is specified
char, int, short, enum type: in the order of RP3, VP, UP
Pointer type: In the order of VP, UP , RP3
long, float, double type: RP3 (lower), VP (higher)

¢ With small model, when -QF is not specified
char, int, short, enum type: In the order of RP3, VP
Pointer type: In the order of VP, RP3
long, float, double type: RP3 (lower), VP (higher)

e With large model
char, int, short, enum type: In the order of RP3, VP
Pointer type: In the order of VVP
long, float, double type: RP3 (lower), VP (higher)

User's Manual U15556EJ1VOUM

457

CHAPTER 11 EXTENDED FUNCTIONS

(3) Location and order of storing automatic variables

There are two types of automatic variables: automatic variables to be allocated to registers and ordinary
automatic variables. The automatic variables to be allocated to registers are the ones that are declared with
registers and the automatic variables when -QV is specified. They are allocated to register _@ KREGXX as
long as there are allocable registers and _@KREGXX. However, the automatic variables are allocated to
_@KREGXX only when -QR is specified.

The automatic variables allocated to registers and _@KREGXX are called register variables hereafter.

For _@KREGXX, refer to APPENDIX A LIST OF LABELS FOR saddr AREA.

The register variables are allocated after register arguments are allocated. Therefore, the register variables
are allocated to registers when there are excess registers after the allocation of register arguments.

The automatic variables not allocated to registers are allocated to stacks.

The saving and restoring of registers and _ @ KREGXX to allocate automatic variables is performed on the
function definition side.

(Order of allocating automatic variables)

The order of allocating automatic variables to registers are the same as the order of allocating arguments.
For the details, refer to the order of allocating arguments.

The automatic variables allocated to _ @ KREGXX are allocated in the order of declaration.

The automatic variables allocated to stacks are placed on the stack in the order of declaration.

The following shows an example of the interface above.

EXAMPLE 1

(C source)

void funcO (register int, int);

void main ()

func0 (0x1234, 0x5678) ;

void funcO (register int pl, int p2) {

register int r;

int a;
r = p2;
a = pl;

458

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(Output code) With large model, when -QF is specified and -ZO is not specified

@@CODE

_main:

movw
push
movw
call
pop
ret

_funco:

push
push
push
movw
movw
movw
movw
pop
pop
pop
ret

CSEG

ax,#05678H
ax
ax,#01234H
$! funco

ax

uup

rp3

vVp
rp3,ax
ax, [sp+11]
up, ax

vp, rp3
vVp

rp3

uup

;22136
; Arguments passed via stack

;4660 ;The first argument is passed via register
; Function call
; Arguments passed via stack

; Save registers for register variables/arguments
; Allocate register arguments to rp3
;P2 ; Argument p2 to be passed via a stack
; Register variable r (up)
; Register argument p1 (rp3) variable a (vp)
; Restores register for register variables/arguments

User's Manual U15556EJ1VOUM

459

CHAPTER 11 EXTENDED FUNCTIONS

11.7.3 noauto function call interface

(1) Passing arguments

(a) When the -ZO option is not specified (default)

* On the function call side, the arguments declared with registers and the ordinary arguments are passed in
the same manner. The second and subsequent arguments are passed via a stack. The first argument is
passed via a register or a stack (in the same manner as ordinary functions).

* For the location where the first argument is passed, refer to Table 11-28.

(b) When the -ZO option is specified
* Arguments are passed via registers. For the registers to be used, refer to Table 11-13.

(2) Location and order of storing arguments

* On the function definition side, all the arguments are allocated to registers.
e |f there is an argument that cannot be allocated to a register, an error occurs.

(a) When the -ZO option is not specified (default)

* On the function definition side, the arguments passed via registers or stacks are copied to registers. Even
when the arguments are passed via registers, the processing to copy the register is output because the
register on the function call side (passing side) and the function definition side (receiving side) are different.
For the registers allocated on the function definition side, refer to Table 11-14.

* The saving and restoring of the register to which arguments are allocated is performed on the function
definition side.

(Order of allocation)
¢ The order is the same as an ordinary function with -QF specified.

(b) When the -ZO option is specified
¢ The locations where arguments are passed on the function call side and the function definition side are the
same as the locations where arguments are allocated.
¢ The saving and restoring of registers to which arguments are allocated is performed before and after the
function call.

(Order of allocation)
¢ The order is the same as for ordinary functions.

460 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(3) Location and order of storing automatic variables

(a) When the -ZO option is not specified (default)
Automatic variables are allocated to registers and _ @ KREGXX. However, the automatic variables are
allocated to _@KREGXX only when -QR is specified. For _@KREGXX, refer to APPENDIX A LIST OF
LABELS FOR saddr AREA.
Automatic variables are allocated to registers when there are excess registers after the allocation of
arguments. When -QR is specified, automatic variables are allocated also to _ @ KREGXX.
If an automatic variable cannot be allocated to registers and _@KREGXX, an error occurs.
The saving and restoring of the register and _@KREGXX to which automatic variables is allocated are
performed in the function definition side.

(Order of allocation)
e The order of allocating automatic variables to registers are the same as the order of allocating arguments.

e The automatic variables allocated to _ @ KREGXX are allocated in the order of declaration.

(b) When the -ZO option is specified.
* Allocation cannot be performed because the automatic variables cannot be described.

The following shows an example of the interface above.

EXAMPLE

(C source)

noauto void func2 (int, int);
void main () {
func2 (0x1234, 0x5678) ;
}
noauto void func2 (int pl, int p2)

/* function body */

User's Manual U15556EJ1VOUM 461

CHAPTER 11 EXTENDED FUNCTIONS

(Output code) With small model, when -ZO is specified

@@CODES

_main:

push
movw
movw
call
pop
ret

_func2:

ret

CSEG BASE

rp3,vp

rp3,#01234H

vp, #05678H
! func2

rp3,vp

; Save registers for arguments

;4660 ; Allocate arguments to rp3
;22136 ; Allocate arguments to vp
; Function call

; Restore registers for arguments

(Output code) With small model, when -ZO is not specified

@@CODES

_main:

movw
push
movw
call
pop
ret

_func2:

push
movw
movw
movw
pop
ret

CSEG

ax,#05678H
ax
ax,#01234H
! func2

ax

rp3,up
rp3,ax
ax, [sp+7]
up, ax

rp3, up

BASE

22136
; Arguments passed via stack

4660 ; The first argument is passed via register
; Function call

; Arguments passed via stack

; Save registers for arguments

; Allocate arguments to rp3

; Argument passed via stack received by register
; Allocate arguments to up

; Restore registers for arguments

462

User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.7.4 norec function call interface

(1) Passing arguments

(@

When the -ZO option is not specified (default)
On the function call side, arguments are passed via registers and _@NRARGX. For the registers, refer to
Table 11-17 Registers Used for norec Function Arguments: Passing Side (Without -ZO).

(b) When the -ZO option is specified

On the function call side, arguments are passed via a register and _@NRARGX. If the arguments cannot be
passed via registers any more, they are passed only via _@NRARGX instead of via registers. Arguments are
never passed via registers and _ @NRARGX together.

(2) Location and order of storing arguments

(@

On the function definition side, all the arguments are allocated to registers and _ @ NRARGX. However,
arguments are allocated to _@NRARGX only when -QR is specified. For _@NRARGX, refer to APPENDIX A
LIST OF LABELS FOR saddr AREA.

If there is an argument that cannot be allocated to registers and _@NRARGX, an error occurs.

When the -ZO option is not specified (default)

On the function definition side, the arguments passed via registers are copied to registers. Even when the
arguments are passed via registers, copying the register is necessary because the register on the function
call side (passing side) and the function definition side (receiving side) are different.

When the arguments are passed via _@NRARGX, the locations where arguments are passed are the same
as the locations where arguments are allocated.

If the arguments cannot be passed via registers any more, they are passed also via _@NRARGX. Arguments
are passed via registers and _@NRARGX together.

The saving and restoring of the register to which arguments are allocated is performed in the function
definition side. For the location of storing arguments, refer to Table 11-18 Registers Used for norec
Function Arguments: Receiving Side (Without -ZO).

User's Manual U15556EJ1VOUM 463

CHAPTER 11 EXTENDED FUNCTIONS

Table 11-31. List of Registers Passing/Receiving norec Arguments (When -ZO Is Not Specified)

Model Small Model, Medium Mode"*" Large Model "
Type
The first argument is char type Passed via C, DE, RP2 Passed via C, TDE, RP2
Received via R6, R7, VP, UP Received via R6, R7, VVP, UP
The first arguments is not char type Passed via AX, DE, RP2 Passed via AX, TDE, RP2
Received via RP3, VP, UP Received via RP3, VVP, UP

Notes 1. With the medium model, the function pointer (3 bytes) cannot be used via a register. When -QR is
specified, however, it can be passed via _@NRARGX.
2. With the large model, only one pointer (3 bytes) can be passed/received via a register. When -QR is
specified, however, it can be passed/received also via _@NRARGX.

(Order of allocation)
¢ With small model, medium model
char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP
If there is no long, float, double type argument, in the order of RP3, UP,

VP
Pointer type: In the order of UP, VP, RP3
long, float, double type: RP3 (lower), VP (higher)

e With large mode
char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP
If there is no long, float, double type argument, in the order of RP3, UP,

VP
Pointer type: VVP
long, float, double type: RP3 (lower), VP (higher)

(b) When the -ZO option is specified
¢ The same as the noauto function call interface

464 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(3) Location and order of storing automatic variables

(@)

(b)

When the -ZO option is not specified

The automatic variables are allocated to registers and _ @NRARGX as long as there are allocable registers
and _@NRARGX. If there is no allocable register any more, they are allocated to _@NRATXX.

However, automatic variables are allocated to _ @NRARGX and _ @NRATXX only when -QR is specified.

For _@NRATXX, refer to APPENDIX A LIST OF LABELS FOR saddr AREA

If there is an automatic variable that cannot be allocated to registers, _ @ NRARGX and _ @ NRATXX, an error
occurs.

The saving and restoring of registers to which automatic variables are allocated is performed on the function
definition side.

(Order of allocating automatic variables)

e The order of allocating automatic variables to registers is the same as the order of allocating noauto
function arguments. For details, refer to 11.7.3 noauto function call interface.

e The automatic variables allocated to _ @ NRATXX are allocated in the order of declaration.

When the -ZO option is specified

¢ The automatic variables are allocated to registers as long as there are allocable registers. If there are no
more allocable registers, they are allocated to _ @ NRATXX.

¢ Automatic variables are allocated to _@NRATXX only when -QR is specified. For _@NRATXX, refer to
APPENDIX A LIST OF LABELS FOR saddr AREA.

e The automatic variables are allocated after arguments are allocated. Therefore, the automatic variables
are allocated to registers when there are excess registers after the allocation of arguments.

¢ If there is an automatic variable that cannot be allocated to a register and _@NRATXX, an error occurs.

* The saving and restoring of registers to allocate automatic variables is performed on the function definition
side.

(Order of allocating automatic variables)

* The order of allocating registers to automatic variables is the same as the order of allocating noauto
function arguments. For details, refer to 11.7.3 noauto function call interface.

e The automatic variables allocated to _ @NRARGX and _@NRATXX are allocated in the order of
declaration.

User's Manual U15556EJ1VOUM 465

CHAPTER 11 EXTENDED FUNCTIONS

EXAMPLE

(C source)

norec void func (int);

void main (void)

func

}

(0x34) ;

norec void func (int p1l)

int a;

a = pl;

(Output code) With small model, when -QX2 and -ZO are specified

@@CODES CSEG

_main:
push
movw
call
pop
ret
_func:
push
movw
pop
ret

rp3 ; Save registers for arguments
rp3,#034H; 52 ; Allocate arguments to RP3

$! func3 ; Function call

rp3 ; Restore registers for arguments

vvp ; Save the automatic variable register
vp, rp3 ;a=pi

vvp ; Restore the automatic variable register

(Output code) With small model, when -QX2 and -ZO is not specified

@@CODE CSEG
_main:
movw ax,#034H ;52 ; Transfers the argument at AX
call $! func ; Function call
ret
_func:
push uup ; Save the automatic variable register
push rp3 ; Save registers for arguments
movw rp3,ax ; Store argument in RP3
movw up, rp3 ;a=pi
pop rp3 ; Restore registers for arguments
pop uup ; Restore the automatic variable register
ret
466 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

11.7.5 Pascal function call interface

The difference between this function interface and other function interfaces is that the correction of stacks used for
loading of arguments when a function is called is done by the function side that was called, rather than the function
caller. All other points are the same as the function attributes specified at the same time.

[Area to which arguments are allocated]

[Sequence in which arguments are allocated]

[Area to which automatic variables are allocated]
[Sequence in which automatic variables are allocated]

¢ If the noauto attribute is specified at the same time, the features are the same as when a noauto function is
called (Refer to 11.7.3 noauto function call interface).

¢ If the noauto attribute is not specified at the same time, the features are the same when an ordinary function is
called (Refer to 11.7.2 Ordinary function call interface).

(C source)
_ _pascal void funcO (register int, int);
void main ()
{
func0 (0x1234, 0x5678) ;
}
_ _pascal void funcO (register int pl, int p2)
{
register int r;
int a;
r = p2;
a = pl;
}

User's Manual U15556EJ1VOUM 467

CHAPTER 11

EXTENDED FUNCTIONS

(Output code)
With small model (when -QF option is specified)

_main:

; line 4 : funcO0(0x1234, 0x5678) ;
movw ax,#05678H ; 22136
push ax

movw ax,#01234H ; 4660

I

7

Argument is passed via a stack
The first argument is passed via a register

call ! funcoO ; Function call
; Stack is not corrected here
ret
; line 6 : _ pascal void funcO(register int pl, int p2)
; line 7 {
_funco0:

push rp3,up

movw rp3,ax

push ax
; line 8 : register int r;
; line 9 : int a;

; line 10 : r = p2;
movw ax, [sp+9]; p2
movw up,ax

; line 11 : a = pl;
movw ax,rp3
movw [sp+0],ax ; a
pop ax

pop rp3,up
pop hl
incg sp

pop ax

br hl

Saves the register for register variables

or register arguments

Allocates a register argument to rp3
Reserves the area for automatic variable a

Argument p2 is passed via stack
Register variable up

Register argument rp3

Automatic variable a

Releases the area for automatic variable a
Restores the register for register variables
or register arguments

Obtains the return address

The stack consumed by arguments passed via a

stack is corrected
Branch to the return address

468 User's Manual U15556EJ1VOUM

CHAPTER 11 EXTENDED FUNCTIONS

(C source)
With large model

_ _pascal noauto void func2(int, int);
void main ()
{
func2 (0x1234, 0x5678) ;
}

__pascal noauto void func2(int pl, int p2)

{

(Output code)
With large model

_main:
; line 4 : func2(0x1234, 0x5678) ;
movw ax,#05678H ; 22136

push ax ; Argument is passed via a stack
movw ax,#01234H ; 4660 ; The first argument is passed via a register
call $! func2 ; Function call

; Stack is not corrected here

ret
; line 6 : _ pascal noauto void func2(int pl, int p2)

; line 7 : {

_func2:
push uup ; Saves the register for arguments
push rp3 ; Saves the register for arguments
movw rp3,ax ; Allocates a register argument to rp3
movw ax, [sp+8] ; Argument passed via a stack and received by a register
movw up, ax ; Allocates an argument to up
pop rp3 ; Restores the register for arguments
pop uup ; Restores the register for arguments
pop whl ; Obtains the return address
pop ax ; The stack consumed by arguments passed via a stack is corrected
br whl ; Branch to the return address

User's Manual U15556EJ1VOUM 469

CHAPTER 12 REFERENCING THE ASSEMBLER

This chapter describes how to link a program written in assembly language.

If a function called from a C source program is written in another language, both object modules are linked by the
linker. This chapter describes the procedure for calling a program written in another language from a program written
in the C language and the procedure for calling a program written in the C language from a program written in
another language.

How to interface with another language by using the RA78K4 assembler package and this C compiler is described
in the following order.

1) Calling assembly language routines from C language
2) Calling C language functions from assembly language

4) Referencing variables defined in assembly language on the C language side

(
(
(3) Referencing variables defined in C language
(
(5) Cautions

470 User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.1 Accessing Arguments/Automatic Variables

The procedure for accessing arguments and automatic variables of this C compiler is described below.

On the function call side, register arguments are passed in the same way as ordinary arguments.
The first argument uses the following registers and stacks, and subsequent arguments are passed via

stacks.
Table 12-1. Passing Arguments (Function Call Side)
Type Passing Location (First Argument) Passing Location (Second and Later Arguments)
1-byte, 2-byte integer AX Stack passing
3-byte integer WHL Stack passing
(Stack passing in case of small model)
4-byte integer AX, RP2 Stack passing
Floating-point number | AX, RP2 Stack passing
Others Stack passing Stack passing

Remark 1-to 4-byte data includes structures and unions.

On the function definition side, arguments passed via a register or stack are stored in the argument allocation
location.

Register arguments are copied to a register or saddr area (_@KREGxXx).

Even when passing is done via a register, the registers on the function call side (passing side) and the
function definition side (receiving side) differ, and therefore register copying is performed.

Ordinary arguments passed via a register are placed on a stack on the function definition side.

If passing is done via a stack, the passing location simply becomes the argument allocation location.

Saving and restoring of registers that allocate arguments is performed on the function definition side.

The arguments of functions and the values of automatic variables declared inside functions are stored in the
following registers, saddr areas, or stack frames using an option.

The base pointer used when storing in a stack frame uses the UP register.

User's Manual U15556EJ1VOUM 471

CHAPTER 12 REFERENCING THE ASSEMBLER

Table 12-2. List of Storing Arguments/Automatic Variables (Inside Called Function)

Option

Argument/auto Variable

Storage Location

Priority Level

-Qv
(register allocation
option)

Declared argument or
automatic variable

e With small or medium
model RP3, VP, UP (only
when -QF is specified)

o With large model
RP3, VVP, UUP (only
when -QF is specified)

Although the allocation order may vary
depending on the number of references, the
priority level is determined basically by the
following rules.

<1> With small or medium model

¢ When -QF is specified

-QR register declared o With small or medium .
)) char, int, short, enum type: In the order of
automatic variable model RP3, VP, UP (only .
] . UP, RP3, VP (if a long, float, or double type
when -QF is specified) argument exists)
e With large model g
RP3, VVP, UUP (only In the order of RP3, UP, VP (if a long, float,
when -QF is specified) or double type argument does not exist)
e Automatic variable Pointer type: In the order of UP, VP, RP3
_@KREGxx long, float, or double type: RP3 (lower), VP
-QRV Declared argument or « With small or medium (higher)
automatic variable model RP3, VP, UP (only ¢ When -QF is not specified
wr?en -QF is specified) char, int, short, enum type: In the order of
o With large model RP3, VP
RP3, VVP, UUP (only Pointer type: In the order of VP, RP3
when -QF is specified) ointer type: In the order o ’
« Automatic variable Io.ng, float, or double type: RP3 (lower), VP
_@KREGxx (higher)
<2> With large model
¢ When -QF is specified
char, int, short, enum type: In the order of
UP, RP3, VP (if the long, float, or double
type argument exists)
In the order of RP3, UP, VP (if the long,
float, or double type argument does not
exist)
Pointer type: In the order of UUP, VVP,
long, float, or double type: RP3 (lower), VP
(higher)
¢ When -QF is not specified
char, int, short, enum type: In the order of
RP3, VP
Pointer type: In the order of VVP
long, float, or double type: RP3 (lower), VP
(higher)
Default Declared argument, Stack frame Order of appearance
automatic variable
472 User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

The following example shows the function call.

(C source: Large model with -QRF)

void funcO(register int, int);
void main ()
{
funcO0 (0x1234, 0x5678) ;
}
void funcO(register int pl, int p2)
{
register int r;
int aj;
r = p2;
a = pl;
}
(Output assembler source)
PUBLIC _funcO
PUBLIC main
@@CODE CSEG
_main:
movw ax,#05678H ; 22136
push ax ; Argument is passed via a stack
movw ax,#01234H ; 4660 ; The first argument is passed via a register
call $! funco ; Function call
pop ax ; Argument is passed via a stack
ret
_funco:
push uup ; Saves the register for arguments
push rp3
movw rp3,ax ; Allocates register arguments p1 to rp3.
push ax
movw ax, [sp+10] ; p2 ; Argument p2 passed via a stack is allocated to up
movw up, ax
movw ax,rp3 ; Register argument p1 is assigned
movw [sp+0],ax ; a ; to automatic variable a
pop ax
pop rp3 ; Restores the register for arguments
pop uup
ret
END

User's Manual U15556EJ1VOUM

473

CHAPTER 12 REFERENCING THE ASSEMBLER

12.2 Storing Return Values

Return values during function calls are stored in registers and carry flags.

The storage locations of return values are shown in the table below.

Table 12-3. Storage Location of Return Values

Type

Small Model

Medium Model

Large Model

1-byte integer
2-byte integer

BC

BC

BC

4-byte integer

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

Pointer

BC

BC (data pointer)
WHL (function pointer)

TDE

Structure, union

BC (start address of structure or
union copied to function-specific
area)

BC (start address of structure
or union copied to function-
specific area)

TDE (start address of structure
or union copied to function-
specific area)

1 bit

CcY

CY

Y

Floating-point number

BC (lower), RP2 (higher)

BC (lower), RP2 (higher)

C (lower), RP2 (higher)

474

User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.3 Calling an Assembly Language Routine from C

By default (when -ZO is not specified), the first argument is passed via a register (refer to Table 11-28 Location
Where First Argument Is Passed (On Function Call Side)). When -ZO is specified, all the arguments are passed via
stacks. This example shows a case in which -ZO is not specified and the default optimization option
(-QCFHJLVW) is specified.

How to call an assembly language routine from C is explained in the following order.

+ Calling an assembly language routine function (C source)
» Saving and restoring the information of an assembly language routine (Assembler source)

(1) Calling an assembly language routine function (C source)
An example of a C language program to call an assembly language routine is shown below.

extern int FUNC (int, long) ; [* function prototype */
void main () {

int i, 3;

long 1;

i=1;

1 = 0x54321;

j = FUNC (i, 1); /* function call */

In this program example, how the two programs interface with each other at execution time and the flow of
control between the two are explained below.

<1> The arguments are passed from the main function to the FUNC function.
The compiler assigns an argument to the register or outputs the code to be placed on the stack.
<2> Control is transferred to the FUNC function by the CALL instruction.

The compiler outputs the CALL instruction.

The stack area immediately after the transfer of control to the FUNC function in the above example looks like
this.

Figure 12-1. Stack Area After Call

Low address

Stack pointer — Return address to main

| (Lower word
() Arguments to be

passed to FUNC

| (Higher word) Iﬁ

High address
Stack area

User's Manual U15556EJ1VOUM 475

CHAPTER 12 REFERENCING THE ASSEMBLER

(2) Saving and restoring the information of assembly language routine (assembler source)

The FUNC function called from main executes the following processes.

<1>
<2>

<3>

<4>
<5>
<6>

<7>

Note

(Saving the base pointer)
Saving the work registers
(Copying the contents of the stack pointer (SP) to the base pointer (UUP/UP))**
(With large model copying to UUP, with small/medium model copying to UP)
Processing the body of FUNC

Setting the return value

Restoring the saved registers

Returning control to main

Note Since this example shows a case in which the default optimization option is used, SP is used for
the stack manipulation. Therefore, the processing in <1> and <3> is not necessary. When the -QF
option is not specified, however, the processing in <1> and <3> is necessary.

An example of an assembly language program is shown below.

@@DATA DSEG

_DT1: DS (2)

_DT2: DS (4)

@@CODE CSEG

_FUNC:
push uup ;save work registers - <2>
push rp3
push vvVp
movw up, ax jargl
movw ax, [sp+11] ;arg2
movw rp3,ax
movw ax, [sp+13] ;arg2
movw vp,ax
movw 'l DT1,up ;move 1lst argument (i)
movw 'l DT2,rp3 ;move 2nd argument (1)
movw 'l DT2+2,vp
movw bc, #0AH ; 10 ;set return value - <5>
pop vVp ;restore work registers
pop rp3
pop uup
ret

476 User’s Manual U15556EJ1V0UM

CHAPTER 12 REFERENCING THE ASSEMBLER

A label with °_’ prefixed to the function name described in the C source is described. Base pointers and work

registers are saved with the same name as function names described inside the C source.

<1>

<2>

<3>

<4>

<5>

Saving the base pointer

In this example, SP is used because a case in which the -QF option is specified is shown.

Therefore, the saving of the base pointer is not performed.

Saving the work registers

In a program created by the C compiler, other functions are called without saving the registers for storing
variables. For this reason, if the values of these variables are to be changed by the function to be called,
the register values must be saved beforehand.

If no register variable is used by the caller, the contents of the work registers need not be saved.

Copying the contents of the stack pointer (SP) to the base pointer (UUP/UP)

The value of the stack pointer (SP) will be changed by a PUSH or POP instruction inside the function. For
this reason, the stack pointer must be saved to the register ‘UUP (large model) or ‘UP (small/medium
model)’ to use it as the base pointer of the arguments.

SP is used in this example. Therefore, copying to the base pointer is not necessary.

Processing the body of FUNC

On completion of steps <1> through <3> above, the body (declarations and statements) of the FUNC
function is processed.

Setting the return value

If FUNC has any value to return, the return value is set in the BC register or RP2 and BC registers;
otherwise, nothing is set in these registers. For register to store the return value, refer to Table 11-27
Location of Storing Return Value.

BC register
Return value Word
16 bits or less

RP2 register BC register
Return value Higher word Lower word
17 bits or more

User's Manual U15556EJ1VOUM 477

CHAPTER 12 REFERENCING THE ASSEMBLER

<6> Restoring the saved registers
The saved contents of the base pointer and work registers are restored.

<7> Returning control to main

Figure 12-2. Stack Area After Return

Low address
Return address to main Return value
BC register
Stack pointer — | (Lower word)
Word
I (Upper word)
or
High address RP2 register BC register
Stack area
Higher word Lower word

The procedure for calling an assembly language from C and the processing of the assembly language routine
are illustrated in Figure 12-3.

Figure 12-3. Calling Assembly Language Routine from C
[Function main]
Low address

Stack pointer — Return address to main

I (Lower word) Arguments to be passed to FUNC
AX register

| (Higher word) :]

High address
Stack area [FUNC function]

Saving register
(U)UP, RP3, (V)VP*

Processing

Storing return value
in BC or RP2, bc
Restoring registers

Low address
Return address to main Return value
BC register
Stack pointer — | (Lower word)
Word
| (Higher word)
or
High address RP2 register BC register
Stack area
Higher word Lower word

478 User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.4 Calling C Language Routine from Assembly Language Routine

(1) Calling a C language function from assembly language (assembler source)

A function written in C language can be called from an assembly language routine by the following procedure.

<1>

<2>

<3>

<4>

Copy the first argument to a register and place the remaining arguments of the function on the stack.
(Refer to Table 11-28 Location Where First Argument Is Passed (On Function Call Side)).

Call the C language function.

Change the value of the stack pointer (SP) for the number of bytes of the arguments

(except the number of bytes of the first argument).

Reference the return value of the C language function (stored in the BC or RP2 and BC registers).

An example of an assembly language program is shown below.

NAME FUNC2
EXTRN _CSUB
PUBLIC _FUNC2
CODE2 CSEG
_FUNC2:
movw ax, #20H ; Set 2nd argument (j)
push ax ;
movw ax, #21H ; Set 1st argument (i)
call ! _CSUB ; Call “CSUB (i, j)’
pop ax
ret
END

User's Manual U15556EJ1VOUM

479

CHAPTER 12 REFERENCING THE ASSEMBLER

<1>

<2>

<3>

<4>

480

Placing the arguments on the stack

If there are two or more arguments, the second and subsequent arguments are placed on the stack. The
arguments are passed as shown in Table 12-4. When the -ZO option is specified on the C source side,
however, all the arguments are placed on the stack.

Figure 12-4. Placing Arguments of Stack

CSUB(i, j)

Low address
2nd argument
High address

Stack area

Calling the C language function

The CALL instruction must be used to call a C language function.

Changing the value of the stack pointer (SP)

The value of the stack pointer (SP) must be changed for the number of bytes of the arguments placed on
the stack. In this example, because arguments of 2 bytes are to be passed, 2 is added to the value of the
stack pointer. (POPped in the example)

Referring to the return value (BC or RP2 and BC)

The return value (in the BC register or RP2 and BC register) from C language function is stored as follows.

BC register
Return value Word
16 bits or less

RP2 register BC register
Return value Higher word Lower word
17 bits or more

User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.5 Referencing Variables Defined by Other Languages

(1) How to refer to C-defined variables
To refer to external variables that have been defined in a C language program in an assembly language routine,
the variables must be declared as extern (external) in the C language program.

[Example of program] With large model

(C source)

extern void subf () ;

char c =0 ;

int i =10 ;

void main ()
subf () ;

In the RA78K4 assembler, the C-defined variables must be described as follows.

(Assembler source)

PUBLIC _subf
EXTRN _c
EXTRN I

@@CODE CSEG

_subf:
MOV A, #04H
MOV ' ¢, A
MOVW AX, #07H
MOVW 11i, AX
RET
END

User's Manual U15556EJ1VOUM 481

CHAPTER 12 REFERENCING THE ASSEMBLER

(2) How to refer to assembler-defined variables from C
To refer to variables that have been defined in assembly language from C, the variables must be described in the
C language program as follows.

[Example of C language program] With large model

(C source)

extern char c ;

extern int i;

void subf ()

{

In the RA78K4 assembler, the assembler-defined variables must be described as follows.

NAME ASMSUB

PUBLIC C
PUBLIC i

ABC CSEG

Cc: DB 0

I: DW 0

END

482 User's Manual U15556EJ1VOUM

CHAPTER 12 REFERENCING THE ASSEMBLER

12.6 Other Important Hints

(1) “_” (underscore)
With this C compiler, “_” (underscore: ASCII code “5FH”) is prefixed to each external variable or reference name.
In the following C program example, “j = FUNC(, 1);” is interpreted as a reference to the external name “_FUNC".

extern int FUNC(int, long); / * function prototype */
void main () {

int i, 3;

long 1;

i=1;

1 = 0x54321;

j = FUNC (i, 1); / * function call */
}

In the RA78K4, the routine name must be described as “ FUNC”.
(2) Placement of arguments on the stack
Arguments are placed on the stack in sequence from the last to the first argument in the direction from the higher

to the lower address. When -ZO is not specified on the C source side, the first argument is passed via a register.

Figure 12-5. Placement of Arguments on Stack

Low address

j=FUNC (i, I); Return address to main
AX register
Stack pointer — | (Lower word) |I|
| (Higher word)

High address
Stack area

User's Manual U15556EJ1VOUM 483

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

This chapter introduces how to effectively use this C compiler.
13.1 Efficient Coding

When developing 78K/IV Series microcontroller-applied products, efficient object generation may be realized with
this C compiler by utilizing the saddr1/2 area, callt table, or callf area of the device.

Use of external variables

— if (saddr2 area can be used) —— Use sreg/_ _sreg variables/use compiler option (-RD).

if (saddr1 area can be used) —— Use _ _sreg1 variables.

Use of bit type (one bit) data

— if (saddr2 area can be used) Use bit/boolean/_ _boolean type variables.

— if (saddr1 area can be used) —— Use _ _boolean1 type variables.
Definition of function

\— if (the function is to be called frequently)
— if (callt table can be used)

\— Declare it as _ _callt/callt function.
(Effective to shorten the code size)

—— if (callf area can be used)

L

Declare it as _ _callf/callf function.
(Effective to improve the execution speed)

484 User's Manual U15556EJ1VOUM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

(1)

Using external variables

When defining an external variable, specify the external variable to be defined as a sreg/_ _sreg variable if the
saddr2 area can be used. Instructions to sreg/_ _sreg variables are shorter in code length than instructions to
memory. This helps shorten object code and improve program execution speed. (The same can be also
performed by specifying the -RD option, instead of using the sreg variable.)

When saddr1 area as well as saddr2 area can be used, the similar effect can be achieved by specifying the
external variable to be defined as _ _sreg1 variable.

Definition of sreg/_ _sreg variable: extern sreg int variable-name ;
extern__sreg int variable-name ;

)

Remark Refer to 11.5 (3) How to use the saddr area.

1-bit data

A data object which only uses 1-bit data should be declared as a bit type variable (or boolean/_ _boolean type
variable). A bit manipulation instruction will be generated for an operation on a bit/boolean/_ _boolean type
variable. Because saddr area is used as well as the sreg variable, the codes can be shortened and the
execution speed can be improved.

When saddr1 area as well as saddr2 area can be used, the similar effect can be achieved by specifying the
external variable to be defined as a _ _boolean1 type variable.

Declaration of bit/boolean type variable: bit variable-name ;
boolean variable-name ;
__boolean variable-name ;

Remark Refer to 11.5 (7) bit type variables.

User's Manual U15556EJ1VOUM 485

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

@)

(4)

Function definitions

For a function to be called over and over again, object code should be shortened or a structure which allows
calling at high speeds should be provided. If the callt table can be used for functions to be called frequently,
such functions should be defined as callt functions. Likewise, if the callf area can be used for functions to be
called frequently, such functions should be defined as callf functions. The callf functions can be called faster
than ordinary function calls with shorter codes because the callf functions are called using the callf area of the
device. The callt functions are effective when codes needs to be shortened because the callt functions use the
callt area of the device and are called with shorter code than callf.

Definition of callt function: callt int tsub() {

}

Definition of callf function: callf int tsub()

Remark Refer to 11.5 (1) callt function and 11.5 (15) callf function.

In addition to the use of the areas shown above, objects that do not need modification of the C source by
compiling with the optimization option can be generated. For the effect of each -Q suboption, refer to the
CC78K4 C Compiler Operation User’s Manual (U15557E).

Optimization option
The optimization options that emphasize the object code size the most is as follows.

[Object code is emphasized the most]

-QX3

Further shortening of the code size and improvement of the execution speed is possible by adding _ _sreg or _
_sreg1 to variables. However, this is restricted to the cases when saddr2 area or saddr1 area can be used.
When the areas have no more space and cannot be used, a compilation error occurs.

If execution speed is also highly emphasized, specify the -QX2 default.

If the code size is smaller than -QX3, -QX4 can be specified. However, there are restrictions during debugging.

486 User's Manual U15556EJ1VOUM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

In addition, the object efficiency can be improved by adding the extended functions supported by this compiler to

the C source.

(5) Using extended functions

Definition of function
— if (the function is to be called frequently)
L if (the function is not to be used recursively)
L Declare it as _ _leaf/norec functions.
— if (the function does not use automatic variables)
L Declare it as noauto function.
— if (the function uses automatic variables and && register/saddr area can be used)

L Declare it with register storage class.

— if (use internal static variables) && (saddr2 area can be used)

L Declare with _ _sreg/specify -RS option
Functions not used recursively
Of the functions to be called over and over again, the ones which are not used recursively should be defined
as _ _leaf/norec functions. norec functions become functions that do not have preprocessing/
postprocessing (stack frame). Therefore, the object code can be shortened and the execution speed can be

improved compared to the ordinary functions.

Remark For the definition of the norec function (norec int rout ()...), refer to 11.5 (6) norec
function and 11.7.4 norec function call interface.

User's Manual U15556EJ1VOUM 487

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

488

Functions that do not use automatic variables

Functions that do not use automatic variables should be defined as noauto functions. These functions will
not output code for stack frame generation and their arguments will be passed to registers as much as
possible. These functions help shorten object code and improve program execution speed.

Remark For the definition of the noauto function (noauto int subl (int i)...), refer to 11.5 (5)
noauto functions and 11.7.3 noauto function call interface.

Functions that use automatic variables

If the saddr2 area can be used for a function that uses automatic variables, declare the function with the
register storage class specifier. By this register declaration, the object declared as register will be allocated
to a register. A program using registers operates faster than one using memory, and object code can be
shortened as well.

Remark For the definition of the register variable (register int i; ...), refer to 11.5 (2) Register
variables.

Functions that use internal static variables

If the saddr2 area can be used for a function that uses internal static variables, declare the function with
_ _sreg or specify the -RS option. In the same way as with sreg variables, the object code can be shortened
and the execution speed can be improved.

When saddr1 area can be used as well as saddr2 area, the same effect can be achieved by declaring the
function with _ _sreg1.

Remark Referto 11.5 (3) How to use saddr area.

User's Manual U15556EJ1VOUM

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

In addition, the code efficiency and the execution speed can be improved by the following methods.

¢ Use of SFR name (or SFR bit name).

#pragma sfr

* Use of _ _sreg/_ _sreg1 declaration for bit fields that consist only of 1-bit members (unsigned char type can

be used for members).

__sreg struct bf ({

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} bf 1;

char
char
char
char
char

char

Hh O Q Q O 9

* Use of the register bank change for interrupt processing.
#pragma interrupt INTPO inter RB1

* Use of multiplication and division embedded function.

#pragma mul

#pragma div

¢ Description of only the modules whose speed needs to be improved in the assembly language.

User's Manual U15556EJ1VOUM

489

APPENDIX A LIST OF LABELS FOR saddr AREA

With the CC78K4, addresses in the saddr2 area are referenced by the following label names. For this reason, the
same names as these label names cannot be used in the C source program or assembler source program.

For the areas of Section A.1 to A.3, any consecutive 32-byte area of saddr2 area (F) FD20H to (F) FDFFH is
used. The allocation addresses are determined at linking.

Remark (F)FDXXH indicates the address where _@NRARGO is allocated, and F is added to the higher 4 bits at
the location 1024K (OFH: Compiler option -CS15).

A.1 Arguments of norec Functions

Label Name Address
_@NRARGO (F)FDXXH
_@NRARG1 _@NRARGO + 1H
_@NRARG2 _@NRARGO + 2H
_@NRARG3 _@NRARGO + 3H
_@NRARG4 _@NRARGO + 4H
_@NRARG5 _@NRARGO + 5H
_@NRARG6 _@NRARGO + 6H
_@NRARG7 _@NRARGO + 7H

490 User's Manual U15556EJ1VOUM

APPENDIX A LIST OF LABELS FOR saddr AREA

A.2 Automatic variables of norec Functions

A.3 Register Variables

Label Name Address
_@NRATO00 _@NRARGO + 8H
_@NRATO1 _@NRARGO + 9H
_@NRAT02 _@NRARGO + AH
_@NRATO03 _@NRARGO + BH
_@NRATO04 _@NRARGO + CH
_@NRATO05 _@NRARGO + DH
_@NRATO06 _@NRARGO + EH
_@NRATO07 _@NRARGO + FH

Label Name Address
_@KREGO00 _@NRARGO + 10H
_@KREGO1 _@NRARGO + 11H
_@KREGO02 _@NRARGO + 12H
_@KREGO03 _@NRARGO + 13H
_@KREG04 _@NRARGO + 14H
_@KREGO05 _@NRARGO + 15H
_@KREGO06 _@NRARGO + 16H
_@KREGO07 _@NRARGO + 17H
_@KREGO08 _@NRARGO + 18H
_@KREGO09 _@NRARGO + 19H
_@KREG10 _@NRARGO + 1AH
_@KREG11 _@NRARGO + 1BH
_@KREG12 _@NRARGO + 1CH
_@KREG13 _@NRARGO + 1DH
_@KREG14 _@NRARGO + 1EH
_@KREG15 _@NRARGO + 1FH

User's Manual U15556EJ1VOUM

491

APPENDIX B LIST OF SEGMENT NAMES

This chapter explains all the segments that the compiler outputs and their locations.
(1) to (3) shows the options and re-allocation attributes used in the table.

(1) Option
-MS: Small model
—MM: Medium model
—ML: Large model
-CSo0: Location O0OH
-CS15: Location OFH

(2) Relocation attribute of CSEG

492

CALLTO:

BASE:
AT absolute expression:

FIXED:

FIXEDA:

PAGE:

PAGE64K:

UNIT/without specification:

UNITP:

Allocates the specified segment in the address 40H to 7FH with the start address
of a multiple of 2.

Allocates the specified segment in the address 80H to OFCFFH.

Allocates the specified segment in an absolute address (within OH to OFCFFH,
10000H to OFFFFFH)"".

Allocates the start address of the specified segment in the address 800H to
OFFFH.

Allocates the start address of the specified segment in the address 800H to
OFFFH and the end within OFCFFH.

Allocates the specified segment in the address xxxO0H to xxxFFH (within
OFFFFFH).

Allocates the specified segment not to extend over the 64 KB boundary (within
OH to OFCFFH, 10000H to OFFFFFH)"".

Allocates the specified segment to a given location (within 80H to OFCFFH,
10000H to OFFFFFH)"".

Allocates the specified segment to a given location with the start address in an
even address (80H to OFCFFH, 10000H to OFFFFFH)"".

Note The range can be changed by specifying the —CS option.

User's Manual U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

(3) Re-allocation attributes of DSEG

SADDR: Allocates the specified segment to saddri area (saddr1 area: OFEOOH to
OFEFFH)"*

SADDR2: Allocates the specified segment to saddr2 area (saddr2 area: OFD20H to
OFDFFH)"*

SADDRP: Allocates the specified segment starting from an even address in saddr1 area.

SADDRP2: Allocates the specified segment starting from an even address in saddr2 area.

SADDRA: Allocates the specified segment to a given area in saddr area (saddr area:

saddr1 area/saddr2 area).

AT absolute expression: Allocates the specified segment to an absolute address.

UNIT/without specification: Allocates the specified segment to a given location (within the memory area
name “RAM”)",

UNITP: Allocates the specified segment to a given location starting from an even
address (within the memory area name ‘RAM’)"*.

PAGE: Allocates the specified segment to a given location between XXXXO00H to
XXXXFFH (within OFFFFFH)"".

PAGE64K: Allocates the specified segment not to extend over the 64 KB boundary (within

OH to OFCFFH, 10000H to FFFFFH)"".

Note The range can be changed by specifying the —CS option (the address may differ depending on the
target device. For details, refer to the user's manual of the target device used).

User's Manual U15556EJ1VOUM 493

APPENDIX B LIST OF SEGMENT NAMES

B.1 List of Segment Names
B.1.1 Program area and data area

(1) With small model (when -MS is specified)

Section Name Segment Type Relocation Attribute Description
@ @BASE CSEG BASE Segment for callt function and interrupt function
@@VECTnn CSEG AT nnH Segment for interrupt vector table
@ @CODES CSEG BASE Segment for ordinary function codes
@@CNSTS CSEG BASE Segment for const variables
@ @CALFS CSEG FIXEDA Segment for callf function
@@CALT CSEG CALLTO Segment for table for callt function
@ @RSINIT CSEG BASE Segment for initialization data (with initial value)
@ @RSINIS CSEG BASE Segment for initialization data (sreg variable with initial value)
@ @RSINS1 CSEG BASE Segment for initialization data (sreg1 variable with initial value)
@@INIT DSEG Segment for data area (with initial value)
@@DATA DSEG Segment for data area (without initial value)
@ @INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@ @DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@ @INISH DSEG SADDR Segment for data area (sreg1 variable with initial value)
@ @DATSH DSEG SADDR Segment for data area (sreg1 variable without initial value)
@@BITS BSEG SADDR2 Segment for boolean type and bit type variables
@ @BITSH BSEG SADDR Segment for _ _boolean 1 type variable
@EXTO00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is
specified)"*®

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer
to B.1.2 Flash memory area (@ @INIS— @EINIS, etc.).
Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For @ @VECTNnn, nn is determined when the interrupt source is specified by #pragma vect (interrupt)
(nn: Number of interrupt vector address).

494 User's Manual U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

(2) With large model (when -ML is specified)

Section Name Segment Type Relocation Attribute Description

@ @BASE CSEG BASE Segment for callt function and interrupt function

@@VECTnn CSEG AT nnH Segment for interrupt vector table

@ @CODE CSEG Segment for ordinary function codes

@@CNST CSEG Segment for const variables

@ @CALF CSEG FIXED Segment for callf function

@ @CALT CSEG CALLTO Segment for table for callt function

@@R_INIT CSEG Segment for initialization data (with initial value)

@@R_INIS CSEG Segment for initialization data (sreg variable with initial value)

@ @R_INS1 CSEG Segment for initialization data (sreg1 variable with initial
value)

@@INIT DSEG Segment for data area (with initial value)

@@DATA DSEG Segment for data area (without initial value)

@ @INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@ @DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@ @INISH DSEG SADDR Segment for data area (sreg1 with initial value)

@ @DATSH DSEG SADDR Segment for data area (sreg1 variable without initial value)

@@BITS BSEG SADDR2 Segment for boolean type and bit type variables

@ @BITSH BSEG SADDR Segment for _ _boolean1 type variable

@EXTO00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is
specified)"*

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer
to B.1.2 Flash memory area (@ @INIS— @EINIS, etc.).
Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @ @VECTnn, nn is determined when the interrupt source is specified by #pragma vect
(interrupt) (nn: Number of interrupt vector address).

User's Manual U15556EJ1VOUM 495

APPENDIX B LIST OF SEGMENT NAMES

(3) With medium model and location 00H (when —-MM and —CSO are specified)

Section Name Segment Type Relocation Attribute Description
@ @BASE CSEG BASE Segment for callt function and interrupt function
@@VECTnn CSEG AT nnH Segment for interrupt vector table
@ @CODE CSEG Segment for ordinary function codes
@ @CNSTS CSEG BASE Segment for const variables
@ @CALF CSEG FIXED Segment for callf function
@ @CALT CSEG CALLTO Segment for table for callt function
@@R_INIT CSEG Segment for initialization data (with initial value)
@ @R_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ @R_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@@INIT DSEG Segment for data area (with initial value)
@@DATA DSEG Segment for data area (without initial value)
@ @INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@ @DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@ @INISH DSEG SADDR Segment for data area (sreg1 variable with initial value)
@ @DATSH DSEG SADDR Segment for data area (sreg1 variable without initial value)
@@BITS BSEG SADDR2 Segment for boolean type and bit type variables
@ @BITSH BSEG SADDR Segment for _ _boolean1 type variable
@EXTO00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is
specified)"*

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer
to B.1.2 Flash memory area (@ @INIS— @EINIS, etc.).
Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @ @VECTnn, nn is determined when the interrupt source is specified by #pragma vect
(interrupt) (nn: Number of interrupt vector address).

496 User's Manual U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

(4) With medium model and location OFH (when —MM and —-CS15 are specified)

Section Name Segment Type Relocation Attribute Description
@ @BASE CSEG BASE Segment for callt function and interrupt function
@@VECTnn CSEG AT nnH Segment for interrupt vector table
@ @CODE CSEG Segment for ordinary function codes
@@CNSTM CSEG PAGE64K Segment for const variables
@ @CALF CSEG FIXED Segment for callf function
@ @CALT CSEG CALLTO Segment for table for callt function
@@R_INIT CSEG Segment for initialization data (with initial value)
@@R_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ @R_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@@INITM DSEG PAGE64K Segment for data area (with initial value)
@ @DATAM DSEG PAGE64K Segment for data area (without initial value)
@ @INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@ @DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@ @INISH DSEG SADDR Segment for data area (sreg1 variable with initial value)
@ @DATSH DSEG SADDR Segment for data area (sreg1 variable without initial value)
@@BITS BSEG SADDR2 Segment for boolean type and bit type variables
@ @BITSH BSEG SADDR Segment for _ _boolean1 type variable
@EXTO00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is

Note

specified)

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer
to B.1.2 Flash memory area (@ @INIS— @EINIS, etc.).
Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @@VECTnn, nn is determined when the interrupt source is specified by #pragma vect

(interrupt) (nn: Number of interrupt vector address).

User's Manual U15556EJ1VOUM

497

APPENDIX B LIST OF SEGMENT NAMES

B.1.2 Flash memory area

(1) With small model (when -MS is specified)

Section Name Segment Type Relocation Attribute Description
@ECODES CSEG BASE Segment for normal function codes
@ECNSTS CSEG BASE Segment for const variables
@ERSINIT CSEG BASE Segment for initialization data (with initial value)
@ERSINIS CSEG BASE Segment for initialization data (sreg variable with initial value)
@ERSINS1 CSEG BASE Segment for initialization data (sreg1 variable with initial value)
@EINIT DSEG Segment for data area (with initial value)
@EDATA DSEG Segment for data area (without initial value)
@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)
@EDATSH1 DSEG SADDR Segment for data area (sreg1 variable without initial value)
@EBITS BSEG SADDR2 Segment for boolean type and bit type variables
@EBITS1 BSEG SADDR Segment for _ _boolean 1 type variable

(2) With large model (when -ML is specified without 2-byte alignment)

Section Name Segment Type Relocation Attribute Description

@ECODE CSEG Segment for normal function codes
@ECNST CSEG Segment for const variables
@ER_INIT CSEG Segment for initialization data (with initial value)
@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@EINIT DSEG Segment for data area (with initial value)
@EDATA DSEG Segment for data area (without initial value)
@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@EINIS1 DSEG SADDR Segment for data area (sreg1 with initial value)
@EDATSH1 DSEG SADDR Segment for data area (sreg1 variable without initial value)
@EBITS BSEG SADDR2 Segment for boolean type and bit type variables
@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

498 User's Manual U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

(3) With large model (when -ML is specified with 2-byte alignment)

Section Name Segment Type Relocation Attribute Description
@ECODE CSEG Segment for normal function codes
@ECNST CSEG UNITP Segment for const variables
@ER_INIT CSEG UNITP Segment for initialization data (with initial value)
@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@EINIT DSEG UNITP Segment for data area (with initial value)
@EDATA DSEG UNITP Segment for data area (without initial value)
@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@EINIS1 DSEG SADDR Segment for data area (sreg1 with initial value)
@EDATSH1 DSEG SADDR Segment for data area (sreg1 variable without initial value)
@EBITS BSEG SADDR2 Segment for boolean type and bit type variables
@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

(4) With medium model and location 00H (when —-MM and —CSO are specified)

Section Name Segment Type Relocation Attribute Description
@ECODE CSEG Segment for normal function codes
@ECNSTS CSEG BASE Segment for const variables
@ER_INIT CSEG Segment for initialization data (with initial value)
@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@EINIT DSEG Segment for data area (variable with initial value)
@EDATA DSEG Segment for data area (without initial value)
@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)
@EDATSH1 DSEG SADDR Segment for data area (sreg1 variable without initial value)
@EBITS BSEG SADDR2 Segment for boolean type and bit type variables
@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

User's Manual U15556EJ1VOUM

499

APPENDIX B LIST OF SEGMENT NAMES

(5) With medium model and location OFH (when —MM and —-CS15 are specified)

Section Name Segment Type Relocation Attribute Description
@ECODE CSEG Segment for normal function codes
@ECNSTM CSEG PAGEG64K Segment for const variables
@ER_INIT CSEG Segment for initialization data (with initial value)
@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)
@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)
@EINITM DSEG PAGE64K Segment for data area (with initial value)
@EDATAM DSEG PAGE6G4K Segment for data area (without initial value)
@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)
@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)
@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)
@EDATSH1 DSEG SADDR Segment for data area (sreg1 variable without initial value)
@EBITS BSEG SADDR2 Segment for boolean type and bit type variables
@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

B.2 Location of Segment

Segment Type Destination of Allocation (Default)
CSEG ROM
BSEG saddr area of RAM
DSEG RAM

500

User's Manual U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

B.3 Example of C Source

#pragma INTERRUPT INTPO inter rbl /* interrupt vector */

void inter(void) ; /* interrupt function prototype declaration */

const int i cnst = 1;
callt void £ clt(void);
callf void £ clf (void);
boolean b _bit;

long 1 init = 2;

int i data;

sreg int sr_inis = 3;

sreg int sr_dats;

void main ()

/* const variable */

/* callt function prototype declaration */
/* callf function prototype declaration */
/* boolean type variable */

/* external variable with initial value */

/* external variable without initial value */
/* sreg variable with initial value */

/* sreg variable without initial value */

/* function definition */

{
int i;
i = 100;
}
void inter () /* interrupt function definition */
{
unsigned char uc = 0;
uc++;
if (b_bit)
b bit = 0;
}
callt void £ clt() /* callt function definition */
{
}
callf void £ _clf() /* callf function definition */
{
}

User's Manual U15556EJ1VOUM

501

APPENDIX B LIST OF SEGMENT NAMES

B.4 Example of Output Assembler Module

Quasi-directives and instruction sets in an assembler source vary depending on the device.
Refer to the RA78K4 Online Help for details.

; 78K/IV Series C Compiler V2.30 Assembler Source

Date:XX XXX XXXX Time:xxX:xXX:XX

; Command : -c4026 sample.c -sa -ng
; In-file : sample.c
; Asm-file : sample.asm

; Para-file

$CHGSFR (15)
$PROCESSOR (4026)
$NODEBUG
$NODEBUGA
$KANJICODE SJIS

STOL_INF 03FH, 0230H,
PUBLIC _inter
PUBLIC _i_cnst
PUBLIC ?f clt
PUBLIC f clf
PUBLIC b bit
PUBLIC _1 init
PUBLIC _i data
PUBLIC _sr inis
PUBLIC _sr dats
PUBLIC main
PUBLIC f clt
PUBLIC _@vect06

@@BITS BSEG SADDR2

b bit DBIT

@@CNST CSEG

i cnst: DW 01H

@@R_INIT CSEG
DW 00002H, 00000H

@@INIT DSEG

1 init: DS (4)

502

00H,

’

08021H,

User's Manual

00H

; Segment for boolean type variable

; Segment for const variable

; Segment for initialization data (external variable

with initial value)

; Segment for data area (external variable with initial

value)

U15556EJ1VOUM

APPENDIX B LIST OF SEGMENT NAMES

@@DATA DSEG

i data:

@@R_INIS
DW

@@INIS DSEG

_sr_inis:

@@DATS DSEG

_sr_dats:

@@CALT CSEG
?f clt: DW

; line 1
; line 2
; line 3
; line 4
; line 5
; line 6
; line 7
; line 8
; line 9
; line 10
; line 11
; line 12
; line 13
; line 14

@@CODE CSEG

_main:
push
; line 15
; line 16
movw
; line 17
pop
ret
; line 18
; line 19
; line 20

@@BASE CSEG
_inter:

sel

; Segment for data area (external variable without

DS (2) initial value)
CSEG ; Segment for initialization data (sreg variable with
03H ;3 initial value)
SADDR2 ; Segment for data area (sreg variable with initial
DS (2) value)
SADDR2 ; Segment for data area (sreg variable without initial
DS (2) value)
CALLTO ; Segment for callt function
_f clt
#pragma INTERRUPT INTPO inter rbl /* interrupt vector */

void inter (void) ;

const int i cnst = 1;
callt void £ _clt(void);
callf void £ clf (void);
boolean b _bit;

long 1 init = 2;

int i _data;

sreg int sr _inis = 3;

sreg int sr_dats;

void main ()

{

rp3
int i;
i = 100;
rp3, #064H ; 100

}

rp3

void inter ()

{

BASE

RB1

/* interrupt function prototype declaration */
/* const variable */

/* callt function prototype declaration */

/* callf function prototype declaration */

/* boolean type variable */

/* external variable with initial value */

/* external variable without initial value */

/* sreg variable with initial value */

/* sreg variable without initial value */

/* function definition */

; Segment for code portion

/* interrupt function definition */

; Segment for callf/interrupt function

User's Manual U15556EJ1VOUM 503

APPENDIX B LIST OF SEGMENT NAMES

push rp3
; line 21 unsigned char uc = 0;
mov r6,#00H ; O
; line 22 uc++;
inc ré6
; line 23 if (b _bit)
bf b bit,$L0005
; line 24 b bit = 0;
clrl _b bit
L0005:
; line 25 }
pop rp3
reti
; line 26
; line 27 callt void £ _clt() /* callt function definition */
; line 28 {
_f clt:
; line 29 }
ret
; line 30
; line 31 callf void £ clf () /* callf function definition */
; line 32 {
@@CALF CSEG FIXED ; Segment for callf function
_f clf:
; line 33 }
ret
@@VECTO06 CSEG AT 0006H ; Segment for interrupt vector table
_@vect06:
DW _inter
END
; Target chip uPD784026
; Device file VX . XX

504 User's Manual U15556EJ1VOUM

Table C-1 shows the runtime library list.

APPENDIX C LIST OF RUNTIME LIBRARIES

These operational instructions are called in the format where @ @, etc. are attached at the beginning of the

function name.

However, cstart and cstarte are called in the format with _@ attached to the top.

All runtime libraries except hdwinit and boot_main are supported when the -ZF option is specified.

No library support is available for operations not in Table C-1. The compiler executes inline expansion.

long addition and subtraction, and/or/xor and shift may be expanded inline.

Table C-1. List of Runtime Libraries (1/5)

Classification

Function Name

Function

Increment Isinc Increments signed long.
luinc Increments unsigned long.
finc Increments float.
Decrement Isdec Decrements signed long.
ludec Decrements unsigned long.
fdec Decrements float.
Sign reverse Isrev Reverses the sign of signed long.
lurev Reverses the sign of unsigned long.
frev Reverses float.
Complement Iscom Obtains one’s complement of signed long.
lucom Obtains one’s complement of unsigned long.
NOT Isnot Negates signed long.
lunot Negates unsigned long.
fnot Negates float.
Multiply Ismul Performs multiplication between two signed long data.
lumul Performs multiplication between two unsigned long data.
fmul Performs multiplication between two float data.
Divide csdiv Performs division between two signed char data.
isdiv Performs division between two signed int data.
Isdiv Performs division between two signed long data.
ludiv Performs division between two unsigned long data.
fdiv Performs division between two float data.
Remainder csrem Obtains remainder after division between two signed char data.
isrem Obtains remainder after division between two signed int data.
Isrem Obtains remainder after division between two signed long data.
lurem Obtains remainder after division between two unsigned long data.

User's Manual U15556EJ1VOUM

505

APPENDIX C LIST OF RUNTIME LIBRARIES

Table C-1. List of Runtime Libraries (2/5)

Classification

Function Name

Function

Add Isadd Performs addition between two signed long data.
luadd Performs addition between two unsigned long data.
fadd Performs addition between two float data.
Subtract Issub Performs subtraction between two signed long data.
lusub Performs subtraction between two unsigned long data.
fsub Performs subtraction between two float data.
Shift Left Islsh Shifts signed long to the left.
lulsh Shifts unsigned long to the left.
Shift Right Isrsh Shifts signed long to the right.
lursh Shifts unsigned long to the right.
Compare Iscmp Compares two signed long data.
lucmp Compares two unsigned long data.
fcmp Compares two float data.
Bitwise AND Isband Performs bitwise AND operation between two signed long data.
luband Performs bitwise AND operation between two unsigned long data.
Bitwise OR Isbor Performs bitwise OR operation between two signed long data.
lubor Performs bitwise OR operation between two unsigned long data.
Bitwise XOR Isbxor Performs bitwise XOR operation between two signed long data.
lubxor Performs bitwise XOR operation between two unsigned long data.
Logical AND fand Performs logical AND operation between two float data.
Logical OR for Performs logical OR operation between two float data.
Conversion from | fiols Converts from float to signed long.
floating point
number ftolu Converts from float to unsigned long.
Conversion to Istof Converts from signed long to float.
floating point
number lutof Converts from unsigned long to float.
Type btol Converts bit to long.
conversion
from bit
Preprocess/ hdwinit Initializes peripheral units (sfr) immediately after CPU has been reset.
postprocess
506 User's Manual U15556EJ1VOUM

APPENDIX C LIST OF RUNTIME LIBRARIES

Table C-1. List of Runtime Libraries (3/5)

Classification

Function Name

Function

Startup routine

cstart

Startup module (including the startup module for booting)
® In the case of a startup module for booting,

library.inc, in which a library name EXTERN declaration is described in the
comments is included.

If the library name’s EXTERN declaration comment is removed, it is used
in the flash area.

The library can be used in the boot area.

EXTERN declarations _@vect00 to @vect3e are executed and are located
in the flash area.

Set an interrupt vector table for interrupt functions.

Secure an area (2 x 32 bytes, 3 x 32 bytes for the medium model and large
model) to register functions by the atexit function, and let the top label
name be _@FNCTBL.

Secure a break area (32 bytes, 64 bytes in the large model) and let the top
label name be _ @MEMTOP, then let the area’s next address label name
be _@MEMBTM.

Define the reset vector table’s segment as follows and specify the top
address of the startup module.

@@VECT00 CSEG AT 0000H
DW _@cstart
Specify LOCATION.
Set the V, U, T and W registers to 0 (small model only).

Set the V, U, T and W registers to 0 (LOCATION 0) and OFH (LOCATION
15) (medium model only).

Set the register bank to RBO.
Set variable _errno input in the error No to 0.

Set the variable _@FNCENT which inputs the number of functions
registered by the atexit function to.

Set the address of _@MEMTOP in variable _@BRAKADR as the initial
break value.

Set 1 as the initial value in the variable _@SEED which is the source of
pseudo random numbers for the rand function.

Execute 0 clearing of data from initialization data copy processing and
external data without initialization values.

User's Manual U15556EJ1VOUM 507

APPENDIX C LIST OF RUNTIME LIBRARIES

Table C-1. List of Runtime Libraries (4/5)

Classification

Function Name

Function

Startup routine

cstart

Startup module (including startup modules for booting)
® In the case of a startup module for booting (for flash)
Call the boot_main function (user program).

Branch to the flash area’s branch table top (ITBLTOP) and move
processing to the startup module for flash memory.

Declare the following labels and variables (distinguish between upper case
and lower case letters).

The user is prohibited to define these symbols.
_@FNCTBL (3 bytes: Medium model, large model)
_@MEMTOP (3 bytes: Large model)

_@MEMBTM (3 bytes: Large model)

_errno (2 bytes)

_@FNCENT (2 bytes)

_@BRKADR (2 bytes/3 bytes: Large model)
_@SEED (4 bytes) _@DIVR (4 bytes)
_@LDIVR (8 bytes)

_@TOKPRT (2 bytes/3 bytes: Large model)

® In the case of a startup module for booting
Call the main function (user program).

Call the exit function by parameter 0.

cstarte

Startup module for flash memory

Define the flash area branch table for branching to the startup module for
flash memory (ITBLTOP is the top address for the flash area branch table).

@EVECTO00 CSEG AT ITBLTOP
BR _@cstarte
Set the final address of the stack area + 1 in the stack pointer (SP).

Execute 0 clearing of data from initialization data copy processing and
external data without initialization values.

Call the main function.

Call the exit function by parameter 0.

Flash
compatibility

boot_main

Execute boot area main function processing (function prototype: void
boot_main (void);). This function returns without doing anything. However,
as necessary, the user, by creating it, can execute processing which suit’s
the user’s purpose.

Example: In cases where update processing of the flash area program is
executed by referring to SFR, etc.

vect00 to 3e

Create an interrupt vector table when the -ZF option is specified
(function prototype: void vect00(void);, ..., void vect3e (void)).

Specify the top address value of the interrupt function located in the flash
area in the interrupt vector table.

508

User's Manual U15556EJ1VOUM

APPENDIX C LIST OF RUNTIME LIBRARIES

Table C-1. List of Runtime Libraries (5/5)

Classification

Function Name

Function

Auxiliary

addwc
anda0
aX3de
aX3whl
aXxwhl
clrhw
cmpa0
cmpax0
cmpaxf
cmpbcO
cmpbcf
eX2de
eX4de
mova0
movax1
movaxs
movbcf
movdes
movs0
movsax
muluwt
muluww
mulwde
mulwhl
sladd
slsdiv
slsmul
slsrem
slsub
sludiv
slumul

slurem

For replacing the fixed-type instruction pattern

swtbla

Converts switch branch table to 2-byte table.

User's Manual U15556EJ1VOUM

509

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-1 shows the number of stacks consumed from the standard libraries.

Table D-1. List of Standard Library Stack Consumption (1/4)

Classification

Function Name

Small Model

Medium Model

Large Model

ctype.h

isalnum

salpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

tolower

toupper

isascii

toascii

_tolower

_toupper

tolow

toup

setjimp.h

setjmp

longjmp

stdarg.h

va_arg

va_start

va_end

o|lo|lojo|o Jo |o |[o|]o|o|o|o|o|]o|o|o|o|o|]o|o |o|o |o |o

oO|o|o]Jo|o |Jo || ||| |o|o|o|]o|o|]o|o|o|o|o|o|o |o

oO|0o|o]J]o|Oo]|Jo |o|o|o|]o|o|o|o|o|o|o|o|o|o|o|o|o|o |o

stdio.h

sprintf

56 (115)

56 (116)

55 (119)"°

sscanf

293 (334)

293 (335)

293 (341)"*

printf

65 (116)

67 (118)

71 (121)%

scanf

304 (336)

308 (338)

308 (344)""

vprintf

65 (116)

67 (118)

71 (121)%

vsprintf

56 (115)

56 (116)

55 (119)"*

getchar

0

0

0

gets

putchar

puts

7
0
5

7
0
5

9
0
6

Note Values in parentheses are for when the version that supports floating-point numbers is used.

510

User's Manual U15556EJ1VOUM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-1. List of Standard Library Stack Consumption (2/4)

Classification Function Name Small Model Medium Model Large Model

stdlib.h atoi 11 11 1
atol 11 11 1
strtol 14 17 21
strtoul 14 17 21
calloc 11 11 18
free 9 9 12
malloc 9 9 12
realloc 14 14 20
abort 0 0 0
atexit 0 0 3
exit n+3 n+3 n+3""°"
abs 0 0 0
div 6 6 6
labs 0 0 0
Idiv 8 8 11
brk 3 3 6
sbrk 3 3 6
atof 39 39 40
strtod 39 39 40
itoa 6 6 8
ltoa 10 10 12
ultoa 10 10 11
rand 5 5 5
srand 0 0 0
bsearch 25+n 26+n 29+4n"°?
gsort 36+n 434n 444"
strbrk 3 3 6
strsbrk 3 3 6
stritoa 6 6 8
stritoa 10 10 13
strultoa 10 10 11

Notes 1. nis the total stack consumption among external functions registered by the atexit function.
2. nis the stack consumption of external functions called from bsearch.
3. nis (20 + stack consumption of external functions called from gsort) x (1 + number of times recursive
calls occurred).

User's Manual U15556EJ1VOUM 511

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-1. List of Standard Library Stack Consumption (3/4)

Classification Function Name Small Model Medium Model Large Model
string.h memcpy 0 0 3
memmove 0 0 6
strcpy 0 0 3
strncpy 0 0 3
strcat 0 0 3
strncat 0 0 3
memcmp 0 0 0
stremp 0 0 0
strncmp 0 0 0
memchr 0 0 0
strchr 0 0 0
strcspn 0 0 3
strpbrk 0 0 3
strrchr 0 0 0
strspn 0 0 3
strstr 2 2 3
strtok 0 0 6
memset 0 0 0
strerror 3 6 6
strlen 0 0 0
streoll 0 0 0
strxfrm 2 2 3
math.h acos 31 31 31
asin 31 31 31
atan 28 28 28
atan2 28 28 28
cos 26 26 26
sin 26 26 26
tan 33 33 33
cosh 31 31 31
sinh 31 31 31
tanh 37 37 37
exp 28 28 28
frexp 0 (14) 0 (14) 0 (15)"*
Idexp 0(11) 0 (11) 0 (12)"*
log 30 30 30
log10 30 30 30
modf 7(11) 7 (11) 7 (12)"*

Note Values in parentheses are for when an operation exception occurs.

512

User's Manual U15556EJ1VOUM

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-1. List of Standard Library Stack Consumption (4/4)

Classification Function Name Small Model Medium Model Large Model

math.h pow 30 30 30
sqrt 12 12 12
ceil 7 (11) 7 (11) 7 (12)!
fabs 0 0 0
floor 7 (11) 7 (11) 7 (12)"*!
fmod 6 (11) 6 (11) 6 (12)"*"
matherr 0 0 0
asinf 31 31 31
atanf 28 28 28
atan2f 28 28 28
cosf 26 26 26
sinf 26 26 26
tanf 33 33 33
coshf 31 31 31
sinhf 31 31 31
tanhf 37 37 37
expf 28 28 28
rexpf 0 (14) 0 (14) 0 (15)"*"
Idexpf 0(11) 0 (11) 0 (12)"*!
logf 30 30 30
log10f 30 30 30
modff 7 (11) 7 (11) 7 (12)!
powf 30 30 30
sqrtf 12 12 12
ceilf 7 (11) 7 (11) 7 (12)"!
fabsf 0 0 0
floorf 7 (11) 7 (11) 7 (12)!
fmodf 6 (11) 6 (11) 6 (12)"*"

assert.h _ _assertfail 76 (127) 78 (129) 85 (135)""°*

Notes 1. Values in parentheses are for when an operation exception occurs.

2. Values in parentheses are for when the printf version that supports floating-point numbers is used.

User's Manual U15556EJ1VOUM

513

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-2 shows the number of stacks consumed from the runtime libraries.

Table D-2. List of Runtime Library Stack Consumption (1/3)

Classification Function Name Small Model Medium Model Large Model

Increment Isinc 0 0 0

luinc 0 0 0

finc 15 (24) 15 (24) 16 (26)""
Decrement Isdec 0 0 0

ludec 0 0 0

fdec 15 (24) 15 (24) 16 (26)"*"
Sign reverse Isrev 2 2 2

lurev 2 2 2

frev 0 0 0
1’s complement Iscom 0 0 0

lucom 0 0 0
Logical NOT Isnot 0 0 0

lunot 0 0 0

fnot 0 0 0
Multiply Ismul 2 2 2

lumul 2 2 2

fmul 8 (17) 8 (17) 9 (19)"*
Divide csdiv 4 4 4

isdiv 6 6 6

Isdiv 13 13 13

ludiv 6 6 6

fdiv 8 (17) 8(17) 9 (19)"*
Remainder csrem 4 4 4

isrem 6 6 6

Isrem 13 13 13

lurem 6 6 6
Add Isadd 0 0 0

luadd 0 0 0

fadd 8 (17) 8(17) 9 (19)**
Subtract Issub 0 0 0

lusub 0 0 0

fsub 8 (17) 8(17) 9 (19)"*

Note Values in parentheses are for when an operation exception occurs (when the

with the compiler is used).

514

User's Manual U15556EJ1VOUM

matherr function included

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-2. List of Runtime Library Stack Consumption (2/3)

Classification Function Name Small Model Medium Model Large Model
Shift left Islsh 0 0 0
lulsh 0 0 0
Shift right Isrsh 0 0 0
lursh 0 0 0
Compare Iscmp 0 0 0
lucmp 0 0 0
femp 2(17) 2(17) 2 (19)"*
Bit AND Isband 0 0 0
luband 0 0 0
Bit OR Isbor 0 0 0
lubor 0 0 0
Bit XOR Isbxor 0 0 0
lubxor 0 0 0
Logical AND fand 0 0 0
Logical OR for 0 0 0
Conversion from ftols 2 2 2
floating-point number folu 5 5 5
Conversion to Istof 2 2 2
floating-point number lutof 5 5 5
Conversion from bit btol 2 2 2
Startup routine cstart 3 3 3

Note Values in parentheses are for when an operation exception occurs (when the matherr function included

with the compiler is used).

User's Manual U15556EJ1VOUM

515

APPENDIX D LIST OF LIBRARY

STACK CONSUMPTION

Table D-2. List of Runtime Library Stack Consumption (3/3)
Classification Function Name Small Model Medium Model Large Model
Auxiliary addwc 0 5 5
anda0 0 0 0
aX3de 0 0 0
axX3whl 0 0 0
aXxwhl 0 0 0
clrhw 0 0 0
cmpa0 0 0 0
cmpax0 0 0 0
cmpaxf 0 0 0
cmpbc0 0 0 0
cmpbcf 0 0 0
eX2de 0 0 0
eX4de 0 0 0
mova0 0 0 0
movax1 0 0 0
movaxs 2 3 5
movbcf 0 0 0
movdes 4 5 5
movs0 4 7 5
movsax 4 7 5
muluwt — — 0
muluww — — 0
mulwde — — 0
mulwhl — — 0
sladd 3 3 3vee
slsdiv 3 3 3t
slsmul 9 9 ghee
slsrem 25 25 25"
slsub 5 5 5t
sludiv 9 9 g
slumul 9 9 g
slurem 13 11 1M
swibla — — o

Note Stack correction for the 4 bytes used for placing an argument when a function is called is performed on the
side of called function.

516 User's Manual U15556EJ1VOUM

APPENDIX E

15 SRR 35
1L PP RROS 35
e 35
AN a e aa s 35
L SR 35
LSS RRS 35
AV e e e e e e 39
#asm - #ENAASMevveiiiiiiiiieee e 336
#define direcCtive..........ceevveeiiiiiece e 150
FNCIUAE ... 50
#include directive........ccoeevvevvvnnnnnnnn. 144, 145, 146, 147
HOPEIATOL ...eveieieieiee e 148
HHOPEIAtOr ..o 148
#pragma directivecocceeeviiiiieiiec e 155, 289
#undef directiveooooieiiii 152
__assertfaileeeeiiii e 278
B - L= 1 SRS 336
__boolean.......cccoeeeiiiiiiiiie e, 28, 29, 326
_ _boolean type variables.............cccccceeenn. 28, 29, 326
_boolean1 type variable.............cccocueeee. 28, 29, 331
(o3 1 | 356
(o= ||| SRR 292
DA T A e 156
FILE e 156

o Nterrupt. 346
__interrupt_brk......ooooeii e, 346
L LINE e 156
L _OPC e 400
PASCAl _ e 29, 31, 421
_ _rtos_interrupt qualifier..........ccccovveieieiiniiciiiee. 408
L STDC e 156
L TIME_ e 156
OUPPET e 174
“QH OPLION .o 414
=ZF OPHON Lo 425
=ZO OPLION ..ttt 413
=ZR OPHON e 424
2 e e e e nraeaaan 35

A

DO . 203
ADS s 205
absolute address access function 28, 30, 363
BCO0S i 233
ACOST 1o 256

INDEX

aggregate type ... 45
allocation functionevvveivviiiiniennnnnn. 30, 287, 361
ANSI e 283
arithmetic operatorscccccovieeiiiiic s 85
AITAYS ..o 128
AITAY tYPE .ovveiiieiiiireieriii s 45
array declaratorscooceeeeiiiiiee e 59
ASIN e 234
ASINT. e 257
ASM statements.........ccccevvvveieieiiinnnn. 28, 29, 336
Assembly [anguagEcccveeeiiieee i 19
assignment operators..........cccceeeeeeeiveenieee e 101
AN Lo 235
AEAN2 ..ot 236
ALAN2T .. 259
AtANT . 258
ALEXIT. .. 204
ALOT e 208
L= 1 (o 194
= (o] SRR 194
= 11 (o TN 52

B
binary constant............ccccccii 30, 389
Dit field . oo 56, 127, 367
bit field declarationcccooovveveviieeeeens 28, 30, 367
bit type variablescccceiiiieiiii e 28, 29, 326
bitwise AND operators...........coceeeeeereiiieeeenceee e 94
bitwise inclusive OR operators............cccceeevvveeennnen. 96
bitwise XOR 0peratorscccceeveerieieiienniienieee 95
BIOCK SCOPE ... 38
boolean type variablesccccceeeeennn. 28, 29, 326
boolean1 type variablesccccccceveeenn. 28, 29, 326
branch statements.........ccccciiii 120
break statements..........occceeiviiiiiiii 123
DK e 207
BRK ..t s 352
DSEarch ... 212
C

ClaNQUAGEcoiiiiiiieeiie et 19
callf/_ _callf function..........ccceeeviiiiiiiiieiiiieieeeeeeeee, 28
callf functionccooeeeviiiiiiiiiiiiceeeeeeeee, 28, 29, 356
o= 1o o 3SR 199

User's Manual U15556EJ1VOUM 517

APPENDIX E INDEX

callt fuNCtIONevvveeeeeeeeieeeiee e 28, 292
cast Operatorsvvveviiiiiiiii 84
CEILL it s 251
COIITL ettt 274
changing compiler output section name 375
changing function call interface........................ 31,413
Char tYPE ..o 40
character constant ... 48
character type ... 44
COMIMA OPEratOr.......uvvurireririririririiiraes 104
COMMIENT ..o 50
compatible type ..o 46
COMPOSItE TYPE ... 46
compound assignment operators............cccceeernnen. 103
compound statementcccoiiiiiii e 112
conditional operators..........ccccevvveeeiiiiine e, 100
conditional control statementsccccoccverineen. 113
{070 1= N 58
CONSEANTS......iie e 46
constant eXPreSSiONSc.eeeeviureeeeriiieee e 105
continue statement............cccccvvieerie e 122
0701 N 237
COST ittt 260
COSN Lt 240
COSHI e 263
CPU control instructionccccccevvvvvevevnennnnnn. 30, 352

BVICE TP .. 156
division functioneeevvvviiiiiiiniiin. 28, 30, 398
dostatementc.coooviiiiiii 118
E
Bl e 349
enumeration constantcccocceeeiiii e 48
enumeration specifiers .56
enumMeration typeccccoveeeeiiiiee e 41
equality Operatorscccocveveiiiee e 91
€SCAPE SEQUENCE.......evvririrerrrrrrrrrrsiererererereres 35
BXIT s 204
EXP wrereriririri e 243
XD et 266

expression statements ... 112
[A = R 410
EXIEIN oot 52,134
external object definitions..........cocceveiiiiiiiiiieene 136
external INKAgecoovoieeeirieiee e 39
external definitionscccccviii i 133
F
FADS e 252
FADST .. 275
fil€ SCOPE ... 38
firmware ROM function........ccccccoceveeieiinieee e, 433

function call function from the boot area 430
function declaratorscceeeceereerciee e
function definition ..o,
function prototype scope

fUNCLION SCOPE ...evviiiiiee e
function to change compiler output section name30
FUNCHION TYPE .o 45
G
general integral promotion..........ccccccvivveeniiencieennen. 67
getChar ..o 190
[0 1= 191
goto statement...........cciiiii 121
H

header file

header NAMEcovvviieiieeieeceee e 50
hexadecimal constant.............coeeeeeiiiiiiiiieiiieeeen. 47
|
ENIfiers ..o 37

518 User’'s Manual U15556EJ1VOUM

APPENDIX E INDEX

if...else statement...........ccooiiiiiiic 114
iNncoMplete tyPe......cooveiiiiiiiieee e 45
INTEQETI tYPE . 67
INEQral IYPE ..veeeeeiii e 41
internal linkage..........ccocviiiiee e 39
interrupt function qualifierccccooeiiiiiiiiieeen, 347
interrupt funCtionscccooceeeieicieeeee e, 29, 340
interrupt handler for RTOSccccoviieiiiineenn. 31, 402
interrupt handler qualifier for RTOS.................. 31, 408
ISAINUM Lo 171
ISAIPNA ... 171
ISASCHI 1. vveee e e et 171
ISCNEIT . e 171
ISAIGIT. e 171
[£5o =1 o] o PR 171
ISIOWETeiieiet e 171
1] o]]] S PP 171
ISPUNCE .. 171
(1SS o= Lo PR 171
ES]0 o] o 1= SO PP OUPPP TR 171
[£53Co [|1 SRR 171
iteration statement ... 116
B8 .. 210
K
KEY WOIAS......veieieiiie e 36
L
labeled statements...........ccoceiiieeiiii e 109
1ADS e 205
[ABXD et 245
[AEXPT e 268
TV e e 206
[0g e e 246
[0GT0 e e 247
10GT0f .. 270
JOG et 269
logical AND operators..........cccocveeeveeeiieenieesiiieeeee 98
logical OR Operators.........cccceevvierieeenieeeee e 99
[ONGIMP et 175
[EO@ .. 210
M
Machine languagecccocvveeeiiiire e 19
MACIO NAMEuuuririririiiiiiirrrr e 156
macro replacement directives...........cccceeeveeeinneeenn. 150
MAIIOC ...t 201

MALNEIT .. 255
MEMCAT (e 222
MEMOCMP... i 220
MEMCPY c.eeiiiiiiiiiiiiiiiiieieie e ee e e i e e e e e s s e e e e eeee e 217
MEMMOVE....cciivreeeereieeerreeessnreee s e e snneeessreeenaans 217
MEMSEL....coiiiiiiiiiiiiiiiiciieeeee e 228
medium model.........ccooovviiiiiiiiieiieeeeeee, 287, 358
MOAF e 248
MO L 271
module name changing function 30, 391
multiplication function............ccccceeicvernneen. 28, 30, 395
N
noauto functions...........ccceeveveveieieeeeeeeeeeeees 28, 29, 312
NO NINKAGEeeiiiiiiie e 39
NOP ...t 352
norec functions...........ccccoeeeveviiiiiieeieeeeeeeees 28, 29, 318
(0
octal constant..........cccviiiiiiiini e 47
P
pascal funCioNcoooviieiiiiiee e 31, 421
pascal function call interface..........ccccococeeerieeeenns 424
PEEKD .. 363
PEEKW ...ttt 363
PN e 186
POINTET et 69
pointer declaratorccccovvieiiiriiee e 59
POKED .ttt 363
POKEW ...ttt ettt e e 363
POStiiX OPErators.......ccccveviieeriii e 73
POW...ciiiiiiiiiiiiiiieieieieieieee e ee e e e e e s s e e 249
0101 S PTS 272
preprocessing direClivesooovveeveiiiiieeeiiiiieeees 137
PULCNAN ... 192
PULS oot 193
Q
[1= 0] ¢ SN 213
R
FANA .o s 211
FEAIIOC. ... eeee it s 202
re-entrantabilityocoeeiii 169
=701 =T PRSP 52

User's Manual U15556EJ1VOUM 519

APPENDIX E INDEX

register Dank ... 287
register bank specificationc.ccccceevviiniinnnen. 341
register variables..........ooovee e 28
relational Operatorsccccevvvvieiiiiee e 20
return statement............coo 124
TOID Lot 392
0] 1R 392
ROMization-related section name..........ccccceeeennee 383
0] o F PR R 392
[0 4 PPN 392
rotate functionooovvvveveiiiiiiiiieeeeeeeeeees 28, 30, 392
RTOS ..o 283
S
SCAlAr TYPE..ueiiiiiiiii e 45
SDIK e 207
SCANT e 187
SELMP it 175
SIF ArEa...eii i 29
sfrvariable ... 309
Shift OPEratorscoocceiiiiiiei e 88
signed integral type.......cccvveeiiiiiiiii e 41
simple assignment operators...........cccceeevveeeininnen. 102
S s 238
SINF e 261
SINN e 241
SINNT .o 264
small Model........cooeviiiiiiiiiieeieeeeceee e, 287, 358
SPIINE e 178
SO s 250
SO ettt 273
SFANG ...t 211
sreg declarationcc.coceeciiiiniin i 301
sreg variable ... 28, 301
sregl variable ..., 306
SSCANT....eiii s 182
stack change specification............cccocvevciiniinnnen. 342
startup routingcoooceviieiee e 384
SEALIC. uverie 52,134
STOP e 352
storage class specifiers..........ccccovveriiiiiiiiiiiiiees 52
SEOIK e 214
L] {07 | N 219
SECNI e 223
SICMP e 221
SECOI. e 231
SICPY wevviririririr 218
SITCSPN e 224

L1 0g=T 4 (o) PP PP PP PPPPPPPPPPPPPIN 229
string literalscoovveeiiie e, 49
S0 e 216
SHIEN e 230
SO e 216
SENCAL...coeee e 219
SHNCMP e 221
SINCPY oot 218
SEPDIK oo 225
SHTCHI e 223
SHSDIK. e 215
SISPN..coiiiiiiiiiieeei 224
SIS e 226
SHAOA o 208
SHAOL. e 227
L] (g (o | RS 196
SHUCT. . 126
SHUCIUIES ... e 126
structure PoiNter ..o 126
structure specifier ... 55
StrucCture type......ooo o 45
structure variable...........cccceiiiiiiii e 126
SHUROA. .. 216
SEXEIM e 232
switch statement.............ccco 115
T
TAGS ittt 57
BAN e 239
BANT e 262
FANN 242
tanhf ... 265
BASK et 410
task function for RTOScovvevvveeeeereevevereeenes 31, 410
L= Lo T SRR 173
TOIOW .. 174
100][0)7= PSR 172
BOUP e 174
TOUPPEN .eeviiiiiieiirireti ettt 172
trigraph SEqUENCES.........ocvvviiiei e 35
TYPE CONVEISIONS ...t 65
TYPE NAMES ... 60
type qualifiersooovieiiiie 58
BYPEAET ... 52
U
0]} (o= PP O TP RFTPRP 210

520 User’'s Manual U15556EJ1VOUM

APPENDIX E INDEX

UNACY OPEIATOrS. .. .uieiuieeiiteeeree st e eree et e e 79
UNION 1.ttt e e 130
UNION SPECITIEN...c.viiiiiiiiiieceee e 55
UNION TYPE . 45
unsigned integral type........cccccooiiiiiiieeen 41
usage of saddr area...........cccevveeveie e 301
\'
(2 K= 1 o N 176
A2z T =T 0 o PP PRSI 176
Va_StaAM ... 176
va_Starttop ..o 176
VOIA ittt 69
VOId POINTET .. 69
volatile
vprintf..........
vsprintf
w
while statement..........ccoooiiiie 117

User's Manual U15556EJ1VOUM

521

[MEMO]

522

NEC

Although NEC hastaken all possible steps
essage to ensure that the documentation supplied
to our customers is complete, bug free

and up-to-date, we readily accept that

From: ;
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounterproblemsinthe documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
; NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC Electronics (Europe) GmbH o /e o Fax: +81- 44-435-9608

Market Communication Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating [EE=N(=1[lElgl Good Acceptable Poor
Clarity a a a a
Technical Accuracy a a a a
Organization a a a a

CS 01.11

