
User’s Manual

Target Devices:
78K/IV Series

Printed in Japan

Document No. U15556EJ1V0UM00 (1st edition)
Date Published November 2001 N CP(K)

CC78K4 Ver.2.30 or Later
C Compiler

Language

© 2001

User’s Manual U15556EJ1V0UM2

[MEMO]

User’s Manual U15556EJ1V0UM 3

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

PC/AT is a trademark of International Business Machines Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.

SPARCstation is a trademark of SPARC International, Inc.

HP9000 series 700 is a trademark of Hewlett-Packard Company.

M8E 00. 4

The information in this document is current as of July, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).

•

•

•

•

•

•

User’s Manual U15556EJ1V0UM4

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

User’s Manual U15556EJ1V0UM 5

INTRODUCTION

The CC78K4 C Compiler (hereafter referred to as this C compiler) was developed based on CHAPTER 2

ENVIRONMENT and CHAPTER 3 LANGUAGE in the Draft Proposed American National Standard for

Information Systems - Programming Language C (December 7, 1988). Therefore, by compiling C source

programs conforming to the ANSI standard with this C compiler, 78K/IV Series application products can be

developed.

The CC78K4 C Compiler Language (this manual) has been prepared to give those who develop software by

using this C compiler a correct understanding of the basic functions and language specifications of this C compiler.

This manual does not cover how to operate this C compiler. Therefore, after you have comprehended the

contents of this manual, read the CC78K4 C Compiler Operation User’s Manual (U15557E).

For the architecture of 78K/IV Series, refer to the user’s manual of each product of 78K/IV Series.

User’s Manual U15556EJ1V0UM6

[Target Devices]

Software for the 78K/IV Series microcontrollers can be developed with this C compiler.

Note that the device file (sold separately) corresponding to the target device is necessary.

[Target Readers]

Although this manual is intended for those who have read the user's manual of the microcontroller subject to software

development and have experience in software programming, the reader need not necessarily have knowledge of C

compilers or C language. Discussions in this manual assume that readers are familiar with software terminology.

[Organization]

This manual consists of the following 13 chapters and appendixes.

CHAPTER 1 GENERAL

Outlines the general functions of C compilers and the performance characteristics and features of this

C compiler.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

Explains the constituent elements of a C source module file.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

Explains the data types and storage classes used in C and how to declare the type and storage class

of a data object or function.

CHAPTER 4 TYPE CONVERSIONS

Explains the conversions of data types to be automatically carried out by this C compiler.

CHAPTER 5 OPERATORS AND EXPRESSIONS

Describes the operators and expressions that can be used in C and the priority of operators.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

Explains the program control structures of C and the statements to be executed in C.

CHAPTER 7 STRUCTURES AND UNIONS

Explains the concept of structures and unions and how to refer to structure and union members.

CHAPTER 8 EXTERNAL DEFINITIONS

Describes the types of external definitions and how to use external declarations.

CHAPTER 9 PREPROCESSING DIRECTIVES

Details the types of preprocessing directives and how to use each preprocessing directive.

CHAPTER 10 LIBRARY FUNCTIONS

Details the types of C library functions and how to use each library function.

CHAPTER 11 EXTENDED FUNCTIONS

Explains the extended functions of this C compiler provided to make the most of the target device.

CHAPTER 12 REFERENCING BETWEEN C AND ASSEMBLER

Describes the method of linking a C source program with a program written in assembly language.

CHAPTER 13 EFFECTIVE UTILIZATION

Outlines how to effectively use this C compiler.

APPENDIXES A through E

Contain a list of labels for saddr area, a list of segment names, a list of runtime libraries, a list of library

stack consumption, and an index for quick reference.

User’s Manual U15556EJ1V0UM 7

[How to Read This Manual]

• For those who are not familiar with C compilers or C language:

Read from CHAPTER 1, as this manual covers from the program control structures of C to the extended functions

of this C compiler. In CHAPTER 1, an example of C source program is used to show where in the manual details

can be referenced.

• For those who are familiar with C compilers or C language:

The language specifications of this C compiler conform to ANSI Standard C. Therefore, you may start from

CHAPTER 11, which explains the extended functions unique to this C compiler. When reading CHAPTER 11,

also refer to the user's manual supplied with the target device in the 78K/IV Series, if necessary.

[Related Documents]

Document Name Document No.

CC78K4 C Compiler Operation User’s Manual U15557E

[Reference]

Draft Proposed American National Standard for Information Systems - Programming Language C (December

7, 1988)

[Terms]

RTOS = 78K/IV Series Real-time OS RX78K/IV

[Conventions]

The following conventions are used in this manual.

Symbol Meaning

... Continuation (repetition) of data in the same format

“ ” Characters enclosed in a pair of double quotes must be input as is.

‘ ’ Characters enclosed in a pair of single quotes must be input as is.

: This part of the program description is omitted.

/ Delimiter

\ Backslash

[] Parameters in square brackets may be omitted.

User’s Manual U15556EJ1V0UM8

CONTENTS

CHAPTER 1 GENERAL... 19
1.1 C Language and Assembly Language ... 19
1.2 Program Development Procedure by C Compiler... 21
1.3 Basic Structure of C Source Program.. 23

1.3.1 Program format.. 23

1.4 Reminders Before Program Development... 26
1.5 Features of This C Compiler ... 28

<1> callt/_ _callt functions ... 28

<2> Register variables .. 28

<3> Using the saddr area... 29

<4> sfr area .. 29

<5> noauto functions ... 29

<6> norec/_ _leaf functions ... 29

<7> bit type variables and boolean/_ _boolean type variables .. 29

<8> boolean1 type variables.. 29

<9> ASM statements... 29

<10> Interrupt functions .. 29

<11> Interrupt function qualifier .. 29

<12> Interrupt function.. 30

<13> CPU control instructions .. 30

<14> callf/_ _callf function... 30

<15> Usage of 16 MB expansion space ... 30

<16> Location function.. 30

<17> Absolute address access function ... 30

<18> Bit field declaration .. 30

<19> Function to change compiler output section name .. 30

<20> Binary constant description function .. 30

<21> Module name change functions... 30

<22> Rotate function... 30

<23> Multiplication function .. 30

<24> Division function... 30

<25> Data insertion function ... 31

<26> Interrupt handler for RTOS .. 31

<27> Interrupt handler qualifier for RTOS... 31

<28> Task function for RTOS ... 31

<29> Changing function call interface... 31

<30> Change of calculation method of offset of arrays and pointers.. 31

<31> Pascal function (_ _pascal) ... 31

<32> Automatic pascal functionization of function call interface... 31

<33> Flash area allocation method... 31

<34> Flash area branch table ... 31

<35> Function call function from boot area to flash area.. 31

<36> Firmware ROM function ... 31

<37> Limiting int expansion of argument/return value.. 32

<38> Memory manipulation function ... 32

User’s Manual U15556EJ1V0UM 9

<39> callf two-step branch function ... 32

<40> Automatic callf functionization of function call interface.. 32

<41> Three-byte address reference/generation function.. 32

<42> Absolute address allocation specification.. 32

CHAPTER 2 CONSTRUCTS OF C LANGUAGE..33
2.1 Character Sets...34

(1) Character sets .. 34

(2) Escape sequences ... 35

(3) Trigraph sequences.. 35

2.2 Keywords ...36
(1) ANSI keywords... 36

(2) Keywords added for the CC78K4... 36

2.3 Identifiers ...37
2.3.1 Scope of identifiers.. 37

(1) Function scope ... 38

(2) File scope ... 38

(3) Block scope .. 38

(4) Function prototype scope ... 38

2.3.2 Linkage of identifiers ... 39

(1) External linkage.. 39

(2) Internal linkage ... 39

(3) No linkage .. 39

2.3.3 Name space for identifiers... 39

2.3.4 Storage duration of objects ... 39

(1) Static storage duration ... 39

(2) Automatic storage duration .. 40

2.3.5 Data types ... 40

(1) Basic types ... 41

(2) Character types .. 44

(3) Incomplete types .. 45

(4) Derived types ... 45

(5) Scalar types.. 45

2.3.6 Compatible type and composite type .. 46

(1) Compatible type ... 46

(2) Composite type .. 46

2.4 Constants...46
2.4.1 Floating-point constant .. 47

2.4.2 Integer constant... 47

(1) Decimal constant.. 47

(2) Octal constant .. 47

(3) Hexadecimal constant .. 47

2.4.3 Enumeration constants.. 48

2.4.4 Character constants .. 48

2.5 String Literals ..49
2.6 Operators ...49
2.7 Delimiters...49
2.8 Header Name ...50

User’s Manual U15556EJ1V0UM10

2.9 Comment... 50

CHAPTER �3���DECLARATION OF TYPES AND STORAGE CLASSES....................................... 51
3.1 Storage Class Specifiers ... 52

(1) typedef.. 52

(2) extern.. 52

(3) static ... 52

(4) auto... 52

(5) register.. 52

3.2 Type Specifiers... 53
3.2.1 Structure specifier and union specifier .. 55

(1) Structure specifier... 55

(2) Union specifier.. 55

(3) Bit field.. 56

3.2.2 Enumeration specifiers .. 56

3.2.3 Tags... 57

3.3 Type Qualifiers ... 58
3.4 Declarators.. 59

3.4.1 Pointer declarators .. 59

3.4.2 Array declarators ... 59

3.4.3 Function declarators (including prototype declarations) .. 60

3.5 Type Names .. 60
3.6 typedef Declarations .. 60
3.7 Initialization... 62

(1) Initialization of objects which have a static storage duration .. 62

(2) Initialization of objects that have an automatic storage duration .. 62

(3) Initialization of character arrays.. 62

(4) Initialization of aggregate or union type objects ... 63

CHAPTER� 4���TYPE CONVERSIONS .. 65
4.1 Arithmetic Operands.. 67

(1) Characters and integers (general integral promotion) .. 67

(2) Signed integers and unsigned integers .. 67

(3) Usual arithmetic type conversions.. 68

4.2 Other Operands .. 69
(1) Left-side values and function locators .. 69

(2) void ... 69

(3) Pointers .. 69

CHAPTER 5 OPERATORS AND EXPRESSIONS .. 70
5.1 Primary Expressions.. 73
5.2 Postfix Operators ... 73

(1) Subscript operators .. 74

(2) Function call operators ... 75

(3) Structure and union member .. 76

(4) Postfix Increment/Decrement operators ... 78

5.3 Unary Operators ... 79
(1) Prefix Increment and Decrement operators.. 80

User’s Manual U15556EJ1V0UM 11

(2) Address and Indirection operators ... 81

(3) Unary Arithmetic operators (+ – ~ !) ... 82

(4) sizeof operators.. 83

5.4 Cast Operators ..84
5.5 Arithmetic Operators ..85

(1) Multiplicative operators... 86

(2) Additive operators .. 87

5.6 Bitwise Shift Operators ..88
5.7 Relational Operators...90

(1) Relational operators ... 91

(2) Equality operators .. 92

5.8 Bitwise Logical Operators..93
(1) Bitwise AND operators ... 94

(2) Bitwise XOR operators ... 95

(3) Bitwise Inclusive OR operators .. 96

5.9 Logical Operators ...97
(1) Logical AND operators ... 98

(2) Logical OR operators ... 99

5.10 Conditional Operators ..100
5.11 Assignment Operators ...101

(1) Simple assignment operators ... 102

(2) Compound assignment operators .. 103

5.12 Comma Operator...104
5.13 Constant Expressions ..105

(1) General integral constant expression... 105

(2) Arithmetic constant expression .. 105

(3) Address constant expression ... 105

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE ..106
6.1 Labeled Statements ..108

(1) case label ... 109

(2) default label .. 111

6.2 Compound Statements or Blocks ...112
6.3 Expression Statements and Null Statements...112
6.4 Conditional Statements..113

(1) if and if ... else statements.. 114

(2) switch statement... 115

6.5 Iteration Statements..116
(1) while statement .. 117

(2) do statement... 118

(3) for statement .. 119

6.6 Branch Statements ...120
(1) goto statement.. 121

(2) continue statement ... 122

(3) break statement.. 123

(4) return statement ... 124

User’s Manual U15556EJ1V0UM12

CHAPTER 7 STRUCTURES AND UNIONS.. 125
7.1 Structures ... 126

(1) Declaration of structure and structure variable... 126

(2) Structure declaration list ... 127

(3) Arrays and pointers .. 128

(4) How to refer to structure members ... 129

7.2 Unions ... 130
(1) Declaration of union and union variable ... 130

(2) Union declaration list .. 130

(3) Union arrays and pointers .. 131

(4) How to refer to union members .. 132

CHAPTER 8 EXTERNAL DEFINITIONS .. 133
8.1 Function Definition... 134
8.2 External Object Definitions ... 136

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES) 137
9.1 Conditional Translation Directives... 137

(1) #if directive ... 138

(2) #elif directive... 139

(3) #ifdef directive .. 140

(4) #ifndef directive .. 141

(5) #else directive... 142

(6) #endif directive ... 143

9.2 Source File Inclusion Directive ... 144
(1) #include < > ... 145

(2) #include “ ” ... 146

(3) #include preprocessing token string ... 147

9.3 Macro Replacement Directives ... 148
(1) Actual argument replacement... 148

(2) # operator ... 148

(3) ## operator ... 148

(4) Re-scanning and further replacement .. 149

(5) Scope of macro definition ... 149

(6) #define directive ... 150

(7) #define() directive ... 151

(8) #undef directive .. 152

9.4 Line Control Directive .. 153
(1) To change the line number... 153

(2) To change the line number and the file name .. 153

(3) To change using preprocessing token string.. 153

9.5 #error Preprocessing Directive... 154
9.6 #pragma Directives .. 155
9.7 Null Directives .. 155
9.8 Compiler-Defined Macro Names... 156

User’s Manual U15556EJ1V0UM 13

CHAPTER 10 LIBRARY FUNCTIONS ..158
10.1 Interface Between Functions ...159

10.1.1 Arguments ... 159

10.1.2 Return values .. 160

10.1.3 Saving registers to be used by individual libraries .. 160

(1) When -ZR option is not specified ... 160

(2) When -ZR option is specified ... 162

10.2 Headers ..163
(1) ctype.h.. 163

(2) setjmp.h.. 163

(3) stdarg.h .. 163

(4) stdio.h... 164

(5) stdlib.h .. 164

(6) string.h.. 165

(7) error.h... 165

(8) errno.h .. 165

(9) limits.h .. 165

(10) stddef.h... 166

(11) math.h .. 166

(12) float.h.. 167

(13) assert.h... 169

10.3 Re-entrantability..169
(1) Functions that cannot be re-entranced... 169

(2) Functions that use the area secured in the startup routine .. 169

(3) Functions that deal with floating-point numbers ... 169

10.4 Standard Library Functions ...170
10.5 Batch Files for Update of Startup Routine and Library Functions279

10.5.1 Using batch files .. 280

CHAPTER 11 EXTENDED FUNCTIONS...283
11.1 Macro Names...284
11.2 Keywords ...284

(1) Functions.. 285

(2) Variables .. 286

11.3 Memory ..287
(1) Memory model.. 287

(2) Register bank ... 287

(3) Location function .. 287

(4) Memory space.. 288

11.4 #pragma directives ...289
11.5 How to Use Extended Functions ...291

(1) callt functions.. 292

(2) Register variables... 295

(3) How to use the saddr area ... 301

(4) How to use the sfr area .. 309

(5) noauto function... 312

(6) norec function... 318

(7) bit type variables .. 326

User’s Manual U15556EJ1V0UM14

(8) _ _boolean1 type variables... 331

(9) ASM statements ... 336

(10) Interrupt functions... 340

(11) Interrupt function qualifier (_ _interrupt, _ _interrupt_brk) .. 346

(12) Interrupt functions... 349

(13) CPU control instruction... 352

(14) callf functions.. 356

(15) 16 MB expansion space utilization ... 358

(16) Allocation function .. 361

(17) Absolute address access function .. 363

(18) Bit field declaration ... 367

(19) Changing compiler output section name .. 375

(20) Binary constant... 389

(21) Module name changing function... 391

(22) Rotate function ... 392

(23) Multiplication function ... 395

(24) Division function ... 398

(25) Data insertion function.. 400

(26) Interrupt handler for real-time OS (RTOS).. 402

(27) Interrupt handler qualifier for real-time OS (RTOS) .. 408

(28) Task function for real-time OS (RTOS)... 410

(29) Changing function call interface ... 413

(30) Changing the method of calculating the offset of arrays and pointers.. 414

(31) Pascal function ... 421

(32) Automatic pascal functionization of the function call interface ... 424

(33) Flash area allocation method ... 425

(34) Flash area branch table.. 426

(35) Function call function from the boot area to the flash area... 430

(36) Firmware ROM function.. 433

(37) Method of int expansion limitation of argument/return value .. 434

(38) Memory manipulation function.. 436

(39) callf two-step branch function ... 441

(40) Automatic callf functionization of function call interface ... 444

(41) Three-byte address reference/generation function... 445

(42) Absolute address allocation specification... 448

11.6 Modifications of C Source... 452
11.7 Function Call Interface... 453

11.7.1 Return value .. 454

11.7.2 Ordinary function call interface .. 455

(1) Passing arguments... 455

(2) Location and order of storing arguments.. 456

(3) Location and order of storing automatic variables.. 458

11.7.3 noauto function call interface... 460

(1) Passing arguments... 460

(2) Location and order of storing arguments.. 460

(3) Location and order of storing automatic variables.. 461

11.7.4 norec function call interface... 463

(1) Passing arguments... 463

User’s Manual U15556EJ1V0UM 15

(2) Location and order of storing arguments.. 463

(3) Location and order of storing automatic variables.. 465

11.7.5 Pascal function call interface... 467

CHAPTER 12 REFERENCING THE ASSEMBLER ...470
12.1 Accessing Arguments/Automatic Variables ..471
12.2 Storing Return Values ..474
12.3 Calling an Assembly Language Routine from C..475

(1) Calling an assembly language routine function (C source) .. 475

(2) Saving and restoring the information of assembly language routine (assembler source) 476

12.4 Calling C Language Routine from Assembly Language Routine479
(1) Calling a C language function from assembly language (assembler source)............................. 479

12.5 Referencing Variables Defined by Other Languages ..481
(1) How to refer to C-defined variables.. 481

(2) How to refer to assembler-defined variables from C .. 482

12.6 Other Important Hints...483
(1) “_” (underscore).. 483

(2) Placement of arguments on the stack .. 483

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER...484
13.1 Efficient Coding...484

(1) Using external variables ... 485

(2) 1-bit data .. 485

(3) Function definitions .. 486

(4) Optimization option... 486

(5) Using extended functions ... 487

APPENDIX A LIST OF LABELS FOR saddr AREA...490
A.1 Arguments of norec Functions..490
A.2 Automatic variables of norec Functions ..491
A.3 Register Variables...491

APPENDIX B LIST OF SEGMENT NAMES..492
B.1 List of Segment Names ..494

B.1.1 Program area and data area ... 494

B.1.2 Flash memory area ... 498

B.2 Location of Segment ..500
B.3 Example of C Source ..501
B.4 Example of Output Assembler Module ...502

APPENDIX C LIST OF RUNTIME LIBRARIES...505

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION ...510

APPENDIX E INDEX...517

User’s Manual U15556EJ1V0UM16

LIST OF FIGURES

��������	
 ���
� ����

1-1 Flow of Compilation ... 20

1-2 Program Development Procedure by This C Compiler.. 22

4-1 Usual Arithmetic Type Conversions... 68

6-1 Control Flows of Conditional Statements... 113

6-2 Control Flows of Iteration Statements.. 116

6-3 Control Flows of Branch Statements ... 120

10-1 Stack Area When Function Is Called (No –ZR Specified) ... 161

10-2 Stack Area When Function Is Called (–ZR Specified) ... 162

10-3 Syntax of Format Commands .. 181

10-4 Syntax of Input Format Commands ... 185

11-1 Bit Allocation by Bit Field Declaration (Example 1).. 369

11-2 Bit Allocation by Bit Field Declaration (Example 2) ... 370

11-3 Bit Allocation by Bit Field Declaration (Example 3) ... 372

12-1 Stack Area After Call ... 475

12-2 Stack Area After Return... 478

12-3 Calling Assembly Language Routine from C ... 478

12-4 Placing Arguments of Stack... 480

12-5 Placement of Arguments on Stack .. 483

User’s Manual U15556EJ1V0UM 17

LIST OF TABLES (1/2)

���
���	
 ���
� ����

1-1 Maximum Performance Characteristics of This C Compiler .. 26

2-1 List of Escape Sequences... 35

2-2 List of Trigraph Sequence ... 35

2-3 List of Basic Data Types.. 42

2-4 Exponent Relationships... 43

2-5 List of Operation Exceptions ... 44

4-1 List of Conversions Between Types .. 66

4-2 Conversions from Signed Integral Type to Unsigned Integral Type .. 67

5-1 Evaluation Precedence of Operators... 72

5-2 Signs of Division/Remainder Division Operation Result.. 85

5-3 Shift Operations... 88

5-4 Bitwise AND Operation.. 94

5-5 Bitwise XOR Operation.. 95

5-6 Bitwise OR Operation .. 96

5-7 Logical AND Operation.. 98

5-8 Logical OR Operation .. 99

10-1 List of Passing First Argument... 159

10-2 List of Storing Return Value... 160

10-3 Batch Files for Updating Library Functions ... 279

11-1 List of Added Keywords... 285

11-2 Memory Model... 287

11-3 Utilization of Memory Space.. 288

11-4 List of #pragma Directives... 290

11-5 Number of callt Attribute Functions That Can Be Used When −QL Option Is Specified........................ 293

11-6 Restriction on callt Function Usage... 293

11-7 Registers to Allocate Register Variables ... 296

11-8 Restrictions on Register Variables Usage... 297

11-9 Restrictions on sreg Variable Usage ... 302

User’s Manual U15556EJ1V0UM18

LIST OF TABLES (2/2)

���
���	
 ���
� ����

11-10 Variables Allocated to saddr2 Area by -RD Option.. 304

11-11 Variables Allocated to saddr2 Area by -RS Option.. 305

11-12 Restrictions on sreg1 Variable Usage ... 307

11-13 Registers Used for noauto Function Arguments (With -ZO) .. 312

11-14 Registers Used for noauto Function Arguments (Without -ZO) ... 313

11-15 Restrictions on noauto Function Arguments (With -ZO) .. 315

11-16 Restrictions on noauto Function Arguments and Automatic Variables (Without -ZO) 315

11-17 Registers Used for norec Function Arguments: Passing Side (Without -ZO) .. 319

11-18 Registers Used for norec Function Arguments: Receiving Side (Without -ZO) 320

11-19 Restrictions on norec Function Arguments (When -ZO Is Specified) .. 321

11-20 Restrictions on norec Function Arguments (When -ZO Is Not Specified).. 322

11-21 Restrictions on norec Function Automatic Variables (When -ZO Is Not Specified) 323

11-22 Operators That Use Only Constants 0 or 1 (When Using Bit Type Variable) .. 327

11-23 Number of Usable bit Type Variables .. 328

11-24 Operators That Use Only Constants 0 or 1 (When Using Bit Type Variables) 332

11-25 Number of Usable _ _boolean1 Type Variables .. 333

11-26 Save/Restore Area When Interrupt Function Is Used.. 341

11-27 Storage Location of Return Values.. 454

11-28 Location Where First Argument Is Passed (On Function Call Side).. 455

11-29 List of Storing Arguments (On Function Definition Side, When -ZO Is Not Specified)........................... 456

11-30 List of Storing Arguments (On Function Definition Side, When -ZO Is Specified) 457

11-31 List of Registers Passing/Receiving norec Arguments (When -ZO Is Not Specified)............................ 464

12-1 Passing Arguments (Function Call Side) ... 471

12-2 List of Storing Arguments/Automatic Variables (Inside Called Function) .. 472

12-3 Storage Location of Return Values.. 474

C-1 List of Runtime Libraries ... 505

D-1 List of Standard Library Stack Consumption .. 510

D-2 List of Runtime Library Stack Consumption .. 514

User’s Manual U15556EJ1V0UM 19

CHAPTER 1 GENERAL

The CC78K4 C Compiler is a language processing program that converts a source program written in the C

language for the 78K/IV Series or ANSI-C into machine language. By the CC78K4 C compiler, object files or

assembler source files for the 78K/IV Series can be obtained.

1.1 C Language and Assembly Language

To have a microcontroller do its job, programs and data are necessary. These programs and data must be written

by a human being (programmer) and stored in the memory section of the microcontroller. Programs and data that

can be handled by the microcontroller are nothing but a set or combination of binary numbers that is called machine

language.

An assembly language is a symbolic language characterized by one-to-one correspondence of its symbolic

(mnemonic) statements with machine language instructions. Because of this one-to-one correspondence, the

assembly language can provide the computer with detailed instructions (for example, to improve I/O processing

speed). However, this means that the programmer must instruct each and every operation of the computer. For this

reason, it is difficult for him or her to understand the logic structure of the program at a glance, increasing the

likelihood of to make errors in coding.

High-level languages were developed as substitutes for such assembly languages. The high-level languages

include a language called C that allows the programmer to write a program without regard to the architecture of the

computer.

Compared with assembly language programs, it can be said that programs written in C have an easy-to-

understand logic structure.

C has a rich set of parts called functions for use in creating programs. In other words, the programmer can write a

program by combining these functions.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM20

C is characterized by its ease of understanding by human beings. However, understanding of languages by the

microcontroller cannot be extended up to a program written in C. Therefore, to have the computer understand the C

language program, another program is required to translate C language statements into the corresponding machine

language instructions. A program that translates the C language into machine language is called a C compiler.

This C compiler accepts C source modules as inputs and generates object modules or assembler source modules

as outputs. Therefore, the programmer can write a program in C and if he or she wishes to instruct the computer up

to details of program execution, the C source program can be modified in assembly language. The flow of translation

by this C compiler is illustrated in Figure 1-1.

Figure 1-1. Flow of Compilation

Program written
in C language

(C source module file)

Translation program

(Compiler)

Program coded in a set
of binary numbers

(Object module file)

Translation program

(Assembler)

Program coded in a set
of binary numbers

(Object module file)

(Assembler source
 module file)

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 21

1.2 Program Development Procedure by C Compiler

Product (program) development by the C compiler requires a linker, which unites together object module files

created by the compiler, a librarian, which creates library files, and a debugger, which locates and corrects bugs

(errors or mistakes) in each created C source program.

The software required in connection with this C compiler is shown below.

• Editor .. for source module file creation

• RA78K4 assembler package

Assembler for converting assembly language into machine language

Object converter for conversion to HEX-format object module files

Linker.. for linking object module files

Librarian for creating library files

• Debugger (for 78K/IV) for debugging C source module files

The product development procedure by the C compiler is as shown below.

<1> Divides the product into functions.

<2> Creates a C source module for each function.

<3> Translates each C source module.

<4> Registers the modules to be used frequently in the library.

<5> Links object module files.

<6> Debugs each module.

<7> Converts object modules into HEX-format object files.

As mentioned earlier, this C compiler translates (compiles) a C source module file and creates an object module

file or assembler source module file. By manually optimizing the created assembler source module file and

embedding it into the C source, efficient object modules can be created. This is useful when high-speed processing

is a must or when modules must be made compact.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM22

Figure 1-2. Program Development Procedure by This C Compiler

Librarian

Assembler

Structured assembler C compiler

Real-time OS

Linker

List converter
Object converter

Structured
assembler source

C source

Include file

Assembler
source

Assemble list

Object module file Library file

Load module file

Dedicated parallel
interface/RS-232-C

RS-232-C

HEX-format
object

Absolute
assemble list

PROM programmer

Integrated debugger

System
simulator

In-circuit emulator

Assembler
source

Library
file

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 23

1.3 Basic Structure of C Source Program

1.3.1 Program format

A C language program is a collection of functions. These functions must be created so that they have

independent special-purpose or characteristic actions. All C language programs must have a function main () which

becomes the main routine in C and is the first function that is called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which

consists of declarations and statements. The format of C programs is shown below.

Definition of variables/constants Definition of each data, variable, and macro instruction

main (arguments) Header of function main ()

{

statement1;

statement2;

function1 (arguments); Body of function main ()

function2 (arguments);

}

function1 (arguments)

{

statement1; Function 1

statement2;

}

function2 (arguments)

{

statement1; Function 2

statement2;

}

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM24

An actual C source program looks like this.

#define TRUE 1

#define FALSE 0 #define xxx xxx <6> Preprocessing (macrodefinition)

#define SIZE 200

void printf (char *, int); xxx xxxx (xxx, xxx)<7> Function prototype declarator

void putchar (char);

char mark[SIZE+1]; char xxx<1> Type declarator, <5> External definition

main () xx [xx] ... <2> Operator

{

int i,prime, k, count; int xxx .. <1> Type declarator

count = 0; xx = xx ...<2> Operator

for (i = 0; i <= SIZE;i++) for (xx;xx;xx) xxx ;<3> Control structure

 mark[i] = TRUE;

for (i = 0; i <= SIZE ; i++) {

 if (mark[i]) {

 prime = i + i + 3; xxx = xxx + xxx + xxx................<2> Operator

 printf (“%6d”, prime); xxx (xxx);...................................<2> Operator

 count++;

 if ((count%8) = = 0) putchar ('\n');

....................... if {xxx) xxx ; <3> Control structure

 for (k = i + prime ; k <= SIZE ; k += prime)

 mark [k] = FALSE;

}

}

printf (“\n%d primes found. ”, count); xxx (xxx) ; <2> Operator

}

void printf (char *s, int i)

{

int j;

char *ss;

j = i;

ss = s;

}

void putchar (char c)

char d;

d = c;

}

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 25

<1> Declaration of type and storage class

The data type and storage class of an identifier that indicates a data object are declared. For details, see

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES.

<2> Operator and expression

These are the statements that instruct the compiler to perform an arithmetic operation, logical operation,

assignment, etc. For details, see CHAPTER 5 OPERATORS AND EXPRESSIONS.

<3> Control structure

This is a statement that specifies the program flow. C has several instructions for each of the control

structures such as Conditional control, Iteration, and Branch. For details, see CHAPTER 6 CONTROL

STRUCTURES OF C LANGUAGE.

<4> Structure or union

A structure or union is declared. A structure is a data object that contains several subobjects or members

that may have different types. A union is defined when two or more variables share the same memory. For

details, see CHAPTER 7 STRUCTURES AND UNIONS.

<5> External definition

A function or external object is declared. A function is one element when a C language program is divided

by a special-purpose or characteristic action. A C program is a collection of these functions. For details,

see CHAPTER 8 EXTERNAL DEFINITIONS.

<6> Preprocessing

This is an instruction for the compiler. #define instructs the compiler to replace a parameter that is the same

as the first operand with the second operand if the parameter appears in the program. For details, see

CHAPTER 9 PREPROCESSINGS (COMPILER DIRECTIVES).

<7> Declaration of function prototype

The return value and argument type of a function are declared.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM26

1.4 Reminders Before Program Development

Before commencing program development, keep in mind the points (limit values or minimum guaranteed values)

summarized in Table 1-1 below.

Table 1-1. Maximum Performance Characteristics of This C Compiler

��� ����
�	�	�
��
����	��

����������
��
��

� ����	��
 ��
 ��������
 �����������

���	��
 �����������
 ��
 ����	�	���

������

����������

��

���
�

� ����	��
��
����	�	���

�����
��	��� ���

���
�

 ���!��
 ��
 ��	�"���	�
 �#����
 ���������
 �#����
 ��	����
 ��
 $��
	�#
 ��	��

�#���
 ��
 	�����
���
 �#����
 ����#��
 ���
 �����	��
 ���
�������
 	�
 �

���
����	��
%��
��#
���!	���	��
��
�"���&

��

���
�

� ����	��
��
������"����
���
�'�����	�� �

���
�

� ���!��
��
�"��������
�"��
"���
�
����	��
��
�
�����
���� ��(
�"��������

(���!��
��
�"��������
 �"��
"���
�
����	��
��
��
 	������

 ��
 �'�����

�#�!�

����

��)
�"��������

* ���!��
��
�#�!�
�
���
������
����
�
�	
� ��+��
�#�!�
�������

, ���!��
��
�#�!�
�
�"��
"���
!
��-
�����
.	�"	�
�
!
��- ���
�#�!�
�������

) ���!��
��
������
���
������
����
�
�	
� �+�+++
������������

�+ ���!��
��
����������
���
�����	��
���	�	�	��
��
�����	��
��

)
����������

�� ���!��
��
����������
���
�����
���	�	�	��
��
�����
��

 �
����������

�� ���!��
��
�"��������
���

��	��

������

	�� �+�,
�"��������

� ���!��
��
�"��������
.	�"	�
�
���	��

	����

�����

	�-��� �+)
�"��������

�� /	0�
��
���
����
�!1��� (��� �
!#���

�� ����	��
��
�include
�	����	��� ,

���
�

�(���!��
��
case

�!�
�
���
switch
��������� ��*

�!�
�

�* ���!��
��
������

	���
���
�����
��	��
��	� 2����'�
 +�+++

	���

�, ���!��
 ��
 ������

	���
 �"��
 ���
 !�
 �����
����
.	�"���
 ��������#
 �	
�

�����	��

2����'�
 ++

	���

�) ����	��
��
�����	��
��

� �+

���
�

�+ ���!��
��

�!�
�
.	�"	�
�
�����	��

�!�
�

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 27

��� ����
�	�	�
��
����	��

����������
��
��

�� 3���

�	0�
��
�����
�����
���
����-
��������
���
�!1���
����
� (��� �
!#���������

�� ���!��
��
���!���
���
���������
��
��	�� ��(
���!���

� ���!��
��
enum
���������
���
��������	�� ���
���������

�� ����	��
��
�����������
��	���
	��	��
�
���������
��
��	�� ��

���
�

�� ����	��
��
	�	�	�
	0��
�
������ ��

���
�

�(���!��
��
�����	��
���	�	�	���
	�
�
������
����
�
�	
� ��+++

�* ����

 ��
 �"�
 ����
 ��
 ���
������
 ���
����
 .	�"
 ������"����
 	��	��
 �

����
���
���
�������

�)�

�, ����	��
��
������ �++

���
�

�) ���!��
��
4

	��
���
�	
�
���"
����	�	���	��� (�

Notes 1. This value applies when symbols can be processed with the available memory space alone without using

any temporary file. When a temporary file is used because of insufficient memory space, this value must

be changed according to the file size.

2. This value includes the reserved macro definitions of the C compiler.

3. The large model provides 1,024 KB of code segments and 16 MB of data and stack segments altogether

(when the –ML option is specified). The medium model provides 1,024 KB of code segments and 64 KB

of data and stack segments altogether (when the –MM option is specified). The location

(–CS0 or –CS15) can be specified for both models (the default is large model, location 0FH).

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM28

1.5 Features of This C Compiler

This C compiler has extended functions for CPU code generation that are not supported by ANSI (American

National Standards Institute) Standard C. The extended functions of the C compiler allow the special function

registers for the 78K/IV Series to be described at the C language level and thus help shorten object code and

improve program execution speed. For details of these extended functions, see CHAPTER 11 EXTENDED

FUNCTIONS in this manual.

Outlined here are the following extended functions that help shorten object code and improve execution speed.

• callt /_ _callt functions Functions can be called using the callt table area.

• Register variables Variables can be allocated to registers.

• sreg/_ _sreg/_ _sreg1 variablesVariables can be allocated to the saddr area.

• sfr area .. sfr names can be used.

• noauto functions............................ Functions that do not output code for stack frame formation can be

norec/_ _leaf functions.................. created.

• ASM statements An assembly language program can be described in a C source

program.

• bit type variables,........................... Accessing the saddr or sfr area can be made on a bit-by-bit basis.

boolean/_ _boolean type variables,

_ _boolean1 type variables

• callf/_ _callf functions A function body can be stored in the callf area.

• Bit field declaration A bit field can be specified with unsigned char type.

• Multiplication function..................... The code to multiply can be directly output with inline expansion.

• Division function The code to divide can be directly output with inline expansion.

• Rotate function The code to rotate can be directly output with inline expansion.

• Absolute address function.............. Specific addresses in the memory space can be accessed.

• Data insertion function Specific data and instructions can be directly embedded in the code

area.

• _ _pascal function The used stack is corrected on the called function side.

• Memory manipulation function memcopy and memset can be directly output with inline expansion.

• callf two-step branch function A two-step branch function is performed in the callf area.

• Three-byte address

reference/generation function Three-byte address reference/generation is performed.

An outline of the extended functions of this compiler is shown below. For details of each extended function, refer

to CHAPTER 11.

<1> callt/_ _callt functions

Functions can be called by using the callt table area. The address of each function to be called (this

function is called a callt function) is stored in the callt table from which it can be called later. This makes

code shorter than the ordinary call instruction and helps shorten object code.

<2> Register variables

Variables declared with the register storage class specifier are allocated to the register or saddr area.

Instructions to the variables allocated to a register or saddr area are shorter in code length than those to

memory. This helps shorten object and improves program execution speed as well.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 29

<3> Using the saddr area

Variables declared with the keyword sreg can be allocated to the saddr area. Instructions to these sreg

variables are shorter in code length than those to memory. This helps shorten object code and also

improves program execution speed. Variables can be allocated to the saddr area also by option (only to the

saddr2 area).

<4> sfr area

By declaring use of sfr names, manipulations on the sfr area can be described at the C source file.

<5> noauto functions

Functions declared as noauto do not output code for preprocessing and postprocessing (stack frame

formation). By calling a noauto function, arguments are passed via registers. This helps shorten object

code and improve program execution speed as well. This function has restrictions on arguments/automatic

variables. For the details, refer to 11.5 (5) noauto function.

<6> norec/_ _leaf functions

Functions declared as norec/_ _leaf do not output code for preprocessing and postprocessing (stack frame

formation). By calling a norec/_ _leaf function, arguments are passed via registers as much as possible.

Automatic variables to be used inside a norec/_ _leaf function are allocated to register or the saddr area.

This helps shorten object code and also improve program execution speed. This function has restrictions on

arguments/automatic variables and is not allowed to call a function. For the details, refer to 11.5 (6) norec

function.

<7> bit type variables and boolean/_ _boolean type variables

Variables with a 1-bit storage area are generated. By using the bit type variable or boolean/_ _ boolean

type variable, the saddr2 area can be accessed in bit units.

The boolean/_ _boolean type variable is the same as the bit type variable in terms of both function and

usage.

<8> boolean1 type variables

Variables with a 1-bit storage area are generated. By using the _ _ boolean1 type variable, the saddr1 area

can be accessed in bit units.

The _ _boolean1 type variable is the same as the bit type variable in terms of both function and usage.

<9> ASM statements

The assembler source program described by the user can be embedded in an assembler source file to be

output by this C compiler.

<10> Interrupt functions

A vector table and an object code corresponding to the interrupt are output. This allows programming of

interrupt functions at the C source level.

<11> Interrupt function qualifier

This qualifier allows the setting of a vector table and interrupt function definitions to be described in a

separate file.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM30

<12> Interrupt function

An interrupt disable instruction and an interrupt enable instruction are embedded in an object.

<13> CPU control instructions

Each of the following instructions is embedded in an object.

Instruction to set the value for halt to the STBC register

Instruction to set the value for stop to the STBC register

brk instruction

nop instruction

<14> callf/_ _callf function

The callf instruction stores the body of a function in the callf entry area and allows the calling of the function

with a code shorter than that with the call instruction. This improves executing speed and shortens the

object code.

<15> Usage of 16 MB expansion space

Object files that linearly access the 16 MB expansion space are generated by an option.

<16> Location function

The location of the saddr area can be changed by an option if the memory model is large or medium.

<17> Absolute address access function

Codes that access the ordinary memory space are created with direct inline expansion without resort to a

function call, and an object file is created.

<18> Bit field declaration

By specifying a bit field to be unsigned char type, the memory can be saved, object code can be shortened,

and execution speed can be improved.

<19> Function to change compiler output section name

By changing the compiler section output name, the section can be independently allocated with a linker.

<20> Binary constant description function

Binary can be described in the C source.

<21> Module name change functions

Object module names can be freely changed in the C source.

<22> Rotate function

The code to rotate the value of an expression to the object can be directly output with inline expansion.

<23> Multiplication function

The code to multiply the value of an expression to the object can be directly output with inline expansion.

This function can shorten the object code and improve the execution speed.

<24> Division function

The code to divide the value of an expression to the object can be directly output with inline expansion. This

function can shorten the object code and improve the execution speed.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM 31

<25> Data insertion function

Constant data is inserted in the current address. Specific data and instructions can be embedded in the

code area without using assembler description.

<26> Interrupt handler for RTOS

Interrupt handlers for the RX78K/IV (real-time OS) can be described. Vectors can be set (settings of

interrupt request name, function name for handlers, and stack switching) by the #pragma directive.

<27> Interrupt handler qualifier for RTOS

This qualifier allows the interrupt handler description and the vector setting for the RX78K/IV (real-time OS)

to be made in separate files.

<28> Task function for RTOS

Specified functions are interpreted as the tasks for the RX78K/IV (real-time OS) by the #pragma directive.

This allows the description of task function for RTOS with better code-efficiency at the C source level.

<29> Changing function call interface

Arguments can be passed by the previous function interface specification (using the stack only, with

CC78K4 Ver.1.00 compatibles) by specifying the -ZO option during compilation.

<30> Change of calculation method of offset of arrays and pointers

The code efficiency is improved by performing an unsigned index calculation for the offset of the arrays and

pointers (distance from the start of the array or pointer).

<31> Pascal function (_ _pascal)

The stack correction used to place arguments during the function call is performed on the called function

side, not on the side calling the function. This shortens the object code when there are function calls in

many places.

<32> Automatic pascal functionization of function call interface

_ _pascal attributes are added to all functions that can be pascal functionized.

<33> Flash area allocation method

Object files to be allocated to the flash area are generated.

<34> Flash area branch table

Startup routines and interrupt functions can be allocated to the flash area.

A function can be called from the boot area to the flash area.

<35> Function call function from boot area to flash area

A function in the flash area can be called from the boot area.

<36> Firmware ROM function

Manipulations regarding the firmware ROM function can be described at the C source level.

CHAPTER 1 GENERAL

User’s Manual U15556EJ1V0UM32

<37> Limiting int expansion of argument/return value

When the argument/return value of a function has the char/unsigned type, object files that do not perform

int expansion are generated. This method can shorten the object code and improve the execution speed.

<38> Memory manipulation function

Memory manipulation functions can be output to an object directly with inline expansion. This function can

shorten the object code and improve the execution speed.

<39> callf two-step branch function

Compared when a function body is allocated in the callf area, the callf/_ _callf attribute can be added to

many more functions. Therefore, this function can shorten the object code if many functions that include call

function are frequently used.

<40> Automatic callf functionization of function call interface

The _ _callf attribute is added to all functions except for the callt/_ _callt�_ _interrupt/_ _interrupt_brk/_

_rtos_interrupt functions.

<41> Three-byte address reference/generation function

Three-byte address reference/generation can be performed with a short code without using a complex cast

description.

<42> Absolute address allocation specification

The external variable that declared _ _directmap and a static variable in a function can be allocated to any

address, and multiple variables can be allocated in duplicate to the same address.

User’s Manual U15556EJ1V0UM 33

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

This chapter explains the constituent elements of a C source module file.

A C source module file consists of the following tokens (distinguishable units in a sequence of characters).

Keywords Identifiers Constants

String literal Operators Delimiters

Header name No. of preprocesses Comment

The tokens used in a C program description example are shown below.

#include “expand. h”

extern void testb (void); extern ... Keyword

extern void chgb (void);

extern bit data1;

extern bit data2; data1, data2 ... Identifiers

void main () void... Keyword

{

data1 = 1 ; 1 ... Constant

data2 = 0 ; 0 ... Constant

while(data1) { while ... Keyword

data1 = data2 ; { } ... Delimiter

testb() ; = ... Operator

}

if (data1 && data2) { if.. Keyword

chgb () ; &&... Operator

} () ... Operator

}

void lprintf (char *s, int I) lprintf... Identifier

{ char, int... Keywords

int j; s, i ... Identifiers

char *ss; * .. Operator

j = i;

ss = s;

}

.

.

.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM34

2.1 Character Sets

(1) Character sets

Character sets to be used in C programs include a source character set to be used to describe a source file and

an execution character set to be interpreted in the execution environment.

The value of each character in the execution character set is represented by JIS code.

The following characters can be used in the source character set and execution character set.

26 uppercase letters

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

26 lowercase letters

a b c d e f g h i j k l m

n o p q r s t u v w x y z

10 decimal numbers

0 1 2 3 4 5 6 7 8 9

29 graphic characters

! “ # % & ‘ () * + , - . / :

; < = > ? [¥] ^ — { | } ~

and nonprintable control characters which indicate space, horizontal tab, vertical tab, form feed, etc.

Remark In character constants, string literals, and comment statements, characters other than the above may

also be used.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 35

(2) Escape sequences

Nongraphic characters used for control characters such as alert, form feed are represented by escape

sequences. Each escape sequence consists of a backslash (\) and a letter.

Nongraphic characters represented by escape sequences are shown below.

Table 2-1. List of Escape Sequences

Escape Sequence Meaning Character Code

\a Alert 07H

\b Backspace 08H

\f Form feed 0CH

\n Line feed 0AH

\r Carriage return 0DH

\t Horizontal tab 09H

\v Vertical tab 0BH

(3) Trigraph sequences

When a source file includes a list of the three characters (called “trigraph sequence”) shown in the left column of

the table below, the list of the three characters is converted into the corresponding single character shown in the

right column.

Table 2-2. List of Trigraph Sequence

Trigraph Sequence Meaning

??= #

??([

??/ \

??)]

??’ ^

??< {

??! |

??> }

??- ~

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM36

2.2 Keywords

(1) ANSI keywords

The following tokens are used by the C compiler as keywords and thus cannot be used as labels or variable

names.

auto break case char const continue

default do double else enum extern for

float goto if int long register return

short signed sizeof static struct switch

typedef union unsigned void volatile while

(2) Keywords added for the CC78K4

In this C compiler the following tokens have been added as keywords to implement its expanded functions. As

with ANSI keywords, hese tokens cannot be used as labels or variable names (when an uppercase character is

included, the token is not regarded as a keyword).

Keywords that do not start with “_ _” can be made invalid by specifying the option that enables only ANSI-C

language specification (–ZA).

_ _callt/callt Declaration of callt function

_ _callf/callf Declaration of callf function

_ _sreg/sreg...................................... Declaration of sreg variable

_ _sreg1 .. Declaration of sreg1 variable

noauto... Declaration of noauto function

_ _leaf/norec.................................... Declaration of norec function

bit ... Declaration of bit type variable

_ _boolean/boolean Declaration of boolean type variable

_ _boolean1 .. Declaration of boolean1 type variable

_ _interrupt...................................... Hardware interrupt function

_ _interrupt_brk Software interrupt function

_ _asm... asm statement

_ _rtos_interrupt Interrupt handler for RTOS

_ _pascal .. Pascal function

_ _flash .. Firmware ROM function

_ _directmap...................................... Absolute address allocation specification

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 37

2.3 Identifiers

An identifier is the name given to the following variables.

Function

Object

Tag of structure, union, or enumeration type

Member of structure, union, or enumeration type

typedef name

Label name

Macro name

Macro parameter

Each identifier can consist of uppercase letters, lowercase letters, or numeric characters including underscores.

The following characters can be used as identifiers.

There is no restriction on the maximum length of the identifier. In this compiler, however, only the first 249

characters can be identified (refer to Table 1-1 Maximum Performance Characteristics of This C Compiler).

_(underscore) a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

All identifiers must begin with other than a numerical character (namely, a letter or an underscore) and must not

be the same as any keyword.

2.3.1 Scope of identifiers

The range of an identifier within which its use becomes effective is determined by the location at which the

identifier is declared. The scope of identifiers is divided into the following four types.

Function scope

File scope

Block scope

Function prototype scope

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM38

extern _ _ boolean data1, data2; data1, data2.. File scope

void testb(int x); x.. Function prtotype scope

void main(void)

{

int cot ; cot.. Block scope

 data1 = 1 ;

 data2 = 0 ;

 while(data1) {

 data1 = data2;

 j1 : j1... Function scope

 testb (cot) ;

 }

}

void testb(int x) x... Block scope

{

.

.

.

(1) Function scope

Function scope refers to the entirety within a function. An identifier with function scope can be referenced from

anywhere within a specified function.

Identifiers that have function scope are label names only.

(2) File scope

File scope refers to the entirety of a translation (compiling) unit. Identifiers that are declared outside a block or

parameter list all have file scope. An identifier that has file scope can be referenced from anywhere within the

program.

(3) Block scope

Block scope refers to the range of a block (a sequence of declarations and statements enclosed by a pair of

curly braces { } which begins with the opening brace and ends with the closing brace).

Identifiers that are declared inside a block or parameter list all have block scope. An identifier that has block

scope is effective until the innermost brace pair including the declaration of the identifier is closed.

(4) Function prototype scope

Function prototype scope refers to the range of a declared function from beginning to end. Identifiers that are

declared inside a parameter list within a function prototype all have function prototype scope. An identifier that

has function prototype scope is effective within a specified function.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 39

2.3.2 Linkage of identifiers

The linkage of an identifier refers to the case when the same identifier declared more than once in different

scopes or in the same scope can be referenced as the same object or function. By being linked an identifier is

regarded to be one and the same. An identifier may be linked in the following three different ways: External linkage,

Internal linkage and No linkage.

(1) External linkage

External linkage refers to identifiers to be linked in translation (compiling) units that constitute the entire program

and as a collection of libraries.

The following identifiers are examples of external linkage.

• The identifier of a function declared without a storage class specification.

• The identifier of an object or function declared as extern, which has no storage class specification

• The identifier of an object which has file scope but has no storage class specification

(2) Internal linkage

Internal linkage refers to identifiers to be linked within one translation (compiling) unit.

The following identifier is an example of internal linkage.

• The identifier of an object or function that has file scope and contains the storage class specifier static.

(3) No linkage

An identifier that has no linkage to any other identifier is an inherent entity.

Examples of identifiers that have no linkage are as follows.

• An identifier that does not refer to a data object or function

• An identifier declared as a function parameter

• The identifier of an object that does not have the storage class specifier extern inside a block

2.3.3 Name space for identifiers

All identifiers are classified into the following “name spaces”.

• Label name.. Distinguished by a label declaration.

• Tag name of structure, union, or enumeration Distinguished by the keyword struct, union or enum

• Member name of structure or union Distinguished by the dot (.) operator or arrow (→) operator.

• Ordinary identifiers (other than above)............ Declared as ordinary declarators or enumeration type constants.

2.3.4 Storage duration of objects

Each object has a storage duration that determines its lifetime (how long it can remain in memory). This storage

duration is divided into the following two categories: Static storage duration and Automatic storage duration.

(1) Static storage duration

Before executing an object program that has a static duration, an area is reserved for objects and values to be

stored are initialized once. The objects exist throughout the execution of the entire program and retain the

values last stored.

Objects that have a static storage duration are as shown below.

• Objects that have external linkage

• Objects that have internal linkage

• Objects declared by the storage class specifier static

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM40

(2) Automatic storage duration

For objects that have automatic storage duration, an area is reserved when they enter a block to be declared.

If initialization is specified, the objects are initialized as they enter from the beginning of the block. In this case, if

any object enters the block by jumping to a label within the block, the object will not be initialized.

For objects that have automatic storage duration, the reserved area will not be guaranteed after the execution of

the declared block.

Objects that have automatic storage duration are as follows.

• Objects that have no linkage

• Objects declared inside a block without the storage class specifier static

2.3.5 Data types

A type determines the meaning of the value to be stored in each object.

Data types are divided into the following three categories depending on the variable to be declared.

• Object type ... Type that indicates an object with size information

• Function type.. Type that indicates a function

• Incomplete type .. Type that indicates an object without size information

• Basic types Integral types char type

(Arithmetic types) Signed signed char

integral short int

types int

long int

Unsigned integral types

(specified by unsigned)

Enumeration type

Floating point types float

double

long double

• Character types char

signed char

unsigned char

• Incomplete types Array with an indefinite object size, structure, union,

and void type

• Derived types Array type

Structure type

Union type

Function type

Pointer type

• Scalar types Basic (Arithmetic types)

Pointer type

Aggregate type

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 41

(1) Basic types

A collection of basic data types is also referred to as “arithmetic types”. The arithmetic types consist of integral

types and floating-point types.

(a) Integral types

Integral data types are subdivided into four types. Each of these types has a value represented by the

binary numbers 0 and 1.

• char type

• Signed integral type

• Unsigned integral type

• Enumeration type

(i) char type

The char the type has a sufficient size to store any character in the basic execution character set.

The value of the character to be stored in a char type object becomes positive. Data other than

characters is handled as an unsigned integer. In this case, however, if an overflow occurs, the

overflowed part will be ignored.

(ii) Signed integral type

The signed integral type is subdivided into the following four types.

• signed char

• short int

• int

• long int

An object declared with the signed char type has an area of the same size as the char type without

a qualifier.

An int object without a qualifier has a size natural to the CPU architecture of the execution

environment. A signed integral type data has its corresponding unsigned integral type data. Both

share an area of the same size. The positive number of a signed integral type data is a partial

collection of unsigned integral type data.

(iii) Unsigned integral data

The unsigned integral type is a data defined with the unsigned keyword. No overflow occurs in any

computation involving unsigned integral type data. This is because if the result of a computation

involving unsigned integral type data becomes a value which cannot be represented by an integral

type, the value will be divided by the maximum number which can be represented by an unsigned

integral type plus 1 and substituted with the remainder in the result of the division.

(iv) Enumeration type

Enumeration is a collection or list of named integer constants. An enumeration type consists of one

or more sets of enumeration.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM42

(b) Floating-point types

The floating-point types are subdivided into three types.

• float

• double

• long double

In this compiler, double and long double types as well as the float type are supported as a floating-point

expression for the single precision normalized number that is specified in ANSI/IEEE 754-1985. Thus, float,

double, and long double types have the same value range.

Table 2-3. List of Basic Data Types

Type Value Range

(signed) char –128 to +127

unsigned char 0 to 255

(signed) short int –32768 to +32767

unsigned short int 0 to 65535

(signed) int –32768 to +32767

unsigned int 0 to 65535

(signed) long int –2147483648 to +2147483647

unsigned long int 0 to 4294967295

float 1.17549435E–38F to 3.40282347E+38F

double 1.17549435E–38F to 3.40282347E+38F

long double 1.17549435E–38F to 3.40282347E+38F

• The signed keyword may be omitted. However, with the char type, it is judged as signed char or

unsigned char depending on the condition at compilation.

• short int data and int data are handled as data that have the same value range but are of

different types.

• unsigned short int data and unsigned int data are handled as data that have the same value

range but are of different types.

• float, double, and long double data are handled as data that have the same value range but are

of different types.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 43

(i) Floating-point number (float type) specifications

• Format

The floating-point number format is shown below.

(Higher address) s e m (Lower address)

31 30 23 22 0

The numerical values in this format are as follows.

(Value of sign) (Value of exponent)

(–1) * (Value of mantissa) *2

s: Sign (1 bit)

0 for a positive number and 1 for a negative number.

e: Exponent (8 bits)

An exponent with a base of 2 is expressed as a 1-byte integer (expressed by two’s complement

in the case of a negative), and used after having a further bias of 7FH added. These

relationships are shown in Table 2-4 below.

Table 2-4. Exponent Relationships

Exponent (Hexadecimal) Value of Exponent

FE 127
•

•

•

•

•

•

81 2

80 1

7F 0

7E –1
•

•

•

•

•

•

01 –126

m: Mantissa (23 bits)

The mantissa is expressed as an absolute value, with bit positions 22 to 0 equivalent to the 1st to

23rd places of a binary number. Except for when the value of the floating point is 0, the value of

the exponent is always adjusted so that the mantissa is within the range of 1 to 2 (normalization).

The result is that the position of 1 (i.e. the value of 1) is always 1, and is thus represented by

omission in this format.

• Zero expression

When exponent = 0 and mantissa = 0, ±0 is expressed as follows.

(Value of sign)

(–1) * 0

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM44

• Infinity expression

When exponent = FFH and mantissa = 0, ±∞ is expressed as follows.

(Value of sign)

(–1) * ∞

• Unnormalized value

When exponent = 0 and mantissa ≠ 0, the unnormalized value is expressed as follows.

(Value of sign) –126

(–1) * (Value of mantissa) *2

Remark The mantissa value here is a number less than 1, so bit

positions 22 to 0 of the mantissa express as is the 1st to

23rd decimal places.

• Not-a-number (NaN) expression

When exponent = FFH and mantissa ≠ 0, NaN is expressed, regardless of the sign.

• Operation result rounding

Numerical values are rounded down to the nearest even number. If the operation result cannot be

expressed in the above floating-point format, round to the nearest expressible number.

If there are two values that can express the differential of the prerounded value, round to an even

number (a number whose lowest binary bit is 0).

• Operation exceptions

There are five types of operation exceptions, as shown below.

Table 2-5. List of Operation Exceptions

Exception Return Value

Underflow Unnormalized number

Inexact ±0

Overflow ±∞

Zero division ±∞

Operation impossible Not-a-number (NaN)

Calling the matherr function causes a warning to appear when an exception occurs.

(2) Character types

The character data types include the following three types.

• char

• signed char

• unsigned char

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 45

(3) Incomplete types

The incomplete data types include the following four types.

• Arrays with indefinite object size

• Structures

• Unions

• void type

(4) Derived types

The derived types are divided into the following three categories.

• Array type

• Structure type

• Union type

• Function type

• Pointer type

(a) Aggregate type

The aggregate type is subdivided into two types.

Array type and Structure type. An aggregate type data is a collection of member objects to be taken

successively.

i) Array type

The array type continuously allocates a collection of member objects called element types. Member

objects all have an area of the same size. The array type specifies the number of element types and the

elements of the array. It cannot create an incomplete type array.

ii) Structure type

The structure type continuously allocates member objects each differing in size. Each member object

can be specified by name.

(b) Union type

The union type is a collection of member objects that overlap each other in memory. These member objects

differ in size and name and can be specified individually.

(c) Function type

The function type represents a function that has a specified return value. Function type data specifies the

type of return value, the number of parameters, and the type of parameter. If the type of return value is T,

the function is referred to as a function that returns T.

(d) Pointer type

The pointer type is created from a function type object type called a referenced type as well as from an

incomplete type. The pointer type represents an object. The value indicated by the object is used to

reference the entity of a referenced type.

A pointer type data created from the referenced type T is called a pointer to T.

(5) Scalar types

The basic types (arithmetic types) and pointer type are collectively called the scalar types. The scalar types

include the following data types.

• char type

• Signed integral type

• Unsigned integral type

• Enumeration type

• Floating point type

• Pointer type

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM46

2.3.6 Compatible type and composite type

(1) Compatible type

If two types are the same, they are said to be compatible or have compatibility. For example, if two structures,

unions, or enumeration types that are declared in separate translation (compiling) units have the same number of

members, the same member name and compatible member types, they have a compatible type. In this case, the

individual members of the two structures or unions must be in the same order and the individual members

(enumerated constants) of the two enumerated types must have the same values.

All declarations related to the same objects or functions must have a compatible type.

(2) Composite type

A composite type is created from two compatible types. The following rules apply to the composite type.

• If either of the two types is an array of known type size, the composite type is an array of that size.

• If only one of the types is a function type which has a parameter type list (declared with a prototype), the

composite type is a function prototype that has the parameter type list.

• If both types have a parameter type list (i.e., functions with prototypes), the composite type is one with a

prototype consisting of all information that can be combined from the two prototypes.

[Example of composite type]

Assume that two declarations that have file scope are as follows.

int f (int (*) (), double (*) [3]) ;

int f (int (*) (char *), double (*) []);

The composite type of the function in this case becomes as follows.

int f (int (*) (char *), double (*) [3]) ;

2.4 Constants

A constant is a variable that does not change in value during the execution of the program, and its value must be

set beforehand. The type for each constant is determined according to the format and value specified for the

constant. The following four constant types are available.

• Floating-point constants

• Integer constants

• Enumeration constants

• Character constants

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 47

2.4.1 Floating-point constant

A floating-point constant consists of an effective digit part, exponent part, and floating-point suffix.

Effective digit part: Integer part, decimal point, and fraction part

Exponent part: e or E, signed exponent

Floating-point suffix: f/F (float)

I/L (long double)

If omitted (double)

The signed exponent of the exponent part and the floating-point suffix can be omitted.

Either the integer part or fraction part must be included in the effective digits. Also, either the decimal point or

exponent part must be included (example: 1.23F, 2e3).

2.4.2 Integer constant

An integer constant starts with a number and does not have a decimal point or exponent part. An unsigned suffix

can be added after the integer constant to indicate that the integer constant is unsigned. A long suffix can be added

after the integer constant to indicate that the integer constant is long.

There are the following three types of integer constants.

• Decimal constant: Decimal number that starts with a number other than 0

Decimal number = 123456789

• Octal constant: Integer suffix 0 + octal number

Octal number = 01234567

• Hexadecimal constant: Integer suffix 0x or 0X + hexadecimal number

Hexadecimal number = 0123456789

abcdef ABCDEF

Unsigned suffix

u U

Long suffix

l L

(1) Decimal constant

A decimal constant is an integer value with a base (radix) of 10 and must begin with a number other than 0

followed by any numbers 0 through 9 (example: 56UL).

(2) Octal constant

An octal constant is an integer value with a base of 8 and must begin with 0 followed by any numbers 0 through

7 (example: 034U).

(3) Hexadecimal constant

A hexadecimal constant is an integer value with the base of 16 and must begin with 0x or 0X followed by any

numbers 0 through 9 and a through f or A through F, which represent 10 through 15 (example: 0xF3).

The type of integer constant is regarded as the first of the “representable type” shown below.

In this compiler, the type of the unsubscripted constant can be changed to char or unsigned char depending on

the compile condition (option).

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM48

(Integer constant) (Representable type)

• Unsuffixed decimal number int, long int, unsigned long int

• Unsuffixed octal, hexadecimal number................. int, unsigned int, long int, unsigned long int

• Suffixed u or U.. unsigned int, unsigned long int

• Suffixed l or L.. long int, unsigned long int

• Suffixed u or U, and suffixed l or L unsigned long int

2.4.3 Enumeration constants

Enumeration constants are used for indicating an element of an enumeration type variable, that is, the value of an

enumeration type variable that can have only a specific value indicated by an identifier.

The enumeration type (enum) is whichever is the first type from the top of the list of three types shown below that

can represent all the enumeration constants. The enumeration constant is indicated by the identifier.

• signed char

• unsigned char

• signed int

It is described as ‘enum enumeration type {list of enumeration constant}’.

Example enum months {January = 1, February, March, April, May};

When the integer is specified with =, the enumeration variable has the integer value, and the

following value of enumeration variable has that integer value + 1. In the example shown above,

the enumeration variable has 1, 2, 3, 4, 5, respectively. When there is not ‘= 1’, each constant has

0, 1, 2, 3, 4, 5, respectively.

2.4.4 Character constants

A character constant is a character string that includes one or more characters enclosed in a pair of single quotes

as in ‘X’ or ‘ab’.

A character constant does not include single quote’, backslash (¥ or \), and line feed character (¥n). To represent

these characters, escape sequences are used. There are the following three types of escape sequences.

• Simple escape sequence: \’ \” \? \¥

\a \b \f \n \r \t \v

• Octal escape sequence: \octal number [octal number octal number]

(example: \012, \0Note 1)

• Hexadecimal escape sequence : \x hexadecimal number

(example: \xFFNote 2)

Notes 1. Null character

2. In this compiler, \xFF represents –1. If the condition (option) that regards char as unsigned char is

added, however, it represents +255.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM 49

2.5 String Literals

A string literal is a string of zero or more characters enclosed in a pair of double quotes as in “xxx”. (Example:

“xyz”)

A single quote (’) is represented by the single quotation mark itself or by the escape sequence \’, whereas a

double quote (”) is represented by the escape sequence \”.

Array elements have a char type string literal and are initialized by assigned tokens (example: char array [] =

“abc”;).

2.6 Operators

The operators are shown below.

[] () . ->

++ - - & * + – ~ ! sizeof

/ % << >> < > <= >= == !=

^ | && ||

? :

= *= /= %= += -= <<= >>=

&= ^= |=

, # ##

The [], (), and ?: operators must always be used in pairs.

An expression may be described in brackets “[]”, in parentheses “()”, or between “?” and “:”.

The # and ## operators are used only for defining macros in preprocessings. (For the description, refer to

CHAPTER 5 OPERATORS AND EXPRESSIONS.)

2.7 Delimiters

A delimiter is a symbol that has an independent syntax or meaning. However, it never generates a value.

The following delimiters are available for use in C.

[] () { } * , : = ; ... #

An expression declaration or statement may be described in brackets “[]”, parentheses “()”, or braces “{ }”,

These delimiters must always be used in pairs as shown above. The delimiter # is used only for preprocessings.

CHAPTER 2 CONSTRUCTS OF C LANGUAGE

User’s Manual U15556EJ1V0UM50

2.8 Header Name

A header name indicates the name of an external source file. This name is used only in the preprocessing

directive “#include”.

An example of the #include directive header name is shown below. For details of each #include directive, refer

to 9.2 Source File Inclusion Directive.

#include <header name>

#include “header name”

2.9 Comment

A comment refers to a statement to be included in a C source module for information only. It begins with “/*” and

ends with “*/”. The part after “//” to the line feed can be identified as a comment statement using the –ZP option.

Example /* comment statement */

//comment statement

User’s Manual U15556EJ1V0UM 51

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

This chapter explains how data (variables) or functions to be used in C should be declared as well as the scope

for each data or function. A declaration means the specification of an interpretation or attribute for an identifier or a

collection of identifiers. A declaration to reserve a storage area for an object or function named by an identifier is

referred to as a “definition”.

An example of a declaration is shown below.

#define TRUE1

#define FALSE 0

#define SIZE200

void main(void)

{

auto int i, prime, k; /* declaration of automatic variables */

for (i = 0 ; i <= SIZE ; i++)

 mark [i] = TRUE ;

.

.

.

A declaration is configured with a storage class specifier, type specifier, initialize declarator, etc. The storage

class specifier and type specifier specify the linkage, storage duration, and the type of entity indicated by the

declarator. An initialize declarator list is a list of declarators delimited with a comma. Each declarator may have

additional type information or initializer or both.

If an identifier for an object is declared to have no linkage, the type of the object must be perfect (the object with

information related to the size) at the end of the declarator or initialize declarator (if it has an initializer).

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM52

3.1 Storage Class Specifiers

A storage class specifier specifies the storage class of an object. It indicates the storage location of a value that

the object has, and the scope of the object. In a declaration, only one storage class specifier can be described. The

following five storage class specifiers are available.

• typedef

• extern

• static

• auto

• register

(1) typedef

The typedef specifier declares a synonym for the specified type. See 3.6 below for details of the typedef

specifier.

(2) extern

The extern specifier indicates (tells the compiler) that the variable immediately before this specifier is declared

elsewhere in the program (i.e., an external variable).

(3) static

The static specifier indicates that an object has static storage duration. For an object that has static storage

duration, an area is reserved before the program execution and the value to be stored is initialized only once.

The object exists throughout the execution of the entire program and retains the value last stored in it.

(4) auto

The auto specifier indicates that an object has automatic storage duration. For an object that has automatic

storage duration, an area is reserved when the object enters a block to be declared.

At entry into the declared block from its top, the object is initialized if so specified. If the object enters the block

by jumping to a label within the block, the object will not be initialized.

The area reserved for an object that has automatic storage duration will not be guaranteed after the execution of

the declared block.

(5) register

The register specifier indicates that an object is assigned to a register of the CPU. With this C compiler, it is

allocated to the register or saddr area of the CPU. See CHAPTER 11 EXTENDED FUNCTIONS for details of

register variables.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 53

3.2 Type Specifiers

A type specifier specifies (or refers to) the type of an object. The following type specifiers are available.

• void

• char

• short

• int

• long

• float

• double

• long double

• signed

• unsigned

• structure or union specifier

• enumeration specifier

• typedef name

In this C compiler, the following type specifiers have been added.

• bit/boolean/_ _boolean/_ _boolean1

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM54

The following explains the meaning of each type specifier and the limit values that can be expressed with this

compiler (the values enclosed in the parentheses). Since this compiler supports only the single precision of IEEE Std

754-1985 for floating-point operations, double and long double data are regarded to have the same format as those

of float data.

• void ... Collection of null values

• char ... Size of the basic character set that can be stored

• signed char .. Signed integer (–128 to +127)

• unsigned char.. Unsigned integer (0 to 255)

• short, signed short, short int,

signed short int.. Signed integer (–32768 to +32767)

• unsigned short, unsigned short int Unsigned integer (0 to 65535)

• int, signed, signed int Signed integer (–32768 to +32767)

• unsigned, unsigned int Unsigned integer (0 to 65535)

• long, signed long, long int,

signed long int .. Signed integer (–2147483648 to +2147483647)

• unsigned long, unsigned long int ... Unsigned integer (0 to 4294967295)

• float ... Single precision floating-point number (1.17549435E–38F to

3.40282347E+38F)

• double... Double precision floating-point number (1.17549435E–38F to

3.40282347E+38F)

• long double .. Extended precision floating-point number (1.17549435E–38F to

3.40282347E+38F)

• structure/union specifier........................ Collection of member objects

• enumeration specifier Collection of int type constants

• typedef name ... Synonym of specified type

• bit/boolean/_ _boolean/_ _boolean1 Integers represented with a single bit (0 to 1)

Type specifiers delimited with a comma have the same size.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 55

3.2.1 Structure specifier and union specifier

Both the structure specifier and union specifier indicate a collection of named members (objects). These member

objects can have different types from one another.

(1) Structure specifier

The structure specifier declares a collection of two or more different types of variables as one object. Each type

of object is called a member and can be given a name. For members, continuous areas are reserved in the

order of their declaration.

Align data is inserted by specifying the -RP option.

A structure is declared as follows. The declaration will not yet allocate memory since it does not have a list of

structure variables. For the definition of the structure variables, refer to CHAPTER 7 STRUCTURES AND

UNIONS.

struct identifier {member declaration list};

Example of structure declaration

struct tnode {

int count;

struct tnode *left, *right;

};

(2) Union specifier

The union specifier declares a collection of two or more different types of variables as one object. Each type of

object is called a member and can be given a name. The members of a union overlap each other in area,

namely, they share the same area.

A union is declared as follows. The declaration will not yet allocate memory since it does not have a list of union

variables. For the definition of the union variables, refer to CHAPTER 7 STRUCTURES AND UNIONS.

union identifier {member declaration list};

Example of union declaration

union u_tag {

int var1 ;

long var2 ;

};

Each member object can be any type other than the incomplete types or function types. A member can be

declared with the number of bits specified. A member with the number of bits specified is called a bit field.

In this compiler, extended functions related to bit field declaration have been added. For details, refer to 11.5

(19) Bit field declaration.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM56

(3) Bit field

A bit field is an integral type area consisting of a specified number of bits. For the bit field, int type, unsigned int

type, and signed int type data can be specified.Note 1 The MSB of an int field which has no qualifier or a signed

int field will be judged as a sign bit.Note 2

If two or more bit fields exist, the second and subsequent bit fields are packed into the adjacent bit positions,

provided there is an ample space within the same memory unit. By placing an unnamed bit field with a width of

0, the next bit field will not be packed into a space within the same memory unit. An unnamed bit field has no

declarator and declares a colon and a width only.

The unary & operator (address) cannot be applied to a bit field object.

Notes 1. In this compiler, char type, unsigned char type, and signed char type can also be specified. All of

them are regarded as unsigned type since this compiler does not support signed type bit fields.

2. In this compiler, the direction of bit field allocation can be changed using the compiler option –RB (for

details, refer to CHAPTER 11 EXTENDED FUNCTIONS).

The following shows an example of a bit field.

struct data {

unsigned int a:2;

unsigned int b:3;

unsigned int c:1;

} no1 ;

3.2.2 Enumeration specifiers

An enumeration type specifier indicates a list of objects to be put in sequence. Objects to be declared with the

enum specifier will be declared as constants that have int types.

The enumeration specifier is declared as shown below.

enum [identifier] {enumerator list}

Objects are declared according to an enumerator list. Values are defined for all objects in the list in the order of

their declaration by assigning the value of 0 to the first object and the value of the previous object plus 1 to the 2nd

and subsequent objects. A constant value may also be specified by “=”.

In the following example, “hue” is assumed as the tag name of the enumeration, “col” as an object that has this

(enum) type, and “cp” as a pointer to an object of this type. In this declaration, the values of the enumeration

become “{0, 1, 20, 21}”.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 57

enum hue {

chartreuse,

burgundy,

claret=20,

winedark

} ;

enum hue col, *cp ;

void main (void) {

col = claret ;

cp = &col ;

/*...*/ (*cp != burgundy) /*...*/

:

3.2.3 Tags

A tag is a name given to a structure, union, or enumeration type. A tag has a declared data type and objects of

the same type can be declared with a tag.

The identifier in the following declaration is a tag name.

structure/union identifier {member declaration list}

or

enum identifier {enumerator list}

A tag has the contents of the structure/union or enumeration defined by a member. In the next and subsequent

declarations, the structure of a struct, union, or enum type becomes the same as that of the tag’s list. In the

subsequent declarations within the same scope, the list enclosed in braces must be omitted. The following type

specifier is undefined with respect to its contents and thus the structure or union has an incomplete type.

struct/union identifier

A tag to specify the type of this type specifier can be used only when the object size is unnecessary. This is

because by defining the contents of the tag within the same scope, the type specification becomes incomplete.

In the following example, the tag “tnode” specifies a structure that includes pointers to an integer and two objects

of the same type.

struct tnode {

 int count;

 struct tnode *left, *right ;

};

The next example declares “s” as an object of the type indicated by the tag (tnode) and “sp” as a pointer to the

object of the type indicated by the tag. By this declaration, the expression “sp → left” indicates a pointer to “struct

tnode” on the left of the object pointed to by “sp” and the expression “s.right → count” indicates “count”, which is a

member of “struct tnode” on the right of “s”.

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM58

typedef struct tnode TNODE;

struct tnode {

 int count ;

 struct tnode *left, *right ;

};

TNODE s *sp;

void main (void) {

 sp → left = sp → right;

 s.right → count = 2;

}

3.3 Type Qualifiers

Two type qualifiers are available: const and volatile. These type qualifiers affect left-side values only.

Using a left-side value that has a non-const type qualifier cannot change an object that has been defined with a

const type qualifier. Using a left-side value that has a non-volatile type qualifier cannot reference an object that has

been defined with a volatile type qualifier.

An object that has a volatile qualifier type can be changed by a method not recognizable by the compiler or may

have other unnoticeable side effects. Therefore, an expression that references this object must be strictly evaluated

according to the sequence rules that regulate abstractly how programs written in C should be executed. In addition,

the values to be stored last in the object at every sequence point must be in agreement with those determined by the

program, except for the changes due to factors unrecognizable by the compiler as mentioned above.

If an array type is specified with type qualifiers, the qualifiers apply to the array members, not the array itself.

No type qualifier can be included in the specification of a function type. However, callt, _ _ callt, callf, _ _ callf,

noauto, norec, _ _ leaf, _ _ interrupt, _ _ interrupt_brk, _ _rtos_interrupt, _ _pascal, which are the type qualifiers

unique to this compiler mentioned in 2.1 Keywords, can be included as type qualifiers.

sreg, _ _sreg, _ _sreg1, and _ _directmap are also type qualifiers.

In the following example, “real_time_clock” can be changed by hardware, but operations such as assignment,

increment, and decrement are not possible.

extern const volatile int real_time_clock;

An example of modifying aggregate type data with type qualifiers is shown below.

const struct s { int mem;} cs = { 1 };

struct s ncs; /* object ncs is changeable */

typedef int A [2][3];

const A a = { {4, 5, 6}, {7, 8, 9} }; /* array of const int array */

int *pi;

const int *pci;

ncs = cs; /* correct */

cs = ncs; /* violates restriction of left-side value which has modifiable assignment operator */

pi = &ncs. mem; /* correct */

pi = &cs. mem; /* violates restriction of the type of assignment operator = */

pci = &cs. mem; /* correct */

pi = a[0]; /* incorrect:a[0] has “const int *” type */

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 59

3.4 Declarators

A declarator declares an identifier. Here, pointer declarators, array declarators, and function declarators are

mainly discussed. The scope of an identifier and a function or object that has a storage duration and a type are

determined by a declarator.

A description of each declarator is given below.

3.4.1 Pointer declarators

A pointer declarator indicates that an identifier to be declared is a pointer. A pointer points to (indicates) the

location where a value is stored. Pointer declaration is performed as follows.

* type qualifier list identifier

By this declaration, the identifier becomes a pointer to T1.

The following two declarations indicate a variable pointer to a constant value and an invariable pointer to a

variable value, respectively.

const int *ptr_to_constant;

int *const constant_ptr;

The first declaration indicates that the value of the constant “const int” pointed by the pointer “ptr_to_constant”

cannot be changed, but the pointer “ptr_to_constant” itself may be changed to point to another “const int”. Likewise,

the second declaration indicates that the value of the variable “int” pointed by the pointer “constant_ptr” may be

changed, but the pointer “constant_ptr” itself must always point to the same position.

The declaration of the invariable pointer “constant_ptr” can be made distinct by including a definition for the

pointer type to the int type data.

The following example declares “constant_ptr” as an object that has a const qualifier pointer type to int.

typedef int *int_ptr;

const int_ptr constant_ptr;

3.4.2 Array declarators

An array declarator declares to the compiler that an identifier to be declared is an object that has an array type.

Array declaration is performed as shown below.

type identifier [constant expression]

By this declaration, the identifier becomes an array that has the declared type. The value of the constant

expression becomes the number of elements in the array. The constant expression must be an integer constant

expression which has a value greater than 0. In the declaration of an array, if a constant expression is not specified,

the array becomes an incomplete type.

In the following example, a char type array “a[]”, which consists of 11 elements and a char type pointer array

“ap[]”, which consists of 17 elements, have been declared.

char a[11], *ap[17];

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM60

In the following two examples of declarations, “x” in the first declaration specifies a pointer to an int type data and

“y” in the second declaration specifies an array to an int type data which has no size specification and is to be

declared elsewhere in the program.

extern int *x;

extern int y [];

3.4.3 Function declarators (including prototype declarations)

A function declarator declares the type of return value, argument, and the type of the argument value of a function

to be referenced.

Function declaration is performed as follows.

type identifier (parameter list or identifier list)

By this declaration, the identifier becomes a function that has the parameter specified by the parameter type list

and returns the value of the type declared before the identifier. Parameters of a function are specified by a

parameter identifier list. By these lists, an identifier, which indicates the argument and its type, are specified. A

macro defined in the header file “stdarg.h” converts the list described by the ellipsis (, ...) into parameters. For a

function that has no parameter specification, the parameter list will become “void ”.

3.5 Type Names

A type name is the name of a data type that indicates the size of a function or object. Syntax-wise, it is a function

or object declaration less identifiers.

Examples of type names are given below.

• int Specifies an int type.

• int * Specifies a pointer to an int type.

• int *[3] Specifies an array that has three pointers to an int type.

• int (*) [3].................... Specifies a pointer to an array that has three int types.

• int *()....................... Specifies a function that returns a pointer to an int type that has no parameter

specification.

• int (*) (void)............... Specifies a pointer to a function that returns an int type that no parameter specification.

• int (*const []) (unsigned int, ...) Specifies an indefinite number of arrays that have one parameter of unsigned

int type and an invariable pointer to each function that returns an int type.

3.6 typedef Declarations

The typedef keyword defines that an identifier is a synonym to a specified type. The defined identifier becomes a

typedef name.

The syntax of typedef names is shown below.

typedef type identifier;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 61

In the following example, “distance” is an int type, the type of “metricp” is a pointer to a function that returns an int

type that has no parameter specification, the type of “z” is a specified structure, and “zp” is a pointer to this structure.

typedef int MILES, KLICKSP ();

typedef struct {long re, im} complex;

/*...*/

MILES distance;

extern KLICKSP *metricp;

complex z, *zp;

In the following example, the typedef name t is declared with a signed int type, and the typedef name plain is

declared with an int type, and a structure with three bit field members is declared. The bit field members are as

follows.

• Bit field member with name t and the value 0 to 15

• Bit field member without a name and the const qualified value –16 to +15 (if accessed)

• Bit field member with name r and the value –16 to +15

typedef signed int t;

typedef int plain;

struct tag {

unsigned t:4;

const t:5;

plain r:5;

};

In this example, these two bit field declarations differ in that the first bit field declaration has unsigned as the type

specifier (therefore, t becomes the name of the structure member), and the second bit field declaration, on the other

hand, has const as the type qualifier (qualifies t which can be referred to as the typedef name). After this

declaration, if:

t f(t (t));

long t;

is found within the effective range, the function f is declared as “function that has one parameter and returns signed

int”, and the parameter is declared as “pointer type for the function that has one parameter and returns signed int”.

The identifier t is declared as long type.

typedef names may be used to facilitate program reading. For example, the following three declarations for the

function signal all specify the same type as the first declaration which does not use typedef.

typedef void fv(int) ;

typedef void (*pfv) (int) ;

void (*signal (int, void (*) (int)))(int);

fv *signal(int, fv *);

pfv signal(int, pfv);

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM62

3.7 Initialization

Initialization refers to setting a value in an object beforehand. An initializer carries out the initialization of an

object.

Initialization is performed as follows.

object = {initializer list}

An initializer list must contain initializers for the number of objects to be initialized.

All expressions in initializers or an initializer list for objects that have static storage duration and objects that have

an aggregate type or a union type must be specified with constant expressions.

Identifiers that declare block scope but have external or internal linkage cannot be initialized.

(1) Initialization of objects which have a static storage duration

If no attempt is made to initialize an arithmetic type object that has static storage duration, the value of the object

will be implicitly initialized to 0.

Likewise, a pointer type object that has a static storage duration will be initialized to a null pointer constant.

Example unsigned int gval1; /* initialized by 0 */

static int gval2; /* initialized by 0 */

void func (void) {

static char aval; /* initialized by 0 */

}

(2) Initialization of objects that have an automatic storage duration

The value of an object that has automatic storage duration becomes undefined and will not be guaranteed if it is

not initialized.

Example void func(void){

char aval; /*undefined at this point */

 :

aval = 1; /* initialized to 1 */

}

(3) Initialization of character arrays

A character array can be initialized by a char string literal (char string enclosed with “ ”). Likewise, a character

string in which a series of char string literals are contained initializes the individual members or elements of an

array.

In the following example, the array objects “s” and “t” with no type qualifier are defined and the elements of each

array will be initialized by a char string literal.

char s[] = “abc”, t[3] = “abc” ;

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM 63

The next example is the same as the above example of array initialization.

Char s[] = {‘a’, ‘b’, ‘c’, ‘\0’},

t[] = { ‘a’, ‘b’, ‘c’};

The next example defines p as “pointer to char” type and the member is initialized by a character string literal so

that the length indicates 4 “char array” type objects.

char *p = “abc” ;

(4) Initialization of aggregate or union type objects

• Aggregate type

An aggregate type object is initialized by a list of initializers described in ascending order of subscripts or

members. The initializer list to be specified must be enclosed in braces.

If the number of initializers in the list is less than the number of aggregate members, the members not

covered by the initializers will be implicitly initialized just the same as an object that has static storage

duration.

With an array of an unknown size, the number of its elements is governed by the number of initializers and the

array will no longer become an incomplete type.

• Union type

A union type object is initialized by an initializer for the first member of the union that is enclosed in braces.

In the following example, the array “x” with an unknown size will change to a one-dimensional array that has

three elements as a result of its initialization.

int x[] = {1, 3, 5} ;

The next example shows a complete definition which has initializers enclosed in braces. “{1, 3, 5}” initializes

“y [0] [0]”, “y [0] [1]”, and “y [0] [2]” in the 1st line of the array object “y[0]”. Likewise, in the second line, the

elements of the array objects “y [1]” and “y [2]” are initialized. The initial value of “y[3]” is 0 since it is not

specified.

char y [4] [3] = {

 {1, 3, 5},

 {2, 4, 6},

 {3, 5, 7},

};

The next example produces the same result as the above example.

char z[4][3] = {

1, 3, 5, 2, 4, 6, 3, 5, 7

};

CHAPTER 3 DECLARATION OF TYPES AND STORAGE CLASSES

User’s Manual U15556EJ1V0UM64

In the following example, the elements in the first row of “z” are initialized to the specified values and the rest of

the elements are initialized to 0.

char z[4] [3] = {

{1}, {2}, {3}, {4}

};

In the next example, a three-dimensional array is initialized.

q[0] [0] [0] are initialized to 1, q[1] [0] [0] to 2, and q[1] [0] [1] to 3. 4, 5 and 6 initialize q[2] [0] [0], q[2] [0] [1], and

q[2] [1] [0], respectively. The rest of the elements are all initialized to 0.

short q[4] [3] [2] = {

 {1],

 {2, 3}

 {4, 5, 6}

};

The following example produces the same result as the above initialization of the three-dimensional array.

short q[4][3][2] = {

1, 0, 0, 0, 0, 0,

2, 3, 0, 0, 0, 0,

4, 5, 6

};

The following example shows a complete definition of the above initialization using braces.

Short q [4][3][2] = {

{

 {1},

},

{

 {2, 3},

},

{

 {4, 5, 6},

}

};

User’s Manual U15556EJ1V0UM 65

CHAPTER 4 TYPE CONVERSIONS

In an expression, if two operands differ in data type, the compiler automatically performs a type conversion

operation. This conversion is similar to a change obtained by the cast operator. This automatic type conversion is

called an implicit type conversion. In this chapter, this implicit type conversion is explained.

Type conversion operations include usual arithmetic conversions, conversions involving truncation/round off, and

conversions involving sign change. Table 4-1 gives a list of conversions between types.

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U15556EJ1V0UM66

Table 4-1. List of Conversions Between Types

After Conversion

Before Conversion

(signed)

char

unsigned

char

(signed)

short int

unsigned

short int

(signed)

int

unsigned

int

(signed)

long int

unsigned

long int

float double long

double

(signed) char +

– N N N N

unsigned char ∆

(signed) short int +

– N N N

unsigned short int ∆ ∆

(signed) int +

– N N N

unsigned int ∆ ∆

(signed) long int +

– N

unsigned long int ∆

float

double

long double

Remarks 1 The signed keyword may be omitted. However, with a char type data, the data type is regarded as

the signed char or unsigned char type depending on the condition (option) for compilation.

2 Legend:

: Type conversion will be performed properly.

\: Type conversion will not be performed.

N: A correct value will not be generated. (The data type will be regarded as an unsigned int

type.)

∆: The data type will not change bit-image-wise. However, if a positive number cannot

represent it sufficiently, no correct value will be generated (regarded as an unsigned

integer).

Blank: An overflow in the result of the conversion will be truncated. The + or – sign of the data

may be changed depending on the type after the conversion.

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U15556EJ1V0UM 67

4.1 Arithmetic Operands

(1) Characters and integers (general integral promotion)

The data types of char, short int, and int bit fields (whether they are signed or unsigned) or of objects that have

an enumeration type will be converted to int types if their values are within the range that can be represented

with int types. If not within the range, they will be converted to unsigned int types. These implicit type

conversions are referred to as “general integral general promotion”. All other arithmetic types will not be

changed by this general integral promotion.

In general integral promotion, the value of the original data type is retained, including its sign. char type data

without a type qualifier will normally be handled as signed char in this compiler.

If can also be handled as unsigned char by using an option.

(2) Signed integers and unsigned integers

When a value with an integer type is converted to another, the value will not be changed if the value can be

expressed by the integer type after conversion.

When a signed integer is converted to an unsigned integer of the same or larger size, the value is not changed

unless the value of the signed integer is negative. If the value of the signed integer is negative and the unsigned

integer has a size larger than that of the signed integer, the signed integer is expanded to the signed integer with

the same size as the unsigned integer, and then it is added to the value equal to the maximum number that can

be expressed with the unsigned integer plus 1, and the signed integer before conversion is converted to the

unsigned value.

When a value with an integer type is converted to an unsigned integer with a smaller size, the conversion result

is the non-negative remainder of the value divided with that value which 1 is added to the maximum number that

can be expressed with an unsigned integer after conversion. When a value with an integer type is converted to a

signed integer with smaller size or when an unsigned integer is converted to a signed integer with the same size,

the overflowed value is ignored if the value after conversion cannot be expressed. For the conversion pattern,

refer to Table 4-1. List of Conversions between Types.

Conversion operations from signed integral type to unsigned integral type are as listed in Table 4-2 below.

Table 4-2. Conversions from Signed Integral Type to Unsigned Integral Type

unsigned

Smaller in Value Range Greater in Value Range

+ /
signed

– / +

:Type conversion will be performed properly.

+: The data will be converted to a positive integer.

/: The result of the conversion will be the remainder of the integer value, modulo the largest

possible value of the type to be converted plus 1.

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U15556EJ1V0UM68

(3) Usual arithmetic type conversions

Types obtained as a result of operations on arithmetic type data have a wide range of values.

The type conversion of the operation result is performed as follows.

• If either one of the operands has long double type, the other operand is converted to long double type.

• If either one of the operands has double type, the other operand is converted to double type.

• If either one of the operands has float type, the other operand is converted to float type.

In cases other than above, general integer expansion is performed for both operands according to the following

rules. Figure 4-1 shows the rules.

Figure 4-1. Usual Arithmetic Type Conversions

unsigned long int

unsigned int

int

long int

If either of the two operands is unsigned long int type, or if one

operand is long int type and the other is unsigned int type

and the value of unsigned int type cannot be represented by long int type.

both operands will be converted to unsigned long int type.

In cases other than above, if one operand is long int type and if the value of

the other operand can be represented by long int type, the other operand will be

converted to long int type.

In cases other than above, if one operand is unsigned int type, the other operand
will be converted to unsigned int type.

In cases other than above, both operands will have int type.

In this compiler, the conversion to int type can be intentionally disabled by a compile condition (optimizing

option) (For details, refer to CC78K4 C Compiler Operation User’s Manual (U15557E) CHAPTER 5

COMPILER OPTIONS).

CHAPTER 4 TYPE CONVERSIONS

User’s Manual U15556EJ1V0UM 69

4.2 Other Operands

(1) Left-side values and function locators

A left-side value refers to an expression that specifies an object (and has an incomplete type other than object

type or void type).

Left-side values that do not have array types, incomplete types, or const qualifier types, and structures or unions

that have no const qualifier type members are “modifiable left-side values”.

A left-side value that has no array type will be converted to a value stored in the object to be specified, except

when it is the operand of the sizeof operator, unary & operator, ++ operator, or - - operator or the left operand of

an operator or an assignment operator. By being converted, it will no longer serve as a left-side value.

The behavior of left-side values that have incomplete types but have no array types is not guaranteed.

A left-side value that has an “... array” type except character arrays will be converted to an expression that has a

“pointer to ...” type. This expression is no longer a left-side value.

A function locator is an expression that has a function type. With the exception of the operand of the sizeof

operator or unary & operator, a function locator that has a “function type that returns ...” will be converted to an

expression that has a “pointer type to a function that returns ...”.

(2) void

The value (non-existent) of a void expression (i.e., an expression that has the void type) cannot be used in any

way. Neither implicit nor explicit conversion to exclude void will be applied to this expression. If an expression

of another type appears in a context that requires a void expression, the value of the expression or specifier is

assumed to be non-existent.

(3) Pointers

A void pointer can be converted to a pointer to any incomplete type or object type. Conversely, a pointer to any

incomplete type or object type can be converted to a void pointer. In either case, the result value must be equal

to that of the original pointer.

An integer constant expression that has the value of 0 and has been cast to the void * type is referred to as a

“null pointer constant”. If the null pointer constant is substituted with, equal to, or compared with some pointer,

the null pointer constant will be converted to that pointer.

User’s Manual U15556EJ1V0UM70

CHAPTER 5 OPERATORS AND EXPRESSIONS

This chapter describes the operators and expressions to be used in the C language.

C has an abundance of operators for arithmetic, logical, and other operations. This rich set of operators also

includes those for bit and address operations.

An expression is a string or combination of an operator and one or more operands. The operator defines the

action to be performed on the operand(s) such as computation of a value, instructions on an object or function,

generation of side effects, or a combination of these.

Examples of operators are given below.

#define TRUE 1

#define FALSE 0

#define SIZE 200

void lprintf(char *, int);

void putchar(char c);

char mark [SIZE+1]; + ... Arithmetic operator

void main(void) {

int i, prime, k, count;

count = 0; =.. Assignment operator

for (i = 0 ; i <= SIZE ; i++) ++ ... Postfix operator

mark [i] = TRUE; <= ... Relational operator

for (i = 0 ; i <= SIZE ; i++) {

if (mark [i]) {

prime = i + i + 3; + ... Arithmetic operator

lprintf (“%d” , prime);

count++; ++ ... Postfix operator

if ((count%8) == 0) ==............................. Relational operator

putchar ('\n');

for (k = i + prime ; k<=SIZE; k += prime) += Assignment operator

mark [k] = FALSE;

}

}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 71

lprintf(“Total %d\n”, count);

loop1:

goto loop1;

}

lprintf(char *s, int;) {

int j;

char *ss;

j = i;

ss = s;

}

void puttchar(char c){

char d;

d = c;

}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM72

Table 5-1 shows the evaluation priority of operators used in C.

Table 5-1. Evaluation Precedence of Operators

Type of Expression Operator Linkage Priority

Postfix [] () . – > ++ – – → Highest

Unary ++ – – & * + – ~ ! sizeof ←

Cast (type) ←

Multiplicative * / % →

Additive + – →

Bitwise shift << >> →

Relational < > <= >= →

Equality == != →

Bitwise AND & →

Bitwise XOR ^ →

Bitwise OR | →

Logical AND && →

Logical OR | | →

Conditional ? : ←

Assignment = *= /= %= += –=

<<= >>= &= ^= | =

←

Comma , → Lowest

The arrow (→ or ←) in the “Linkage” column denotes that when an expression

contains two or more operators of the same priority, the operations are carried out in

the direction of the arrow “→” (from left to right) or “←” (from right to left).

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 73

5.1 Primary Expressions

Primary expressions include the following.

• Identifier declared as object or function

(identifier primary expression)

• Constant (constant primary expression)

• String literal (constant primary expression)

• Expression enclosed in parentheses

(parenthesized expression)

An identifier that becomes a primary expression is a left-side value if an object is declared or a function locator if a

function is declared. The data type of a constant is determined according to the value specified for the constant as

explained in 2.4 Constants. String literal(s) become a left-side value that has a data type as explained in 2.5 String

Literals.

5.2 Postfix Operators

A postfix operator is an operator that appears or is placed after an object or function.

The primary expressions are described below.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM74

(1) Subscript operators

Postfix Operators [] Subscript Operator

FUNCTION

The [] subscript operator specifies or refers to a single member of an array object. The array or expression “E1

[E2]” is evaluated as if it were “(*(E1+(E2)))”. In other words, the value of E1 is a pointer to the first member of

the array and E2 (if it is an integer) indicates the E2th member of E1 (counting from 0). With a multidimensional

array, as many subscript operators as the number of dimensions must be connected.

In the following example, x becomes an int type array of 3*5. In other words, x is an array which has three

members each consisting of five int type members.

int x[3][5] ;

A multidimensional array may be specified by connecting subscript operators. Assuming that E is an array of nth

dimension (where n ≥ 2) consisting of i*j*...*k, the array can be specified with n number of subscript operators. In

this case, E becomes a pointer to an array of (n – 1)th dimension consisting of j*...*k.

SYNTAX

postfix-expression [subscripted expression]

NOTE

A postfix expression must have a “.... pointer to object”. The subscripted expression of an array must be

specified with integral type data. The result of the expression will become “.....” type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 75

(2) Function call operators

Postfix Operators () Function Call

FUNCTION

The postfix () operator calls a function. The function to be called is specified with a postfix expression and

argument(s) to be passed to the function are indicated in parentheses ().

The description related to function includes the function prototype declaration, the function definition (the body of

a function), and the function call. The function prototype declaration specifies the value a function returns, the

type of argument, and the storage class.

If the function prototype declaration is not referred to in a function call, each argument is extended with a general

integer. This is called “default actual argument extension”. Performing a function prototype declaration avoids

default actual argument extension and detects errors in of the type and number of arguments and the type of

return value.

Calling a function that has neither a storage class specification nor a data type specification such as “identifier (

);” is interpreted as calling a function that has an external object and returns an int type that has no information

on arguments. In other words, the following declaration will be made implicitly.

extern int identifier () ;

SYNTAX

postfix-expression (argument-expression list);

[Example of function call]

int func (char, int); /* function prototype declaration */

char a ;

int b, ret;

void main(void){

ret = func(a, b); /* function call */

}

int func(char c, int i) { /* function definition */

:

return I;

}

NOTE

A function that returns an object other than array types can be called with this operator. The postfix expression

must be of a pointer type to this function.

In a function call including a prototype, the type of argument must be of a type that can be assigned to the

corresponding parameter(s). The number of arguments must also be in agreement.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM76

(3) Structure and union member

Postfix Operators . ->

<1> . (dot) operator

FUNCTION

The . (dot) operator (also called a member operator) specifies the individual members of a structure or union.

The postfix expression is the name of the structure or union object to be specified, and the identifier is the name

of the member.

SYNTAX

postfix-expression . identifier

<2> → (arrow) operator

FUNCTION

The → (arrow) operator (also called an indirect membership operator) specifies the individual members of a

structure or union. The postfix expression is the name of the pointer to the structure or union object to be

specified, and the identifier is the name of the member.

SYNTAX

postfix-expression → identifier

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 77

Postfix Operators . ->

[Examples of ‘.’, ‘->’ operators]

#include <stdlib.h>

union {

struct {

int type ;

} n ;

struct {

int type ;

int intnode ;

} ni ;

struct {

int type ;

struct {

long longnode ;

} *nl_p ;

} nl ;

} u ;

void func (void) {

u. nl. type = 1 ;

u. nl.nl_p -> longnode = -31415L ;

/*...*/

if (u.n.type = = 1)

u.nl.nl_p -> longnode = labs (u. nl.nl_p -> longnode) ;

}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM78

(4) Postfix Increment/Decrement operators

Postfix Operators ++ – –

<1> Postfix ++ (Increment) operator

FUNCTION

The postfix ++ (Increment) operator increments the value of an object by 1. This increment operation is

performed taking the data type of the object into account.

SYNTAX

postfix-expression ++

NOTE

See <2> below.

<2> Postfix – – (Decrement) operator

FUNCTION

The postfix – – (Decrement) operator decrements the value of an object by 1. This decrement operation is

performed taking the data type of the object into account.

SYNTAX

postfix expression – –

NOTE

The operand of the postfix increment or decrement operator must be a modifiable left-side value (qualified or

unqualified).

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 79

5.3 Unary Operators

A unary operator performs an operation on one object or parameter (i.e., operand). The following unary operators

are available.

• Prefix Increment and Decrement operators

+ + – –

• Address and Indirect operators

& *

• Unary Arithmetic operators

+ – ~!

• sizeof operator

sizeof

The followings explain each unary operators are described below.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM80

(1) Prefix Increment and Decrement operators

Unary Operators ++ – –

<1> Prefix ++ (Increment) operator

FUNCTION

The prefix ++ (Increment) operator increments the value of an object by 1. The expression “++E” of the prefix

increment operator will produce the same result as the following expression.

E = E + 1

 or

E+ = 1

SYNTAX

+ + unary-expression

<2> Prefix – – (Decrement) operator

FUNCTION

The prefix – – (Decrement) operator decrements the value of an object by 1. The expression “– –E” of the prefix

decrement operator will produce the same result as the following expression.

E = E – 1

 or

E – = 1

SYNTAX

– – unary-expression

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 81

(2) Address and Indirection operators

Unary Operators & *

<1> Unary & operator

FUNCTION

The unary & (address) operator returns the pointer of a specified object (i.e., the address of the variable it

precedes).

SYNTAX

& operand

<2> Unary * operator

FUNCTION

The unary * (indirection) operator returns the value indicated by a specified pointer (i.e., takes the value of the

variable it precedes and uses that value as the address of the information in memory).

SYNTAX

* operand

NOTE

The operand of the unary & operator must be a left-side value referring to an object not declared with the register

storage class specifier. Neither a function locator nor a bit field can be used as the operand of this unary

operator.

The operand of the unary * operator must have a pointer type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM82

(3) Unary Arithmetic operators (+ – ~ !)

Unary Operators + – ~ !

FUNCTIONS

The + (unary plus) operator performs positive integral promotion on its operand.

The – (unary minus) operator performs negative integral promotion on its operand.

The ~ (tilde) operator is a bitwise one’s complement operator which inverts all the bits in a byte of its operand.

The ! NOT or logical negation operator returns 0 if its operand is 0 and 1 if it is not 0. In other words, the

operator changes each 0 to 1 and 1 to 0.

SYNTAX

+ operand

– operand

~ operand

! operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 83

(4) sizeof operators

Unary Operators sizeof Operator

FUNCTION

The sizeof operator returns the size of a specified object in bytes. The return value is governed by the data type

of the object and the value of the object itself is not evaluated.

The value to be returned by an unsigned char or signed char object (including its qualified type) on which a

sizeof operation is performed is 1. With an array type object, the return value will be the total number of bytes in

the array. With a structure or union type object, the result value will be the total number of bytes that the object

would occupy including bytes necessary to pad out to the next appropriate alignment boundary.

The type of the sizeof operation result is an integral type and its name is size_t. This name is defined in the

<stddef.h> header. The sizeof operator is used mainly to allocate memory areas and transfer data to/from the

I/O system.

SYNTAX

sizeof unary-expression

or

sizeof (type-name)

EXAMPLE

The following example finds the number of elements of an array by dividing the total number of bytes in the array

by the size of a single element. Num becomes 5.

int num;

char array[]= {0, 1, 2, 3, 4};

void func(void){

num = sizeof array / sizeof array [0] ;

}

NOTE

An expression that has a function type or incomplete type and a left-side value that refers to a bit field object

cannot be used as the operand of this operator.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM84

5.4 Cast Operators

A cast is a special operator that forces one data type to be converted into another. The cast operator is mainly

used when converting a pointer type.

Cast Operators (type-name)

FUNCTION

The cast operator converts the data type of another object (or the result of another expression) into the type

specified in parentheses ().

SYNTAX

(type-name) expression

EXAMPLE

void func (void) {

int val;

float f;

f = 3.14F;

val = (int) f; /* val becomes 3 by cast */

val = *(int *)0x10000; /* cast constant */

}

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 85

5.5 Arithmetic Operators

Arithmetic operators are divided into multiplicative operators and additive operators. Multiplicative operators find

the product, quotient, and remainder of two operands. Additive operators find the sum and difference of two

operands.

• Multiplicative operators * / %

• Additive operators + –

Table 5-2. Signs of Division/Remainder Division Operation Result

a/b b a % b b

+ – + –

+ + – + + +
a

– – +
a

– – –

Remark a and b indicate operands.

Division is performed with two integers whose sign, if any, is removed through the usual arithmetic conversion and

the result will be truncated towards 0 if necessary. Likewise, a remainder or modulo division operation is performed

with two integers whose sign, if any, is removed through the usual arithmetic conversion. Table 5-2 shows the

results of calculations only on the signs of two operands in division and remainder division, respectively.

Multiplicative operators and additive operators are described below. E1 and E2 used in the explanation of syntax

indicate operands or expressions.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM86

(1) Multiplicative operators

Multiplicative Operators * / %

<1> * operator

FUNCTION

The binary * (multiplication) operator performs normal multiplication on two operands and returns the product.

SYNTAX

E1 * E2

<2> / operator

FUNCTION

The / operator performs normal division on two operands and returns the quotient.

SYNTAX

E1 / E2

<3> % operator

FUNCTION

The % operator performs a remainder (or modulo division) operation on two operands and returns the remainder

in the result.

SYNTAX

E1 % E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 87

(2) Additive operators

Additive Operators + –

<1> + operator

FUNCTION

The + operator performs addition on two operands and returns the sum of the two numbers.

SYNTAX

E1 + E2

<2> – operator

FUNCTION

The – operator performs subtraction on two operands and returns the difference between the two numbers (the

first operand minus the second operand).

SYNTAX

E1 – E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM88

5.6 Bitwise Shift Operators

A shift operator shifts its first (left) operand to the direction (left or right) indicated by the operator by the number of

bits specified by its second operand. There are the following two shift operators.

• shift operator << >>

Table 5-3. Shift Operations

a<<b bNote a>>b bNote

+ 0 + 0

– 0 – –1

Note The table indicates when the right operand is greater than the number of bits in the left operand or

when an overflow occurs in the result of the shift operation.

If the right operand is negative, the value is processed as an unsigned positive number.

Remark a and b indicate operands.

The shift operators are described below. E1 and E2 indicate operands or expressions.

aa

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 89

Shift Operators << >>

<1> Left shift (<<) operators

FUNCTION

The binary << (left shift) operator shifts the left operand to the left the number of bits specified by the right

operand and fills zeros in vacated bits. If the left operand E1 has an unsigned type in “E1 << E2”, the result will

become a value obtained by multiplying E1 by the E2th power of 2.

SYNTAX

E1 << E2

<2> Right shift (>>) operators

FUNCTION

The binary >> (right shift) operator shifts the left operand to the right the number of bits specified by the right

operand. If the left operand is unsigned, zeros are filled in vacated bits (Logical shift). If the left operand is

signed, a copy of the sign bit is filled in vacated bits.

If the left operand E1 is unsigned or signed and has a non-negative value in “E1>>E2”, the result will become a

value obtained by dividing E1 by the E2th power of 2.

SYNTAX

E1 >> E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM90

5.7 Relational Operators

There are two types of operators to indicate the relationship between two operands: “relational operator” and

“equality operator”.

The relational operator indicates the value relationship between two operands such as greater than and less than.

The equality operators indicate that two operands are equal or not equal.

The relational operators and equality operators are shown below.

• Relational operator < > <= >=

• Equality operator == ! =

The value relationship between two pointers compared by relational operators is determined by the relative

location in the address space of the object indicated by the pointer.

In this compiler, relational operators and equality operators generate ‘1’ if the specified relationship is true and ‘0’

if it is false. The results have int type.

The relational operators and equality operators are described below. E1 and E2 used in the explanation of syntax

indicate operands or expressions.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 91

(1) Relational operators

Relational Operators < > <= >=

<1> < (less than) operator

FUNCTION

The < (less than) operator returns 1 if the left operand is less than the right operand; otherwise, 0 is returned.

SYNTAX

E1 < E2

<2> > (greater than) operator

FUNCTION

The > (greater than) operator returns 1 if the left operand is greater than the right operand; otherwise, 0 is

returned.

SYNTAX

E1 > E2

<3> <= (less than or equal) operator

FUNCTION

The <= (less than or equal) operator returns 1 if the left operand is less than or equal to the right operand;

otherwise, 0 is returned.

SYNTAX

E1 <= E2

<4> >= (greater than or equal) operator

FUNCTION

The >= (greater than or equal) operator returns 1 if the left operand is greater than or equal to the right operand;

otherwise, 0 is returned.

SYNTAX

E1 >= E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM92

(2) Equality operators

Equality Operators = = !=

<1> = = (equal) operator

FUNCTION

The = = (equal) operator returns 1 if its two operands are equal to each other; otherwise, 0 is returned.

SYNTAX

E1 == E2

<2> != (not equal) operator

FUNCTION

The != (not equal) operator returns 1 if the operands are not equal to each other; otherwise, 0 is returned.

SYNTAX

E1 != E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 93

5.8 Bitwise Logical Operators

Bitwise logical operators perform a specified logical operation on the value of an object in bit units. The bitwise

logical expressions include Bitwise AND (&), Bitwise Exclusive OR (^), and Bitwise Inclusive OR (|).

Each logical operation is indicated by the operators shown below.

• Bitwise AND operator &

• Bitwise XOR operator ^

• Bitwise OR operator |

The bitwise logical operators are described below. E1 and E2 used in the explanation of syntax indicate operands

or expressions.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM94

(1) Bitwise AND operators

Bitwise AND Operators &

FUNCTION

The binary & operator is a bitwise AND operator that returns an integral value that has “1” bits in positions where

both operands have “1” bits and that has “0” bits everywhere else.

The bitwise AND operator must be specified with an “operator”.

Table 5-4. Bitwise AND Operation

Value of Each Bit in Left Operand

1 0

1 1 0

0 0 0

SYNTAX

E1 & E2

Value of
each bit in
right operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 95

(2) Bitwise XOR operators

Bitwise XOR Operators ^

FUNCTION

The binary ^ (caret) operator is a bitwise exclusive OR operator that returns an integral value that has a “1” bit in

each position where exactly one of the operands has a “1” bit and that has a “0” bit in each position where both

operands have a “1” bit or both have a “0” bit.

Table 5-5. Bitwise XOR Operation

Value of Each Bit in Left Operand

1 0

1 0 1

0 1 0

SYNTAX

E1 ^ E2

Value of
each bit in
right operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM96

(3) Bitwise Inclusive OR operators

Bitwise Inclusive OR Operators |

FUNCTION

The binary | operator is a bitwise inclusive OR operator that returns an integral value that has a “1” bit in each

position where at least one of the operands has a “1” bit and that has a “0” bit in each position where both

operands have a “0” bit.

Table 5-6. Bitwise OR Operation

Value of Each Bit in Left Operand

1 0

1 1 1

0 1 0

SYNTAX

E1 | E2

Value of
each bit in
right operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 97

5.9 Logical Operators

Logical operators perform logical OR and logical AND operations. A logical OR operation is specified with a

logical OR operator, and a logical AND operation is specified with a logical AND operator. Each operator is shown

below.

• Logical AND operator & &

• Logical OR operator | |

Each operand of both the operators returns the value of int type ‘0’ or ‘1’. The following explains each logical

operator. E1 and E2 used in the explanation of syntax indicate operands or expressions.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM98

(1) Logical AND operators

Logical AND Operators &&

FUNCTION

The && operator performs a logical AND operation on two operands and returns a “1” if both operands have

nonzero values. Otherwise, a “0” is returned. The type of the result is int.

Table 5-7. Logical AND Operation

Value of Left Operand

Zero Nonzero

Zero 0 0

Nonzero 0 1

SYNTAX

E1 && E2

NOTE

This operator always evaluates its operands from left to right. If the value of the left operand is “0”, the right

operand is not evaluated.

Value of

right operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 99

(2) Logical OR operators

Logical OR Operators | |

FUNCTION

The | | operator performs a logical OR operation on two operands and returns a “0” if both operands are zero.

Otherwise, a “1” is returned. The type of result is int.

Table 5-8. Logical OR Operation

Value of Left Operand

Zero Nonzero

Zero 0 1

Nonzero 1 1

SYNTAX

E1 || E2

NOTE

This operator always evaluates its operands from left to right. If the value of the left operand is nonzero, the right

operand is not evaluated.

Value of
each bit in
right operand

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM100

5.10 Conditional Operators

Conditional operators judge the processing to be performed next by the value of the first operand. Conditional

operators judge by ‘?’ and ‘:’. The conditional operators are described below.

(1) Conditional operators (?, :)

Conditional Operators ? :

FUNCTION

The conditional (?, :) operator evaluates the first operand before the ?. If the value of the first operand is

nonzero, it evaluates the second operand before the colon. If the value of the first operand is zero, it evaluates

the third operand after the colon. The result of the entire conditional expression will be the value of the second

or third operand.

SYNTAX

1st-operand ? 2nd-operand : 3rd-operand

EXAMPLE

#define TRUE 1

#define FALSE 0

char flag ;

int ret ;

ret func () {

ret = flag ? TRUE : FALSE ;

return ret ;

}

NOTE

If both the second and third operand types are arithmetic types, normal arithmetic type conversion is performed

to make them common types. The type of result is the common type. If both the operand types are structure

types or union types, the result becomes those types. If both the operand types are void types, the result is a

void type.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 101

5.11 Assignment Operators

Assignment operators include a simple assignment expression that stores the right operand in the left operand

and a compound assignment expression that stores the result of an operation on both operands in the left operand.

The assignment operators are shown below.

• Assignment Operators

= *= /= %= += –= <<= >>=

&= ^= |=

The each assignment operators are described below. E1 and E2 used in the explanation of syntax indicate

operands or expressions.

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM102

(1) Simple assignment operators

Simple Assignment Operators =

FUNCTION

The = (simple assignment) operator converts the right operand (expression) to the type of the left operand (left-

side value) before the value is stored.

In the following example, the value of an int type to be returned from the function by the type conversion of the

simple assignment expression will be converted to a char type and an overflow in the result will be truncated.

The comparison of the value with “–1” will be made after the value is converted back to the int type. If the

variable “c” declared without a qualifier is not interpreted as unsigned char, the result of the variable will not

become negative and its comparison with “–1” will never result in equal. In such a case, the variable “c” must be

declared with an int type to ensure complete portability.

int f(void) ;

char c ;

/*...*/ ((c = f ()) == -1) /*...*/

SYNTAX

E1 = E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 103

(2) Compound assignment operators

Compound Assignment Operators *= /= %= += –=
<<= >>= &= ^= |=

<1> Compound assignment operators

FUNCTION

The compound assignment operators perform a specified operation on both operands and stores the result in the

left operand. The value to be stored in the left operand will be converted to the type of the left-side value (left

operand). The compound assignment expression “E1 op = E2” (where op indicates a suitable binary operator) is

equivalent to the simple assignment expression “E1 = E1 op (E2)”, except that the left-side value (E1) is only

evaluated once. The following compound assignment expressions will produce the same result as the respective

simple assignment expressions on the right.

a *= b; a = a * b;

a /= b; a = a / b;

a %= b; a = a % b;

a += b; a = a + b;

a –= b; a = a – b;

a <<= b; a = a << b;

a >>= b; a = a >> b;

a &= b; a = a & b;

a ^= b; a = a ^ b;

a |= b; a = a | b;

SYNTAX

E1 *= E2

E1 /= E2

E1 %= E2

E1 += E2

E1 –= E2

E1 <<= E2

E1 >>= E2

E1 &= E2

E1 ^= E2

E1 |= E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM104

5.12 Comma Operator

(1) Comma operator

Comma Operator ,

FUNCTION

The comma operator evaluates the left operand as a void type (that is, ignores its value) and then evaluates the

right operand. The type and value of the result of the comma expression are the type and value of the right

operand.

In contents where a comma has another meaning (as in a list of function arguments or in a list of variable

initializations), comma expressions must be enclosed in parentheses. In other words, the comma operator

described in this chapter will not appear in such a list.

In the following example, the comma operator finds the value of the second argument of the function “f ()”. The

value of the second argument becomes 5.

int a, c, t;

void main(void)

f(a, (t=3, t+2), c);

}

SYNTAX

E1 , E2

CHAPTER 5 OPERATORS AND EXPRESSIONS

User’s Manual U15556EJ1V0UM 105

5.13 Constant Expressions

Constant expressions include general integral constant expressions, arithmetic constant expressions, address

constant expressions, and initialization constant expressions. Most of these constant expressions can be calculated

at translation instead of execution.

In a constant expression, the following operators cannot be used except when they appear inside sizeof

expressions.

• Assignment operators

• Increment operators

• Decrement operators

• Function call operator

• Comma operator

(1) General integral constant expression

A general integral constant expression has a general integral type. The following operands may be used.

• Integer constants

• Enumerated value constants

• Character constants

• sizeof expressions

• Floating-point constants

(2) Arithmetic constant expression

An arithmetic constant expression has an integral type. The following operands may be used.

• Integer constants

• Enumerated value constants

• Character constants

• sizeof expressions

• Floating-point constants

(3) Address constant expression

An address constant expression is a pointer to an object that has a static storage duration or a pointer to a

function locator. Such an expression must be created explicitly using the unary & operator or implicitly using an

expression with an array type or function type. The following operands may be used.

• Array subscript operator []

• . (dot) operator

• → (arrow) operator

• & address operator

• * indirection operator

• Pointer casts

However, none of these operators can be used to access the value of an object.

User’s Manual U15556EJ1V0UM106

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

This chapter describes the program control structures of C language and the statements to be executed in C.

Generally speaking, no matter how complicated a process is, it can be expressed with three basic control

structures. These three control structures are: Sequential, Conditional (Selection), and Iteration. Branch is used to

change the flow of a program by force.

(1) Sequential processing

Statements in a program are executed one by one from top to bottom in the order of their description in the

program.

(2) Conditional (selection) processing

According to the status of the program under execution, the next executable statement is selected and executed.

The selection condition is specified in a control statement. The control statement determines which of the two

alternative statement groups or multiway (three or more) alternative statement groups is to be executed.

(3) Looping (iteration) processing

The same processing is executed two or more times. The execution of an executable statement is repeated a

specified number of times in the state indicated by the control statement.

(4) Branch processing

C is forced to exit from the current program flow and control is transferred to a specified label. Program

execution starts from the statement next to the specified label.

There are six types of statements used in C.

• Labeled statement Causes branch according to the value of the switch statement

and the destination of the goto statement

• Compound statement (block) Collects two or more statements to be processed as one unit

• Expression statement A statement consisting of an expression and a semicolon

• Selection statement Selects a statement out of several statements according to the

value of the expression

• Iteration statement............................... Repeatedly performs a statement called the body of a loop

until control expression becomes equal to 0

• Branch statement Causes an unconditional branch to a different destination

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 107

A description example of these statements is shown below.

[Description example]

#define SIZE 10

#define TRUE 1

#define FALSE 0

extern void putchar(char) ;

extern void lprintf(char*, int) ;

char mark [SIZE+1];

void main (void) {

int i, prime, k, count;

count = 0 ;

for (i = 0 ; i <= SIZE ; i++) /* for Iteration statement */

mark [i] = TRUE ;

for (i = 0 ; i <= SIZE ; i++) {....................... / * for Iteration statement */

 if (mark [i]) { .. / * if Selection statement */

prime = i + i + 3;

lprintf (“%d” , prime);

if ((count%8) == 0) putchar ('\n');

for (k = i + prime ;

 k <= SIZE ; k += prime) / * if Selection statement * /

mark [k] = FALSE;

 }

}

lprintf (“Total %d\n”, count);

loop1; .. / * loop1: Labeled statement * /

goto loop1; .. / * goto Branch statement * /

}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM108

6.1 Labeled Statements

A labeled statement specifies the destination of the switch or goto statement. The switch statement selects the

statement specified by a control expression from among statements with two or more options. The labeled statement

becomes the label of the statement to be executed by the switch statement. The goto statement causes

unconditional branching to the applicable label from the normal flow of processing.

The syntax of labeled statements is given below.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 109

(1) case label

Labeled Statements case label

FUNCTION

case labels are used only in the body of a switch statement to enumerate values to be taken by the control

expression of the switch statement.

SYNTAX

case constant-expression : statement

EXAMPLE 1

int f (void), i;

void main (void) {

/* ... */

switch (f()) {

case 1:

 i = i + 4 ;

 break ;

case 2:

 i = i + 3 ;

 break ;

case 3:

 i = i + 2 ;

}

/* ... */

}

EXPLANATION

In EXAMPLE 1, if the return value of f() is 1, the first case clause (statement) is selected and the expression

“i=i+4” is executed. Likewise, if the return value of f() is 2 or 3, the second or third case statement is selected,

respectively. Each break statement in the above example is to break out of the switch body.

As in this example, case labels are used when two or more options are involved.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM110

Labeled Statements case label

EXAMPLE 2

int i ;

void main (void) {

/* ... */

i = 2 ;

 switch(i) {

 case 1:

 i = i + 4 ;

 case 2:

 i = i + 3 ;

 case 3:

 i = i + 2 ;

}

/* ... */

}

EXPLANATION

In example 2, the processing starts in the second case statement since i is 2. The third statement is also

consecutively performed since the case statement does not include a break statement. Thus, if the constant

expression and the control expression in the case statement match, the programs thereafter are performed

sequentially. A break statement is used to exit the switch statement.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 111

(2) default label

Labeled Statements default label

FUNCTION

A default label is a special case label used only in the body of a switch statement to specify a process to be

executed by C if the value of the control expression does not match any of the case constants.

SYNTAX

default : statement

EXAMPLE

int f (void), i;

switch (f()) {

 case 1:

 i = i + 4 ;

 break ;

 case 2:

 i = i + 3 ;

 break ;

 case 3:

 i = i +2 ;

 default:

 i = 1;

}

EXPLANATION

In the above example, if the return value of f() is 1, 2, or 3, the corresponding case clause (statement) is

selected and the expression that follows the case label is executed. Each break statement in the above

example is used to break out of the switch body. If the return value of f() is other than 1 to 3, the expression

that follows the default label is executed. In this case, the value of i becomes 1.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM112

6.2 Compound Statements or Blocks

A compound statement or block consists of two or more statements grouped together with enclosing braces and

executed as one unit syntax-wise. In other words, by enclosing zero or more declarations followed by zero or more

statements all in braces, these statements can be processed as a compound statement whenever a single statement

is expected.

6.3 Expression Statements and Null Statements

An expression statement consists of a statement and a semicolon. A null statement consists of only a semicolon

and is used for labels that require a statement and in looping that does not need a body.

The description examples of expression statements and null statements are given below.

As in the following example, for a function to be called as an expression statement merely to obtain side effects,

the value of its return value can be discarded by using a cast expression.

int p(int) ;

void main(void) {

/*...*/

(void)p(0) ;

}

A null statement can be used as the body of a looping statement as shown below.

char *s ;

void main(void) {

/*...*/

while (*s++ != '0') ;

/* */

}

In addition, it can be used to place a label before a brace (}) that closes a compound statement as shown below.

void func(void){

 /*...*/

 while (loop1) {

 /*...*/

 while (loop2) {

 /*...*/

 if (want_out)

 goto end_loop1 ;

 /*...*/

 }

 end_loop1: ;

 }

}

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 113

6.4 Conditional Statements

Conditional (or selection) statements include the if and switch statements. The if or switch statement allows the

program to choose one of several groups of statements to execute, based on the value of the control expression

enclosed in parentheses.

The control flows of if and switch statements are illustrated in Figure 6-1 below.

Figure 6-1. Control Flows of Conditional Statements

Control flow of switch statement

switch

case 1 case 2 case 3 default :

Control flow of if statement

if
condition

Executes
statement

that follows
if.

Executes
statement
that follows

else.

False

True

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM114

(1) if and if ... else statements

Conditional Statements if, if ... else

FUNCTION

An if statement has a one-way selection structure and executes the statement that follows the control expression

enclosed in parentheses if the value of the control expression is nonzero (True).

An if ... else statement has a two-way selection structure and executes the statement-1 that follows the control

expression if the value of the control expression is nonzero (True) or the statement-2 that follows else if the

value of the control expression is zero (False).

SYNTAX

if (expression) statement

if (expression) statement-1 else statement-2

EXAMPLE

unsigned char uc ;

void func (void){

if (uc < 10){

 /*111*/

 }

else{

 /* 222 */

}

}

EXPLANATION

In the above example, if the value of uc is less than 10 based on the control expression in the if statement, the

block “{/*111*/}” is executed. If the value is greater than 10, the block “{/*222*/}” is executed.

NOTE

When the processing after the if statement/if...else statement is not enclosed with “{ }”, only the processing of a

line after the if statement/if...else statement is performed regarding it as the body.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 115

(2) switch statement

Conditional Statements switch

FUNCTION

A switch statement has a multiway branching structure and passes control to one of a series of statements that

have the case labels in the switch body depending on the value of the control expression enclosed in

parentheses. If no case label that corresponds to the control expression exists, the statement that follows the

default label is executed. If no default label exists, no statement is executed.

SYNTAX

switch (expression) statement

EXAMPLE

extern void func(void);

unsigned char mode ;

void main(void) {

switch (mode) {

case 2:

 mode = 8 ;

 break ;

case 4:

 mode = 2 ;

 break ;

case 8:

func();

}

}

NOTE

The same value cannot be set in each case label in the switch body. Only one default label can be used in the

switch body.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM116

6.5 Iteration Statements

An iteration statement executes a group of statements in the loop body as long as the value of the control

expression enclosed in parentheses is True (nonzero). C has the following three types of iteration statements.

• while statement

• do statement

• for statement

The control flow of each type of iteration statement is illustrated in Figure 6-2 below.

Figure 6-2. Control Flows of Iteration Statements

while
condition

Executes
statement (s)

that follow
while.

False

True

Control flow of while loop

Loop

Control flow of do-while loop

while
condition

Executes
statement (s)

that follow
do.

Loop

True

False

Control flow of for loop

for
condition

Reevaluates
control

expression.

False

True

Loop

Executes
statement (s)

that follow
for.

Initialize

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 117

(1) while statement

Iteration Statements while statement

FUNCTION

A while statement executes one or more statements (the body of the while loop) several times as long as the

value of the control expression enclosed in parentheses is True (nonzero). The while statement evaluates the

control expression before executing its loop body.

SYNTAX

while (expression) statements

EXAMPLE

int i, x ;

void main (void) {

 i=1, x=0 ;

 while (i < 11) {

 x += i ;

 i++ ;

 }

}

EXPLANATION

The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are

the body of this while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this reason,

the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10).

“while(1) {statement}” is used to endlessly perform a loop statement.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM118

(2) do statement

Iteration Statements do statement

FUNCTION

A do statement executes the body of the loop as long as the control expression enclosed in parentheses is True

(nonzero). The do statement evaluates the control expression after the loop body has been executed.

SYNTAX

do statements while (expression) ;

EXAMPLE

Int i, x ;

void main (void) {

i=1, x=0 ;

do {

 x += i ;

 i++ ;

} while(i<11);

}

EXPLANATION

The above example finds the sum total of integers from 1 to 10 for x. The two statements enclosed in braces are

the body of this do ... while loop. The control expression “i<11” returns 0 if the value of i becomes 11. For this

reason, the loop body is executed repeatedly as long as the value of i is less than 11 (between 1 and 10). The

body of the loop is always performed once or more since the control expression of a do statement is evaluated

after execution.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 119

(3) for statement

Iteration Statements for statement

FUNCTION

A for statement executes the body of the for loop a specified number of times as long as the value of the control

expression is nonzero (True). Of the three expressions inside the parentheses separated by semicolons, the first

expression is an initializing statement to initialize a variable to be used as a counter and is executed only once in

the beginning of the loop, the second is the control expression for testing the counter value, and the third is a

step statement executed at the end of every loop and reevaluates the variable after the execution.

SYNTAX

for (1st-expression ; 2nd-expression ; 3rd-expression) statements

EXAMPLE

int i, x=0 ;

for(i=1 ; i<11 ; ++i)

 x += i ;

EXPLANATION

The above example finds the sum total of integers from 1 to 10 for x. “x+=i” is the body of this for loop. The

control expression “i<11” returns 0 if the value of i becomes 11. For this reason, the loop body is executed

repeatedly as long as the value of i is less than 11 (between 1 and 10).

NOTE

When the processing after for statement is not enclosed with “{ }”, only the processing of a line after the for

statements is regarded as the body of the loop of the for statement. The first and the third expression of a for

statement can be omitted. When the second expression is omitted, it is replaced with a constant other than 0.

The description of “for (; ;) statement” is used to endlessly perform the body of the loop.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM120

6.6 Branch Statements

A branch statement is used to exit from the current control flow and transfer control to elsewhere in the program.

Branch statements include the following four statements.

• goto statement

• continue statement

• break statement

• return statement

The control flow of each type of branch statement is shown in Figure 6-3.

Figure 6-3. Control Flows of Branch Statements

continue

continue

Loop

break

break

Loop

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 121

(1) goto statement

Branch Statements goto

FUNCTION

A goto statement causes program execution to unconditionally jump to the label name specified in the goto

statement within the current function.

SYNTAX

goto identifier ;

EXAMPLE

do {

 /*...*/

 goto point ;

 /*...*/

}while(/*...*/) ;

 /*...*/

point: ;

EXPLANATION

In the above example, when control is passed to the goto statement, C jumps out of the current do ... while loop

processing unconditionally and transfers control to the statement next to “point”.

NOTE

The label name (branch destination) to be specified in a goto statement must have been specified within the

current function that includes the goto statement. In other words, a goto can branch only within the current

function - not from one function to another.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM122

(2) continue statement

Branch Statements continue

FUNCTION

A continue statement is used in the body of loops in a looping statement. continue ends one cycle of the loop

by transferring control to the end of the loop body. When a continue statement is enclosed by more than one

loop, it ends the cycle of the smallest enclosing loop.

SYNTAX

continue ;

EXAMPLE

while(/*...*/){

/*...*/

continue ;

/*....*/

 contin: ;

}

EXPLANATION

In the above example, when the while loop processing by C reaches the continue statement, C unconditionally

branches to the label “contin”. The label “contin” indicates the branch destination and may be omitted. The

same branching operation may be performed by using “goto contin ;” instead of continue.

NOTE

A continue statement can only be used as the body of a loop or in the body of loops.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM 123

(3) break statement

Branch Statements break

FUNCTION

A break statement may appear in the body of a loop and in the body of a switch statement and causes control to

be transferred to the statement next to the loop or switch statement.

SYNTAX

break ;

EXAMPLE

Int i;

unsigned char count, flag;

void main(void) {

/* ... */

 for (i = 0;i < 20;i++) {

 switch(count){

 case 10 :

 flag = 1;

 break; /* exit switch statement */

 default:

 func() ;

 }

 if (flag)

 break ; /*exit for loop */

}

}

EXPLANATION

In the above example, break statements are used so that more than required evaluations are not performed in

the body of the switch statement. If the corresponding case label is found in evaluating the switch statement,

the break statement causes C to exit from the switch statement.

NOTE

A break statement can only be used as the body of a looping or switch statement or in the loop or switch body.

CHAPTER 6 CONTROL STRUCTURES OF C LANGUAGE

User’s Manual U15556EJ1V0UM124

(4) return statement

Branch Statements return

FUNCTION

A return statement exits the function that includes the return and passes controls to the function that called the

return, and calls and returns the value of the return statement expression as the value of the function call

expression. Two or more return statements may be used in a function. Using the closing brace“}” at the end of

a function produces the same result as when a return statement without expression is executed.

SYNTAX

return expression ;

EXAMPLE

Int f(int);

void main(void) {

/*...*/

int i = 0, y = 0 ;

y = f(i) ;

 /*...*/

}

int (int i) {

 int x = 0 ;

 /*...*/

 return(x) ;

}

EXPLANATION

In the above example, when control is passed to the return statement, the function f() returns a value to the

function main (). Because the value of the variable “x” is returned as the return value, the assignment operator

causes the variable “y” to be substituted with the value of the variable “x”.

NOTE

With a void type function, an expression that indicates a return value cannot be used for a return statement.

User’s Manual U15556EJ1V0UM 125

CHAPTER 7 STRUCTURES AND UNIONS

A structure or union is a collection of member objects with different types grouped under one given name. The

member objects of a structure are allocated successively to memory space, while the member objects of a union

share the same memory.

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM126

7.1 Structures

As mentioned earlier, a structure is a collection of member objects successively allocated to memory space.

(1) Declaration of structure and structure variable

A structure declaration list and a structure variable are declared with the keyword struct. Any “tag” name can be

given to the structure declaration list.

Subsequently, the structure variables of the same structure may be declared using this tag name.

[Declaration of structure]

struct tag name structure declaration list variable name;

In the following example, in the first struct declaration, int type array “code”, char type arrays name, addr, and

tel which have the tag name “data” are specified and no1 is declared as the structure variable. In the second

struct declaration, the structure variables no2, no3, no4, and no5 that are of the same structure as no1 are

declared.

[Example]

struct data {

 int code;

 char name [12];

 char addr [50];

 char tel [12];

} no1;

struct data no2, no3, no4, no5;

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM 127

(2) Structure declaration list

A structure declaration list specifies the structure of a structure type to be declared. Individual elements in the

structure declaration list are called members and an area is allocated for each of these members in the order of

their declaration. In the following [Example of structure declaration list], an area is allocated in the order of

variable a, array b, and two dimensional array c.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each

member. Therefore, the structure itself cannot be included in the structure declaration list.

Each member can have any object type other than the above two types. A bit field that specifies each member in

bits can also be specified.

If a variable takes a binary value “0” or “1”, the minimum required number of bits is specified as 1 for a bit field.

By this specification of the minimum required number of bits with the bit field, two or more members can be

stored in an integer area.

[Example of structure declaration list]

int a;

char b [7];

char c [5] [10];

[Example of bit field declaration]

struct bf_tag {

unsigned int a:2;

unsigned int b:3; bit field

unsigned int c:1;

} bit_field;

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM128

(3) Arrays and pointers

Structure variables may also be declared as an array or referenced using a pointer.

[Structure arrays]

An array of structures is declared in the same ways as other objects.

struct data{

 char name [12];

 char addr [50];

 char tel [12];

};

struct data no [5];

[Structure pointers]

A pointer to a structure has the characteristics of the structure indicated by the pointer. In other words, if a

structure pointer is incremented, adding the size of the structure to the pointer points to the next structure.

In the following example, “dt_p” is a pointer to the value of “struct data” type. Here, if the pointer “dt_p” is

incremented, the pointer becomes the same value as “&no[1]”.

struct data no[5];

struct data *dt_p = no;

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM 129

(4) How to refer to structure members

A structure member (or structure element) may be referenced in two ways: one by using a structure variable and

the other by using a pointer to a variable.

[Reference by using a structure variable]

The . (dot) operator is used for referring to a structure member by using a structure variable.

struct data {

 char name [12];

 char addr [50];

 char tel [12];

} no[5] = {“NAME”, “ADDR”, “TEL”}; *data_ptr = no;

void main(){

char c;

c = no[0]. name[1];

}

[Reference by using a pointer to a variable]

The −> (arrow) operator is used for referring to a structure member by using a pointer to a variable.

struct data {

 char name [12];

 char addr [50];

 char tel [12];

} no[5] = {“NAME”, “ADDR”, “TEL”}, *data_ptr = no;

void main(){

 char c;

 data_ptr -> tel [3] = ‘E’ ;

}

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM130

7.2 Unions

As mentioned earlier, a union is a collection of members that share the same memory space (or overlap in

memory).

(1) Declaration of union and union variable

A union declaration list and a union variable are declared with the keyword union. Any “tag” name can be given

to the union declaration list. Subsequently, the union variables of the same union may be declared using this tag

name.

[Declaration of union]

union tag name {union declaration list} variable name;

In the following example, in the first union declaration, char type arrays “name”, “addr”, and “tel” that have the

tag name “data” are specified and “no1” is declared as the union variable. In the second union declaration, the

union variables “no2, no3, no4, and no5”, which are of the same union as “no1”, are declared.

union data {

 char name [12];

 char addr [50];

 char tel [12];

} no1;

union data no2, no3, no4, no5;

(2) Union declaration list

A union declaration list specifies the structure of a union type to be declared. Individual elements in the union

declaration list are called members and an area is allocated for each of these members in the order of their

declaration. In the following [Example of union declaration list], an area is allocated to ‘c’, which becomes the

largest area of the members. The other members are not allocated new areas but use the same area.

Neither an incomplete type (an array of unknown size) nor a function type can be specified as the type of each

member same as the union declaration list.

Each member can have any object type other than the above two types.

[Union declaration list]

int a;

char b [7];

char c [5] [10];

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM 131

(3) Union arrays and pointers

Union variables may also be declared as an array or referenced using a pointer (in much the same way as

structure arrays and pointers).

[Union arrays]

An array of unions is declared in the same ways as other objects.

union data {

 char name [12];

 char addr [50];

 char tel [12];

};

union data no [5];

[Union pointers]

A pointer to a union has the characteristics of the union indicated by the pointer. In other words, if a union

pointer is incremented, adding the size of the union to the pointer points to the next union.

In the following example, “dt_p” is a pointer to the value of “union data” type.

union data no[5];

union data *dt_p = no;

CHAPTER 7 STRUCTURES AND UNIONS

User’s Manual U15556EJ1V0UM132

(4) How to refer to union members

A union member (or union element) may be referenced in two ways: one by using a union variable and the other

by using a pointer to a variable.

[Reference by using a union variable]

The . (dot) operator is used for referring to a union member by using a union variable.

union data {

 char name [12];

 char addr [50];

 char tel [12];

} no[5] = {“NAME”, “ADDR”, “TEL”};

void main (void) {

 no[0].addr[10] = ‘B’ ;

 :

}

[Reference by using a pointer to a variable]

The −> (arrow) operator is used for referring to a union member by using a pointer to a variable.

union data {

 char name [12];

 char addr [50];

 char tel [12];

} *data_ptr ;

void main(void) {

 data_ptr -> name[1] = ‘N’ ;

 :

}

User’s Manual U15556EJ1V0UM 133

CHAPTER 8 EXTERNAL DEFINITIONS

In a program, lists of external declarations come after the preprocessing. These declarations are referred to as

“external declarations” because they appear outside a function and have effective file ranges.

A declaration to give a name to external objects by identifiers or a declaration to secure storage for a function is

called an external definition. If an identifier declared with external linkage is used in an expression (except the

operand part of the sizeof operator), one external definition for the identifier must exist somewhere in the entire

program.

The syntax of external definitions is given below.

#define TRUE 1

#define FALSE 0

#define SIZE 200

void printf (char*, int);

void putchar (char c);

char mark[SIZE+1]; External object declaration

main()

{

int i, prime, k, count;

count = 0;

for (i = 0 ; i <= SIZE ; i++)

mark [i] = TRUE;

for (i = 0 ; i <= SIZE ; i++){

if (mark[i]) {

prime = i + i + 3;

printf (“%d “,prime);

count++;

if ((count%8) = = 0) putchar(‘\n’);

for (k = i + prime ; k <= SIZE ; K += prime)

 mark[k] = FALSE;

}

}

printf(“Total %d\n”, count);

loop1:

 goto loop1;

}

CHAPTER 8 EXTERNAL DEFINITIONS

User’s Manual U15556EJ1V0UM134

8.1 Function Definition

A function definition is an external definition that begins with a declaration of the function. If the storage class

specifier is omitted from the declaration, extern is assumed to have been defined. An external function definition

means that the defined function may be referenced from other files. For example, in a program consisting of two or

more files, if a function in another file is to be referenced, this function must be defined externally.

The storage class specifier of an external function is extern or static. If a function is declared as extern, the

function can be referenced from another file. If declared as static, it cannot be referenced from another file.

In the following example, the storage class specifier is “extern” and the type specifier is “int”. These two are

default values and thus may be omitted from specification. The function declarator is “max(int a, int b)” and the body

of the function is “{return a>b?a:b;)”.

[Example of function definition]

extern int max(int a, int b)

{

 return a>b?a :b ;

}

Because this function definition specifies a parameter type in the function declaration, the type of argument is

forcibly converted by the compiler. This type conversion can be described by using the form of an identifier list for

the parameters. An example of this identifier list is shown below.

extern int max(a, b)

int a, b;

{

 return a>b?a:b;

}

The address of a function may be passed as an argument to the function call. By using the function name in the

expression, a pointer to the function can be generated.

int f(void);

void main(){

 :

 g(f);

}

CHAPTER 8 EXTERNAL DEFINITIONS

User’s Manual U15556EJ1V0UM 135

In the above example, the function g is passed to the function f by a pointer that points to the function f. The

function g must be defined in either of the following two ways.

void g (int(*funcp)(void))

{

 (*funcp) (); /* or funcp();*/

}

or

void g (int func(void))

{

func(); /* or (*func)();*/

}

CHAPTER 8 EXTERNAL DEFINITIONS

User’s Manual U15556EJ1V0UM136

8.2 External Object Definitions

An external object definition refers to the declaration of an identifier for an object that has file scope or an

initializer. If the declaration of an identifier for an object that has file scope has no initializer without storage class

specification or has static storage class, the object definition is considered to be temporary, because it becomes a

declaration that has file scope with initializer 0.

Examples of external object definitions are shown below.

[Example of external object definition]

int i1 = 1 ; Definition with external linkage

static int i2 = 2 ; Definition with internal linkage

extern int i3 = 3 ; Definition with external linkage

int i4 ; Temporary definition with external linkage

static int i5 ; Temporary definition with internal linkage

int i1 ; Valid temporary definition which refers to previous declaration

int i2 ; Violation of linkage rule

int i3 ; Valid temporary definition which refers to previous declaration

int i4 ; Valid temporary definition which refers to previous declaration

int i5 ; Violation of linkage rule

extern int i1 ; Reference to previous declaration which has external linkage

extern int i2 ; Reference to previous declaration which has internal linkage

extern int i3 ; Reference to previous declaration which has external linkage

extern int i4 ; Reference to previous declaration which has external linkage

extern int i5 ; Reference to previous declaration which has internal linkage

User’s Manual U15556EJ1V0UM 137

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

A preprocessing directive is a string of preprocessing tokens between the # preprocessing token and the line feed

character.

Blank characters that can be used between preprocessing token strings are only spaces and horizontal tabs.

A preprocessing directive specifies the processing performed before compiling a source file. Preprocessing

directives include operations such as processing or skipping a part of a source file depending on the conditions,

obtaining additional code from other source files, and replacing the original source code with other text as in macro

expansion. The preprocessing directives are described below.

9.1 Conditional Translation Directives

Conditional translation skips part of a source file according to the value of a constant expression. If the value of

the constant expression specified by a conditional translation directive is 0, the statements that follow the directive

are not translated (compiled). The sizeof operator, cast operator, or an enumerated type constant cannot be used in

the constant expression of any conditional translation directive.

Conditional translation directives include #if, #elif, #ifdef, #ifndef, #else, and #endif.

In preprocessing directives, the following unary expressions called defined expressions may be used.

defined identifier

or

defined (identifier)

The unary expression returns 1 if the identifier has been defined with the #define preprocessing directive and 0 if

the identifier has never been defined or its definition has been canceled.

[Example]

In this example, the unary expression returns 1 and compiles between #if and #endif because SYM has been

defined (for the explanation of #if through #endif, refer to the explanations on the following pages).

#define SYM 0

#if defined SYM

:

#endif

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM138

(1) #if directive

Conditional Translation Directives #if

FUNCTION

The #if directive tells the translation phase of C to skip (discard) a section of source code if the value of the

constant expression is 0.

SYNTAX

#if constant expression line feed group

EXAMPLE

#if FLAG == 0

 :

#endif

EXPLANATION

In the above example, the constant expression “FLAG == 0” is evaluated to determine whether a set of

statements (i.e., source code) between #if and #endif is to be used in the translation phase. If the value of

“FLAG” is nonzero, the source code between #if and #endif will be discarded. If the value is zero, the source

code between #if and #endif will be translated.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 139

(2) #elif directive

Conditional Translation Directives #elif

FUNCTION

The #elif directive normally follows the #if directive. If the value of the constant expression of the #if directive is

0, the constant expression of the #elif directive is evaluated. If the constant expression of the #elif directive is 0,

the translation phase of C will skip (discard) the statements (a section of source code) between #elif and #endif.

SYNTAX

#elif constant-expression line feed group

EXAMPLE

#if FLAG == 0

 :

#elif FLAG != 0

 :

#endif

EXPLANATION

In the above example, the constant expression “FLAG= =0” or “FLAG!=0” is evaluated to determine whether a

set of statements that follow #if and another set of statements that follow #elif is to be used in the translation

phase. If the value of “FLAG” is zero, the source code between #if and #elif will be translated. If the value is

nonzero, the source code between #elif and #endif will be translated.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM140

(3) #ifdef directive

Conditional Translation Directives #ifdef

FUNCTION

The #ifdef directive is equivalent to:

#if defined (identifier)

If the identifier has been defined with the #define directive, the statements between #ifdef and #endif will be

translated. If the identifier has never been defined or its definition has been canceled, the translation phase will

skip the source code between #ifdef and #endif.

SYNTAX

#ifdef identifier line feed group

EXAMPLE

#define ON

#ifdef ON

:

#endif

EXPLANATION

In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code

between #ifdef and #endif will be translated. If the identifier “ON” has never been defined, the source code

between #ifdef and #endif will be discarded.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 141

(4) #ifndef directive

Conditional Translation Directives #ifndef

FUNCTION

The #ifndef directive is equivalent to:

#if !defined (identifier)

If the identifier has never been defined with the #define directive, the source code between #ifndef and #endif

will not be translated.

SYNTAX

#ifndef identifier line feed group

EXAMPLE

#define ON

#ifndef ON

 :

#endif

EXPLANATION

In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code

between #ifndef and #endif will be discarded in the translation phase. If the identifier “ON” has never been

defined, the source code between #ifndef and #endif will be translated.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM142

(5) #else directive

Conditional Translation Directives #else

FUNCTION

The #else directive tells the translation phase of C to discard a section of source code that follows #else if the

identifier of the preceding conditional translation directive is nonzero.

The #if, #elif, #ifdef, or #ifndef directive may precede the #else directive.

SYNTAX

#else line feed group

EXAMPLE

#define ON

#ifdef ON

 :

#else

 :

#endif

EXPLANATION

In the above example, the identifier “ON” has been defined with the #define directive. Thus, the source code

between #ifndef and #endif will be translated. If the identifier “ON” has never been defined, the source code

between #else and #endif will be translated.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 143

(6) #endif directive

Conditional Translation Directives #endif

FUNCTION

The #endif directive indicates the end of a #ifdef block.

SYNTAX

#endif line feed

EXAMPLE

#define ON

#ifdef ON

 :

 :

#endif

EXPLANATION

In the above example, #endif indicates the end of the #ifdef block (effective range of #ifdef directive).

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM144

9.2 Source File Inclusion Directive

The preprocessing directive #include searches for a specified header file and replaces #include by the entire

contents of the specified file. The #include directive may take one of the following three forms for inclusion of other

source files.

• #include <file-name>

• #include “file-name”

• #include preprocessing token string

An #include directive may appear in the source obtained by #include. In this compiler, however, there are

restrictions for #include directive nesting. For the restrictions, refer to Table 1-1 Maximum Performance

Characteristics of This C Compiler.

Remark Preprocessing token string: Character string defined by the #define directive

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 145

(1) #include < >

Source File Inclusion Directive #include< >

FUNCTION

If the directive form is #include < >, the C compiler searches the directory specified by the -i compiler option, the

directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4 registered in

the registry for the header file specified in angle brackets and replaces the #include directive line with the entire

contents of the specified file.

SYNTAX

#include <file-name> line feed

EXAMPLE

#include <stdio.h>

EXPLANATION

In the above example, the C compiler searches the directory specified by the INC78K environment variable and

the directory \NECTools32\INC78K4 registered in the registry for the file stdio.h and replaces the directive line

#include<stdio.h> with the entire contents of the specified file stdio.h.

Caution The above directories differ depending on the installation method.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM146

(2) #include “ ”

Source File Inclusion Directive #include “ ”

FUNCTION

If the directive form is #include “ ”, the current working directory is first searched for the header file specified in

double quotes. If it is not found, the directory specified by the -i compiler option, the directory specified by the

INC78K environment variable, and the directory \NECTools32\INC78K4 registered in the registry are searched.

The compiler then replaces the #include directive line with the entire contents of the specified file.

SYNTAX

#include “file-name” line feed

EXAMPLE

#include “myprog. h”

EXPLANATION

In the above example, the C compiler searches the current working directory, the directory specified by the

INC78K environment variable, and the directory \NECTools32\INC78K4 registered in the registry for the file

myprog.h specified in double quotes and replaces the directive line #include “myprog.h” with the entire

contents of the specified file myprog.h.

Caution The above directories differ depending on the installation method.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 147

(3) #include preprocessing token string

Source File Inclusion Directive #include token string

FUNCTION

If the directive form is #include preprocessing token string, the header file to be searched is specified by macro

replacement and the #include directive line is replaced by the entire contents of the specified file.

SYNTAX

#include preprocessing token string line feed

EXAMPLE

#define INCFILE “myprog.h”

#include INCFILE

EXPLANATION

When including source files using the directive form “#include preprocessing token string line feed”, the

specified “preprocessing token string” must be substituted with <file-name> or “file name” by macro replacement.

If the token string is replaced by <file-name>, the C compiler searches the directory specified by the -i compiler

option, the directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4

registered in the registry for the specified file. If the token string is replaced by “file name”, the current working

directory is searched. If the specified file is not found, the directory specified by the -i compiler option, the

directory specified by the INC78K environment variable, and the directory \NECTools32\INC78K4 registered in

the registry are searched.

Caution The above directories differ depending on the installation method.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM148

9.3 Macro Replacement Directives

The macro replacement directives #define and #undef are used to replace the character string specified by

“identifier” with “substitution list” and to end the scope of the identifier given by the #define, respectively. The

#define directive has two forms: Object format and Function format.

• Object format

 #define identifier replacement list line feed

• Function format

 #define identifier (identifier-list) replacement-list line feed

(1) Actual argument replacement

Actual argument replacement is executed after the arguments in the function-form macro call are identified. If

the # or ## preprocessing token is not prefixed to a parameter in the replacement list or if the ## preprocessing

token does not follow any such parameter, all macros in the list will be expanded before replacement with the

corresponding macro arguments.

(2) # operator

The # preprocessing token replaces the corresponding macro argument with a char string processing token. In

other words, if this preprocessing token is prefixed to a parameter in the replacement list, the corresponding

macro argument will be translated into a character or character string.

(3) ## operator

The ## preprocessing token concatenates the two tokens on either side of the ## symbol into one token. This

concatenation will take place before the next macro expansion and the ## preprocessing token will be deleted

after the concatenation. The token generated from this concatenation will undergo macro expansion if it has a

macro name.

[Example of ## operation]

The above macro replacement directive will be expanded as follows.

printf(“x” “1””=%d, x” “2” “=%s”, x1, x2);

The concatenated char string will look like this.

printf (“x1=%d, x2=%s”, x1, x2);

#include <stdio.h>

#define debug(s, t) printf(“x”#s”= %d, x”#t”=%s”, x##s, x##t);

void main() {

 int x1, x2;

 debug (1, 2);

}

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 149

(4) Re-scanning and further replacement

The preprocessing token string resulting from replacement of macro parameters in the list will be scanned again,

together with all remaining preprocessing tokens in the source file. Macro names currently being replaced (not

including the remaining preprocessing tokens in the source file) will not be replaced even if they are found during

scanning of the replacement list.

(5) Scope of macro definition

A macro definition (#define directive) continues macro replacement until it encounters the corresponding #undef

directive.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM150

(6) #define directive

Macro Replacement Directives #define

FUNCTION

The #define directive in its simplest form replaces the specified identifier (manifest) with a given replacement list

(any character sequence that does not contain a line feed) whenever the same identifier appears in the source

code after the definition by this directive.

SYNTAX

#define identifier replacement list line feed

EXAMPLE

#define PAI 3.1415

EXPLANATION

In the above example, the identifier “PAI” will be replaced with “3.1415” whenever it appears in the source code

after the definition by this directive.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 151

(7) #define() directive

Macro Replacement Directives #define ()

FUNCTION

The function-form #define directive which has the form:

#define name (name, ..., name) replacement list

replaces the identifier specified in the function format with a given replacement list (any character sequence that

does not contain a line feed). No white space is allowed between the first name and the opening parenthesis “(”.

This list of names (identifier list) may be empty. Because this form of the directive defines a macro, the macro

call will be replaced with the parameters of the macro inside the parentheses.

SYNTAX

#define identifier (identifier list) replacement-list line feed

EXAMPLE

#define F(n) (n*n)

void main() {

int i;

i=F(2)

}

EXPLANATION

In the above example, #define directive will replace “F(2)” with “(2*2)” and thus the value of i will become 4. For

the sake of safety, be sure to enclose the replacement list in parentheses, because unlike a function definition,

this function-form macro is merely to replace a sequence of characters.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM152

(8) #undef directive

Macro Replacement Directives #undef

FUNCTION

The #undef directive undefines the given identifier. In other words, this directive ends the scope of the identifier

that has been set by the corresponding #define directive.

SYNTAX

#undef identifier line feed

EXAMPLE

#define F(n) (n*n)

 :

#undef F

EXPLANATION

In the above example, #undef directive will invalidate the identifier “F” previously specified by “#define F(n)

(n*n)”.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 153

9.4 Line Control Directive

The preprocessing directive for line control #line replaces the line number to be used by the C compiler in

translation with the number specified in this directive. If a string (character string) is given in addition to the number,

the directive also replaces the source file name the C compiler has with the specified string.

(1) To change the line number

To change the line number, the specification is made as follows. 0 and numbers larger than 32767 cannot be

specified.

#line numeric-string line feed

[Example]

#line 10

(2) To change the line number and the file name

To change the line number and file name, the specification is made as follows.

#line numeric-string “character string” line feed

[Example]

#line 10 “file1.c”

(3) To change using preprocessing token string

In addition to the specifications above, the following specification can also be made. In this case, the specified

preprocessing token string must be either one of the above two examples after all the replacement.

#line preprocessing-token-string line feed

[Example]

#define LINE_NUM 100

#line LINE_NUM

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM154

9.5 #error Preprocessing Directive

The #error preprocessing directive is a directive that outputs a message including the specified preprocessing

tokens and incompletely terminates compileation. This preprocessing directive is used to terminate compilation.

This preprocessing directive is specified as follows.

#error “preprocessing-token-string” line feed

[Example]

In this example, the macro name _ _K4 _ _, which indicates the device series of this compiler, is used. If the

device is the 78K/IV Series, the program between #if and #else is compiled. In the other cases, the program

between #else and #endif is compiled, but compilation will be terminated with an error message “not for 78K4”

output by the #error directive.

#if _ _K4_ _

 :

#else

#error “not for 78K4”

 :

#endif

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 155

9.6 #pragma Directives

#pragma directives are directives to instruct the compiler to operate using the compiler definition method. In this

compiler, there are several #pragma directives to generate codes for the 78K/IV Series (for details of #pragma

directives, refer to CHAPTER 11 EXTENDED FUNCTIONS).

[Example]

In this example, the #pragma NOP directive enables the description to directly output a NOP instruction in the C

source.

#pragma NOP

9.7 Null Directives

Source lines that contain only the # character and white space are called null directives. Null directives are simply

discarded during preprocessing. In other words, these directives have no effect on the compiler. The syntax of null

directives is given below.

line feed

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM156

9.8 Compiler-Defined Macro Names

In this C compiler, the following macro names have been defined.

_ _LINE_ _ Line number of the current source line (decimal constant)

_ _FILE_ _ Source file name (string literal)

_ _DATE_ _ Date the source file was compiled (string literal in the form of “Mmm dd yyyy”)

_ _TIME_ _ Time of day the source file was compiled (string literal in the form of “hh:mm:ss”)

_ _STDC_ _ Decimal constant “1” that indicates the compliance with ANSINote specification

Note ANSI is the acronym for American National Standards Institute

A #define or #undef preprocessing directive must not be applied to these macro name and defined identifiers.

All the macro names of the compiler definition start with an underscore followed by an uppercase character or a

second underscore.

In addition to the above macro names, macro names indicating the series name of devices according to the

device subject to applied product development and macro names indicating device names are provided. To output

the object code for the target device, these macro names must be specified by the option at compilation or by the

processor type in the C source.

• Macro name indicating the series name of devices

‘_ _K4 _ _’

• Macro name indicating the device name

‘_ _’ is added before the device type name and ‘_’ is added after the device type name.

Describe letters in uppercase

(Example) _ _4026_ _ _4038Y_

Remark The device type names are the same as those specified by the -C option. For the device type names,

refer to the reference materials related to device files.

CHAPTER 9 PREPROCESSING DIRECTIVES (COMPILER DIRECTIVES)

User’s Manual U15556EJ1V0UM 157

This C compiler has a macro name indicating the memory model or location.

• Macro name indicating memory model

When small model is specified

#define _ _K4_SMALL_ _ 1

When medium model is specified

#define _ _K4_MEDIUM_ _ 1

When large model is specified

#define _ _K4_LARGE_ _ 1

• Macro name indicating location

Location 0

#define _ _K4LOC0_ _ 1

Location 15

#define _ _K4LOC15_ _ 1

The device type for compilation is specified by adding the following to the command line

‘-c device type name’

Example cc78k4 -c4038Y prime.c

It is possible to avoid specifying the device type at compilation by specifying it at the start of the C source

program.

‘#pragma PC (device type)’

Example #pragma PC (4038Y)

:

However, the following can be described before ‘#pragma PC (device type)’

• Comment statement

• Preprocessing directives that do not generate definition/reference of variables nor functions.

User’s Manual U15556EJ1V0UM158

CHAPTER 10 LIBRARY FUNCTIONS

C has no instructions to transfer (input or output) data to and from external sources (peripheral devices and

equipment). This is because of the C language designer's intent to hold the functions of C to a minimum. However,

for actually developing a system, I/O operations are requisite. Thus, C is provided with library functions to perform

I/O operations.

This C compiler is provided with library functions such as I/O, character/memory manipulation, program control,

and mathematical functions. This chapter describes the library functions provided in this compiler.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 159

10.1 Interface Between Functions

To use a library function, the function must be called. Calling a library function is carried out by a call instruction.

The arguments and return value of a function are passed via a stack and a register, respectively. However, when the

old function interface supporting option (-ZO) is not specified, the first argument is, if possible, also passed via a

register.

For the -ZO option, refer to CHAPTER 5 COMPILER OPTION in the CC78K4 C Compiler Operation User's

Manual (U15557E).

10.1.1 Arguments

Placing or removing arguments on or from the stack is performed by the caller (calling function). The callee

(called function) only references the argument values. However, when the argument is passed via a register, the

callee directly refers to the register and copies the value of the argument to another register, if necessary. Also,

when specifying the function call interface automatic pascal function option -ZR, removal of arguments from the stack

is performed by the called side if the argument is passed by the stack.

Arguments are placed on the stack one by one in descending order from bottom to top if the argument is passed

via the stack.

The minimum unit of data that can be stacked is 16 bits. A data type larger than 16 bits is stacked in units of 16

bits one by one from its MSB. An 8-bit type data is extended to a 16-bit type data for stacking.

When it is a large model and the argument is the address value or when it is a medium model and the argument is

the address value of the function, the argument is stacked in 3-byte units.

The following shows the list of the passing of the first argument. The second and subsequent arguments are

passed via a stack.

The function interface (passing of argument and storing of return value) of the standard library is the same as that

of normal function.

Table 10-1. List of Passing First Argument

Type of First Argument Passing Method (Without -ZO Specification)
Passing Method

(with -ZO Specification)

1-byte, 2-byte integer AX Passed via a stack

3-byte integer WHL, small model: stack passing Passed via a stack

4-byte integer AX, RP2 Passed via a stack

Floating-point number

(float type)

AX, RP2 Passed via a stack

Floating-point number

(double type)

AX, RP2 Passed via a stack

Other Passed via a stack Passed via a stack

Remark Of the types shown above, 1- to 4-byte integers include structures and unions.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM160

10.1.2 Return values

The return value of a function is stored in units of 16 bits starting from its LSB in the direction from the register BC

to the register RPZ. When returning a structure, the first address of the structure is stored in the register BC. When

returning a pointer, the first address of the structure is stored in the register BC.

The following shows the list of storing the return value. The method of storing return values is the same as that of

normal functions.

Table 10-2. List of Storing Return Value

Return Value Type Small Model Medium Model Large Model

1 bit CY CY CY

1-byte, 2-byte integers BC BC BC

4-byte integers BC (lower), RP2 (higher) BC (lower), RP2 (higher) BC (lower), RP2 (higher)

Floating-point number

(float type)

BC (lower), RP2 (higher) BC (lower), RP2 (higher) BC (lower), RP2 (higher)

Floating-point number

(double type)

BC (lower), RP2 (higher) BC (lower), RP2 (higher) BC (lower), RP2 (higher)

Structure Copies the structure to return

to the area specific to the

function and stores the

address in BC

Copies the structure to return

to the area specific to the

function and stores the

address in BC

Copies the structure to return

to the area specific to the

function and stores the

address in TDE

Pointer BC BC (function pointer)

WHL (function pointer)

TDE

10.1.3 Saving registers to be used by individual libraries

Each library that uses RP3, RG4 (VVP) and RG5 (UUP) saves the registers it uses to a stack.

Each library that uses a saddr area saves the saddr area it uses to a stack. A stack area is used as a work area

for each library.

(1) When -ZR option is not specified

The procedure of passing arguments and return values is shown below. An example of the small model is shown

below.

Called function “long func (int a, long b, char *c) ;”

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 161

<1> Placing arguments on the stack (by the caller)

The higher 16 bits of arguments “c” and “b” and lower 16 bits of argument “b” are placed on the stack in the

order named. a is passed via the AX register.

<2> Calling func by call instruction (by the caller)

The return address is placed on the stack next to the lower 16 bits of argument “b” and control is

transferred to the function func.

<3> Saving registers to be used within the function (by the callee)

If register RP3 is to be used, RP3 is placed on the stack.

<4> Placing the first argument passed via the register on the stack (by the callee)

<5> Processing func and storing the return value in registers (by the callee)

The lower 16 bits of the return value “long” are stored in BC and the higher 16 bits of the return value, are

stored are stored in RP2.

<6> Restoring the stored first argument (by the callee)

<7> Restoring the saved registers (by the callee)

<8> Returning control to the caller with ret instruction (by the callee)

<9> Removing arguments from the stack (by the caller)

The number of bytes (in units of 2 bytes) of the arguments is added to the stack pointer. In the example

shown in Figure 10-1, 6 is added.

Figure 10-1. Stack Area When Function Is Called (No –ZR Specified)

Stack pointer after <6>

Stack pointer after <7>

Stack pointer after <8>

Stack pointer after <9>

Stack pointer after <4>

Stack pointer after <3>

Stack pointer after <2>

Stack pointer after <1>

Stack pointer before
stacking arguments

BC RP2

Lower 16 bits Higher 16 bits

Return value in <5> is stored

a

RP3

Return address

Lower 16 bits of b

Higher 16 bits of b

c

High address

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM162

(2) When -ZR option is specified

The following example shows the procedure of passing arguments and return values when the -ZR option is

specified.

Called function “long func (int a, long b, char *c);”

<1> Place arguments on the stack (by the caller)

The higher 16 bits of arguments “c” and “b” and the lower 16 bits of argument “b” are placed on the stack in

the order named. a is passed via the AX register.

<2> Call func by call instruction (by the caller).

The return address is placed on the stack next to the lower 16 bits of argument “b” and control is

transferred to the function func.

<3> Save the registers used in the functions (by the caller).

<4> Perform processing of the function func, and store return values in the register (by the callee).

Store the lower 16 bits of the return value (long) in BC and the higher 16 bits in RP2.

<5> Restore the saved registers (by the callee).

<6> Save the return address in the register (by the callee).

Save the return address in the WHL register.

<7> The caller restores the placed arguments (by the callee).

<8> Return control to the function on the caller in the branch instruction (by the callee) at the value saved in the

register in <6>.

Return control to the function on the caller in the BR WHL instruction (by the callee).

Figure 10-2. Stack Area When Function Is Called (–ZR Specified)

Stack pointer after <5>

Stack pointer after <6>

Stack pointer after <7>

Stack pointer after <2>

Stack pointer after <1>

Stack pointer after <3>

Stack pointer before
stacking arguments

BC RP2

Lower 16 bits Higher 16 bits

Return value in <4> is stored

RP3

Return address

Lower 16 bits of b

Higher 16 bits of b

c

High address

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 163

10.2 Headers

This C compiler has 13 headers (or header files). Each header defines or declares standard library functions,

data type names, and macro names.

These 13 headers are as shown below.

ctype.h setjmp.h stdarg.h stdio.h

stdlib.h string.h error.h errno.h

limits.h stddef.h math.h float.h

assert.h

(1) ctype.h

This header is used to define character and string functions. In this standard header, the following library

functions have been defined.

However, when the compiler option -ZA (the option that disables the functions not complying with ANSI

specifications and enables a part of the functions of ANSI specifications) is specified, _toupper and _tolower

are not defined. Instead, tolow and toup are defined. When -ZA is not specified, tolow and toup are not

defined.

Isalnum isalpha iscntrl isdigit isgraph

islower isprint ispunct isspace isupper

isxdigit tolower toupper isascii toascii

_toupper _tolower tolow toup

(2) setjmp.h

This header is used to define program control functions. In this standard header, the setjmp and longjmp

functions have been defined.

In the header setjmp.h, the following object has been defined.

[Declaration of char array type jmp_buf with an array size of greater than 30]

typedef char jmp_buf[30]

(3) stdarg.h

This header used to define special functions. In this standard header, the following four library functions have

been defined.

When the -ZO option (old function interface supporting option) is not specified, the va_start function cannot be

specified for the first argument because the first argument is passed via the register.

Use the macro in the following manner when the -ZO option is not specified.

• Use the va_starttop macro when specifying the first argument.

• Use the va_start macro when specifying the second argument.

va_start va_starttop va_arg va_end

In the header stdarg.h the following object has been declared.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM164

[Declaration of pointer type va_list to char]

typedef char *va_list;

(4) stdio.h

This header is used to define I/O functions. In this standard header, the following functions have been defined.

sprintf sscanf printf scanf vprintf vsprintf

getchar gets putchar puts

The following macro names are declared.

#define EOF (–1)

#define NULL (void *)0

(5) stdlib.h

This header is used to define character and string functions, memory functions, program control functions,

mathematical functions, and special functions. In this standard header, the following library functions have been

defined.

However, when the compiler option -ZA (the option that disables the functions not complying with ANSI

specifications and enables a part of the functions of ANSI specifications) is specified, brk, sbrk, itoa, ltoa, and

ultoa are not defined. Instead, strbrk, strsbrk, stritoa, strltoa, and strultoa are defined. When -ZA is not

specified, strbrk, strsbrk, stritoa, strltoa, and strultoa are not defined.

atoi atol strtol strtoul calloc free malloc realloc abort atexit exit

abs div labs ldiv brk sbrk atof strtod itoa ltoa

ultoarand srand bsearch qsort strbrk strsbrk stritoa strltoa strultoa

In the header stdlib.h the following objects have been defined.

[Declaration of structure type “div_t” which has int type members “quot” and “rem”]

typedef struct {

int quot ;

int rem ;

} div_t ;

[Declaration of structure type ldiv_t which has long int type members quot and rem]

typedef struct {

long int quot ;

long int rem ;

} ldiv_t ;

[Definition of macro name RAND_MAX]

#define RAND_MAX 32767

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 165

[Declaration of macro name]

define EXIT_SUCCESS 0

define EXIT_FAILURE 1

(6) string.h

This header is used to define character and string functions, memory functions, and special functions. In this

standard header, the following library functions have been defined.

Memcpy memmove strcpy stmcpy strcat strncat memcmp

Strcmp strncmp memchr strchr strcspn strpbrk strrchr

Strspn strstr strtok memset strerror strlen strcoll strxfrm

(7) error.h

error.h includes errno.h.

(8) errno.h

In this standard header, the following objects have been defined.

[Definitions of macro names “EDOM”, “ERANGE”, and “ENOMEM”]

#define EDOM 1

#define ERANGE 2

#define ENOMEM 3

[Declaration of volatile int type external variable errno]

extern volatile int errno ;

(9) limits.h

In this standard header, the following macro names have been defined.

#define CHAR_BIT 8

#define CHAR_MAX +127

#define CHAR_MIN –128

#define INT_MAX +32767

#define INT_MIN –32768

#define LONG_MAX +2147483647

#define LONG_MIN –2147483648

#define SCHAR_MAX +127

#define SCHAR_MIN –128

#define SHRT_MAX +32767

#define SHRT_MIN –32768

#define UCHAR_MAX 255U

#define UINT_MAX 65535U

#define ULONG_MAX 4294967295U

#define USHRT_MAX 65535U

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM166

However, when the -QU option, which regards unqualified char as unsigned char, is specified, CHAR_MAX and

CHAR_MIN are declared by the macro_CHAR_UNSIGNED_ _ declared by the compiler as follows.

#define CHAR_MAX (255U)

#define CHAR_MIN (0)

(10) stddef.h

In this standard header, the following objects have been declared and defined.

[Declaration of int type ptrdiff_t]

typedef int ptrdiff_t;

[Declaration of unsigned int type size_t]

typedef unsigned int size_t;

[Definition of macro name NULL]

#define NULL (void*)0

[Definition of macro name offsetof]

#define offsetof (type, member) ((size_t)&(((type*)0) -> member))

• offsetof (type, member specifier)

offsetof is expanded to a general integer constant expression with the type size_t, and the value is an offset

value in byte units from the start of the structure (that is specified by the type) to the structure member (that is

specified by the member specifier).

The member specifier must be the one that the result of evaluation of the expression & (t. member specifier)

becomes an address constant when static type t; is declared. When the specified member is a bit field, the

operation will not be guaranteed.

(11) math.h

math.h defines the following functions.

acos asin atan atan2 cos sin tan cosh sinh tqnh exp frexp

ldexp log log10 modif pow sqrt ceil fabs floor fmod acosf

asinf atanf atan21 cost sinf tanf coshf sinhf tanhf expf frexpf

ldexpf logf log10f modff powf sqrtf ceilf fabsf floorf fmodf matherr

The following objects are defined.

[Definition of macro name HUGE_VAL]

#define HUGE_VAL _HUGE

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 167

(12) float.h

float.h defines the following objects.

When the size of a double type is 32 bits, the macros to be defined are sorted by the macro

_ _DOUBLE_IS_32BITS_ _ declared by the compiler.

#ifndef _FLOAT_H

#define FLT_ROUNDS 1

#define FLT_RADIX 2

#ifdef _ _DOUBLE_IS_32BITS_ _

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 24

#define LDBL_MANT_DIG 24

#define FLT_DIG 6

#define DBL_DIG 6

#define LDBL_DIG 6

#define FLT_MIN_EXP –125

#define DBL_MIN_EXP –125

#define LDBL_MIN_EXP –125

#define FLT_MIN_10_EXP –37

#define DBL_MIN_10_EXP –37

#define LDBL_MIN_10_EXP –37

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +128

#define LDBL_MAX_EXP +128

#define FLT=MAX=10=EXP +38

#define DBL_MAX_10_EXP +38

#define LDBL_MAX_10_EXP +38

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 3.40282347E+38F

#define LDBL_MAX 3.40282347E+38F

#define FLT_EPSILON 1.19209290E–07F

#define DBL_EPSILON 1.19209290E–07F

#define LDBL_EPSILON 1.19209290E–07F

#define FLT_MIN 1.1749435E–38F

#define DBL_MIN 1.17549435E–38F

#define LDBL_MIN 1.17549435E–38F

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM168

#else /* _ _DOUBLE_IS_32BITS_ _ */

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 53

#define LDBL_MANT_DIG 53

#define FLT_DIG 6

#define DBL_DIG 15

#define LDBL_DIG 15

#define FLT_MIN_EXP –125

#define DBL_MIN_EXP –1021

#define LDBL_MIN_EXP –1021

#define FLT_MIN_10_EXP –37

#define DBL_MIN_10_EXP –307

#define LDBL_MIN_10_EXP –307

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +1024

#define LDBL_MAX_EXP +1024

#define FLT_MAX_10_EXP +38

#define DBL_MAX_10_EXP +308

#define LDBL_MAX_10_EXP +308

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 1.7976931348623157E+308

#define LDBL_MAX 1.7976931348623157E+308

#define FLT_EPSILON 1.19209290E-07F

#define DBL_EPSILON 2.2204460492503131E-016

#define LDBL_EPSILON 2.2204460492503131E-016

#define FLT_MIN 1.17549435E-38F

#define DBL_MIN 2.225073858507201E-308

#define LDBL_MIN 2.225073858507201E-308

#endif /* _ _DOUBLE_IS_32BITS_ _ */

#define _FLOAT_H

#endif /* !_FLOAT_H */

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 169

(13) assert.h

assert.h defines the following objects.

#ifdef NDEBUG

#define assert (p) ((void)0)

#else

extern int _ _assertfail (char*_ _msg, char*_ _cond, char*_ _file, int_ _line);

#define assert (p) ((p) ? (void) 0 : (void)_ _assertfail

“Assertion failed: %s, file %s, line %d\n”, #p, _ _FILE_ _, _ _LINE_ _))

#endif /* NDEBUG */

However, the assert.h header file is not defined in the assert.h header file.

If the assert.h header file references another macro, NDEBUG, which is not defined by the assert.h header file,

and if NDEBUG is defined as a macro when assert.h is captured to the source file, the assert.h header file

simply declares the assert macro as:

#define assert(p) ((void)0)

and does not define _ _ assertfail.

10.3 Re-entrantability

Re-entrant is a state where a function called from a program can be consecutively called from another program.

The standard library of this compiler does not use static area allowing re-entrantability. Therefore, data in the

storage used by functions will not be destroyed by a call from another program.

However, the functions shown in (1) to (3) are not re-entrant.

(1) Functions that cannot be re-entranced

setjmp, longjmp, atexit, exit

(2) Functions that use the area secured in the startup routine

div, ldiv, brk, sbrk, rand, srand, strtok

(3) Functions that deal with floating-point numbers

sprintf, sscanf, printf, scanf, vprintf, vsprintf Note, atof, strtod, and

all the mathematical functions

Note Among sprintf, sscanf, printf, scanf, vprintf, and vsprintf, functions that do not support floating-

point numbers are re-entrant.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM170

10.4 Standard Library Functions

This section explains the standard library functions of this C compiler classified by function as follows. All standard

library functions are supported even when the –ZF option is specified.

• Item (1-x) Character and character string functions

• Item (2-x) Program control functions

• Item (3-x) Special functions

• Item (4-x) I/O functions

• Item (5-x) Utility functions

• Item (6-x) Character string/memory functions

• Item (7-x) Mathematical functions

• Item (8-x) Diagnostic functions

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 171

1-1 is∼∼∼∼ Character & String Functions

FUNCTION

is∼∼∼∼ judges the type of character.

HEADER

ctype.h for all the character functions

FUNCTION PROTOTYPE

int is∼∼∼∼ (int c);

Function Arguments Return Value

is∼ c... Character to be judged 1 if character c is included in

the character range.

0 if character c is not included

in the character range.

EXPLANATION

Function Character Range

isalpha Alphabetic character A to Z or a to z

isupper Uppercase letters A to Z

islower Lowercase letters a to z

isdigit Numeric characters 0 to 9

isalnum Alphanumeric characters 0 to 9 and A to Z or a to z

isxdigit Hexadecimal numbers 0 to 9 and A to F or a to f

isspace White-space characters (space, tab, carriage return, line feed,

vertical tab, and form feed)

ispunct Punctuation characters except white-space characters

isprint Printable characters

isgraph Printable nonblank characters

iscntrl Control characters

isascii ASCII character set

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM172

1-2 toupper, Character & String Functions
tolower

FUNCTION

The character functions toupper and tolower both convert one type of character to another.

The toupper function returns the uppercase equivalent of c if c is a lowercase letter.

The tolower function returns the lowercase equivalent of c if c is a uppercase letter.

HEADER

ctype.h

FUNCTION PROTOTYPE

int to∼(int c);

Function Arguments Return Value

toupper, tolower c… Character to be converted Uppercase equivalent if c is a

convertible character.

Character “c” is returned

unchanged if not convertible.

EXPLANATION

toupper

• The toupper function checks to see if the argument is a lowercase letter and if so converts the letter to its

uppercase equivalent.

tolower

• The tolower function checks to see if the argument is a uppercase letter and if so converts the letter to its

lowercase equivalent.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 173

1-3 toascii Character & String Functions

FUNCTION

The character function toascii converts “c” to an ASCII code.

HEADER

ctype.h

FUNCTION PROTOTYPE

int toascii (int c);

Function Arguments Return Value

toascii c... Character to be converted Value obtained by converting

the bits outside the ASCII

code range of “c” to 0.

EXPLANATION

The toascii function converts the bits (bits 7 to 15) of “c” outside the ASCII code range of “c” (bits 0 to 6) to “0”

and returns the converted bit value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM174

1-4 _toupper/toup Character & String Functions
_tolower/tolow

FUNCTION

The character function _toupper/toup subtracts “a” from “c” and adds “A” to the result.

The character function _tolower/tolow subtracts “A” from “c” and adds “a” to the result.

(_toupper is exactly the same as toup, and _tolower is exactly the same as tolow)

Remark a: Lowercase, A: Uppercase

HEADER

ctype.h

FUNCTION PROTOTYPE

int _to∼(int c);

Function Arguments Return Value

_toupper

toup
c... Character to be converted Value obtained by adding “A”

to the result of subtraction “c” -

“a”

_tolower

tolow
Value obtained by adding “a”

to the result of subtraction “c” -

”A”

Remark a: Lowercase, A: Uppercase

EXPLANATION

_toupper

• The _toupper function is similar to toupper except that it does not test to see if the argument is a lowercase

letter.

_tolower

• The _tolower function is similar to tolower, except it does not test to see if the argument is an uppercase

letter.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 175

2-1 setjmp, Program Control Functions
longjmp

FUNCTION

The program control function setjmp saves the environment information when a call to this function is made.

The program control function longjmp restores the environment information saved by setjmp.

HEADER

setjmp. h

FUNCTION PROTOTYPE

int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

(jmp_buf is typedef defined with setjmp.h.)

Function Arguments Return Value

setjmp env ... Array to which

environment information is to

be saved

• 0 if called directly

• Value given by “val” if

returning from the

corresponding longjmp or 1

if “val “ is 0

longjmp env ... Array to which

environment information was

saved by setjmp

val ... Return value to setjmp

longjmp will not return

because program execution

resumes at statement next to

setjmp that saved

environment to “env”.

EXPLANATION

setjmp

• The setjmp function saves the RP3, RG4, RG5 registers, saddr area and SP to be used as variable registers,

and the return address of the functions to the array (or information block) referred to as env and returns 0.

longjmp

• The longjmp function restores the environment information (RP3, RG4, RG5 registers, saddr area and SP to

be used as variable registers) saved to env. Program execution continues as if the value given by val (or 1 if

the value of val is 0) was returned by the corresponding setjmp.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM176

3-1 va_start, Special Functions
va_starttop,
va_arg,
va_end

FUNCTION

The va_start function (macro) is used to start a variable argument list.

The va_starttop function (macro) is used to start a variable argument list.

The va_arg function (macro) obtains the value of an argument from a variable argument list.

The va_end function (macro) indicates that the end of a variable argument list is reached.

HEADER

stdarg. h

FUNCTION PROTOTYPE

void va_start (va_list ap, parmN);

void va_starttop(va_list ap,parmN);

type va_arg (va_list ap, type);

void va_end (va_list ap);

va-list is typedef defined with stdarg.h.

Function Arguments Return Value

va_start

va_starttop

va_list Variable

argument list

ap ... Variable to be

initialized so that it can be

used in va_arg and va_end

parmN ... Name of last

parameter in function

prototype (one immediately

proceeding ellipsis “...”)

None

va_arg va_list ap ... Variable

argument list. ap must be set

up with call to va_start before

calling va_arg type... Type of

argument to be obtained

Next value from argument list;

0 if ap is a null pointer

va_end va_list ap Variable

argument list. ap must be set

up with call to va_start before

calling va_arg.

None

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 177

va_start, Special Functions
va_starttop,
va_arg,
va_end

EXPLANATION

va_start

• In the va_start macro, the argument ap (argument pointer) must be a va_list type (char* type) object.

• A pointer to the next argument of parmN is stored in ap.

• parmN is the name of the last (rightmost) parameter specified in the function's prototype.

• If parmN has the register storage class, proper operation of this function is not guaranteed.

• If parmN is the first argument, proper operation of this function is not guaranteed.

va_starttop

• When the -ZO option (old function interface supporting option) is not specified, the va_start function cannot

be specified for the first argument because the first argument is passed via the register.

Use the macro in the following manner when the -ZO option is not specified.

• Use the va_starttop macro when specifying the first argument.

• Use the va_start macro when specifying the second argument.

va_arg

• In the va_arg macro, the argument ap must be the same as the va_list type object initialized with va_start.

• After the argument pointer ap has been initialized via a call to va_start, parameters are returned via calls to

va_arg, with type being the type of the next parameter. (Each call to va_arg obtains the next value from the

argument list.)

• If the argument pointer ap is a null pointer, 0 (of type type) is returned.

va_end

• The va_end macro sets a null pointer in the argument pointer ap to inform the macro processor that all the

parameters in the variable argument list have been processed.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM178

4-1 sprintf I/O Functions

FUNCTION

sprintf writes data into a character string according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE
int sprintf (char *s,const char *format,...);

Function Arguments Return Value

sprintf s ... Pointer to the string into

which the output is to be
written
format ... Pointer to the string

that indicates format
commands
... ... Zero or more arguments

to be converted

Number of characters written
in s (Terminating null

character is not counted.)

EXPLANATION
• If there are fewer actual arguments than the formats, the proper operation is not guaranteed. If the formats run

out despite the fact that actual arguments still remain, the excess actual arguments are only evaluated and
ignored.

• sprintf converts zero or more arguments that follow format according to the format command specified by
format and writes (copies) them into the string s.

• Zero or more format commands may be used. Ordinary characters (other than format commands that begin
with a % character) are output as is to the string s. Each format command takes zero or more arguments that
follow format and outputs them to the string s.

• Each format command begins with a % character and is followed by these:
• Zero or more flags (to be explained later) that modify the meaning of the format command
• Optional decimal integer that specifies a minimum field width

If the output width after the conversion is less than this minimum field width, this specifier pads the output
with spaces or zeros on its left. (If the left-justifying flag “−” (minus) sign follows %, zeros are padded out
to the right of the output.)
The default padding is done with spaces. If the output is to be padded with 0s, place a 0 before the field
width specifier. If the number or string is greater than the minimum field width, it will be printed in full
even if the minimum is exceeded.

• Optional precision (number of decimal places) specification (. integer)
With d, i, o, u, x, and X type specifiers, the minimum number of digits is specified. With the s type
specifier, the maximum number of characters (maximum field width) is specified. The number of digits to
be output following the decimal point is specified for e, E, and f conversions. The number of maximum
effective digits is specified for g and G conversions. This precision specification must be made in the
form of (.integers). If the integer part is omitted, 0 is assumed to have been specified. The amount of
padding resulting from this precision specification takes precedence over the padding by the field width
specification.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 179

sprintf I/O Functions

• Optional h, l and L modifiers

The h modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows

this modifier on short int or unsigned short int type. The h modifier instructs the sprintf function to

perform the n type conversion that follows this modifier on a pointer to short int type.

The l modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows

this modifier on long int or unsigned long int type. The h modifier instructs the sprintf function to

perform the n type conversion that follows this modifier on a pointer to long int type.

For other type specifiers, the h, l or L modifier is ignored.

• Character that specifies the conversion (to be explained later)

In the minimum field width or precision (number of decimal places) specification, * may be used in place

of an integer string. In this case, the integer value will be given by the int argument (before the argument

to be converted). Any negative field width resulting from this will be interpreted as a positive field that

follows the − (minus) flag. All negative precision will be ignored.

The following flags are used to modify a format command.

– The result of a conversion is left-justified within the field.

+ The result of a signed conversion always begins with a + or − sign.

space.......... If the result of a signed conversion has no sign, a space is prefixed to the output. If the +

(plus) flag and space flag are specified at the same time, the space flag will be ignored.

................. The result is converted in the assignment form.

In the o type conversion, precision is increased so that the first digit becomes 0. In the x or X

type conversion, 0x or 0X is prefixed to a nonzero result. In the e, E, and f type conversions,

a decimal point is forcibly inserted to all the output values (in the default without #, a decimal

point is displayed only when there is a value to follow).

In the g and G type conversions, a decimal point is forcibly inserted to all the output values,

and truncation of 0 to follow will not be allowed (in the default without #, a decimal point is

displayed only when there is a value to follow. The 0 to follow will be truncated). In all the

other conversions, the # flag is ignored.

The format codes for output conversion specifications are as follows.

d Converts int argument to signed decimal format.

i Converts int argument to signed decimal format.

o Converts int argument to unsigned octal format.

u Converts int argument to unsigned decimal format.

x Converts int argument to unsigned hexadecimal format (with lowercase letters abcdef).

X Converts int argument to unsigned hexadecimal format (with uppercase letters ABCDEF).

With d, i, o, u, x and X type specifiers, the minimum number of digits (minimum field width) of the result is

specified. If the output is shorter than the minimum field width, it is padded with zeros. If no precision is

specified, 1 is assumed to have been specified. Nothing will appear if 0 is converted with 0 precision.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM180

sprintf I/O Functions

f Converts double argument as a signed value with [−] dddd.dddd format.

dddd is one or more decimal number(s). The number of digits before the decimal point is

determined by the absolute value of the number, and the number of digits after the decimal

point is determined by the required precision. When the precision is omitted, it is interpreted

as 6.

e Converts double argument as a signed value with [−] d.dddd e [sign] ddd format. d is one

decimal number, and dddd is one or more decimal number(s). ddd is exactly a three-digit

decimal number, and the sign is + or −. When the precision is omitted, it is interpreted as 6

E The same format as that of e except E is added instead of e before the exponent.

g Uses whichever shorter method of f or e format when converting double argument based on

the specified precision. e format is used only when the exponent of the value is smaller than −
4 or larger than the specified number by precision.

The following 0 are truncated, and the decimal point is displayed only when one or more

numbers follow.

G................. The same format as that of g except E is added instead of e before the exponent.

c Converts int argument to unsigned char and writes the result as a single character.

s The associated argument is a pointer to a string of characters and the characters in the string

are written up to the terminating null character (but not included in the output). If precision is

specified, the characters exceeding the maximum field width will be truncated off the end.

When the precision is not specified or larger than the array, the array must include a null

character.

p The associated argument is a pointer to void and the pointer value is displayed in unsigned

hexadecimal 4 digits (with 0s prefixed to less than a 4-digit pointer value). In the case of the

large model, the pointer value is displayed in unsigned hexadecimal 8 digits (the higher 2

digits are padded by 0 and displayed with 0s prefixed to less than a 6-digit pointer value). The

precision specification if any will be ignored.

n The associated argument is an integer pointer into which the number of characters written thus

far in the string “s” is placed. No conversion is performed.

% Prints a % sign. The associated argument is not converted (but the flag and minimum field

width specifications are effective).

• Operations for invalid conversion specifiers are not guaranteed.
• When the actual argument is a union or a structure, or the pointer to indicate them (except the character

type array in % s conversion or the pointer in % p conversion), operations are not guaranteed.
• The conversion result will not be truncated even when there is no field width or the field width is small. In

other words, when the number of characters of the conversion result are larger than the field width, the
field is extended to the width that includes the conversion result.

• The formats of the special output character string in %f, %e, %E, %g, %G conversions are shown below.
non-numeric → “(NaN)”
+∞ → “(+INF)”
–∞ →“(–INF)”

sprintf writes a null character at the end of the string s. (This character is included in the return value count.)
The syntax of format commands is illustrated in Figure 10-3.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 181

Figure 10-3. Syntax of Format Commands

Format command

Ordinary char.

Format:

Characters except %
Ordinary
characters:

Flags

L

Format command: % Min. field width Precision h Format code

–

+

Space

#

Flags:

DigitsPrecision:

*

DigitsMinimum field width:

*

Format codes: d

i

o

I

u

x

X

c

s

p

n

f

e

E

g

G

%

.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM182

4-2 sscanf I/O Functions

FUNCTION

sscanf reads data from the input string according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE
int sscanf (const char *s, const char *format,...);

Function Arguments Return Value

sscanf s ... Pointer to the input string
format ... Pointer to the string

that indicates the input format
commands
... ... Pointer to object in which

converted values are to be
stored, and zero or more
arguments

–1 if the string s is empty.

Number of assigned input data
items if the string s is not

empty.

EXPLANATION

• sscanf inputs data from the string pointed to by s. The string pointed to by format specifies the input string

allowed for input. Zero or more arguments after format are used as pointers to an object. format specifies

how data is to be converted from the input string.

• If there are insufficient arguments to match the format commands pointed to by format, proper operation by

the compiler is not guaranteed.

For excessive arguments, expression evaluation will be performed but no data will be input.

• The control string pointed to by format consists of zero or more format commands classified into the

following three types.

(1) White-space characters (one or more characters for which isspace becomes true)

(2) Non-white-space characters (other than %)

(3) Format specifiers

• Each format specifier begins with the % character and is followed by these:

• Optional * character which suppresses assignment of data to the corresponding argument

• Optional decimal integer which specifies a maximum field width

• Optional h, l or L modifier which indicates the object size on the receiving side

If h precedes the d, i, o, or x format specifier, the argument is a pointer to not int but short int.

If l precedes any of these format specifiers, the argument is a pointer to long int.

Likewise, if h precedes the u format specifier, the argument is a pointer to unsigned short int.

If l precedes the u format specifier, the argument is a pointer to unsigned long int.

• If l precedes the conversion specifier e, E, f, g, G, the argument is a pointer to double (a pointer to float

in default without l). If L precedes, it is ignored.

Remark Conversion specifier: Character to indicate the type of corresponding conversion (to be
described later)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 183

sscanf I/O Functions

• sscanf executes the format commands in “format” in sequence and if any format command fails, the function

will terminate.

(1) A white-space character in the control string causes sscanf to read any number (including zero) of

white-space characters up to the first non-white-space character (which will not be read). This white-

space character command fails if it does not encounter any non-white-space characters.

(2) A non-white-space character causes sscanf to read and discard a matching character. This command

fails if the specified character is not found.

(3) The format commands define a collection of input streams for each type specifier (to be detailed later).

The format commands are executed according to the following steps.

• The input white-space characters (specified by isspace) are skipped over, except when the type

specifier is [, c, or n.

• The input data items are read from the string “s”, except when the type specifier is n. The input data

items are defined as the longest input stream of the first partial stream of the string indicated by the

type specifier (but up to the maximum field width if so specified). The character next to the input data

items is interpreted as not have been read. If the length of the input data items is 0, the format

command execution fails.

• The input data items (number of input characters with the type specifier n) are converted to the type

specified by the type specifier except the type specifier %. If the input data items do not match the

specified type, the command execution fails. Unless assignment is suppressed by *, the result of the

conversion is stored in the object pointed to by the first argument that follows “format” and has not yet

received the result of the conversion.

• The following type specifiers are available.

d Reads a decimal integer (which may be signed). The corresponding argument must be a

pointer to an integer.

i Reads an integer (which may be signed). If a number is preceded by 0x or 0X, the number

is interpreted as a hexadecimal integer. If a number is preceded by 0, the number is

interpreted as an octal integer. Other numbers are regarded as decimal integers. The

corresponding argument must be a pointer to an integer.

o Reads an octal integer (which may be signed). The corresponding argument must be a

pointer to an integer.

u Reads an unsigned decimal integer.

The corresponding argument must be a pointer to an unsigned integer.

x Reads a hexadecimal integer (which may be signed).

e, E, F, g, G...... A floating-point value consists of an optional sign (+ or –), one or more consecutive

decimal number(s) including a decimal point, an optional exponent (e or E), and the

following optional signed integer value. When overflow occurs as a result of conversion, or

when underflow occurs with the conversion result ±∞, a non-normalized number or ±0

becomes the conversion result. The corresponding argument is a pointer to float. The

corresponding argument must be a pointer to the first character of an array that has

sufficient size to accommodate this character string and a null terminator. The null

terminator will be automatically added.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM184

sscanf I/O Functions

s Inputs a character string consisting of a non-blank character string. The corresponding

argument is a pointer to an integer. 0x or 0X can be allocated at the first hexadecimal integer.

The corresponding argument must be a pointer an array that has sufficient size to

accommodate this character string and a null terminator. The null terminator will be

automatically added.

[.................. Inputs a character string consisting of expected character groups (called a scanset). The

corresponding argument must be a pointer to the first character of an array that has sufficient

size to accommodate this character string and a null terminator. The null terminator will be

automatically added. The format commands continue from this character up to the closing

square bracket (]). The character string (called a scanlist) enclosed in the square brackets

constitutes a scanset except when the character immediately after the opening square

bracket is a circumflex (^).

When the character is a circumflex, all the characters other than a scanlist between the

circumflex and the closing square bracket constitute a scanset. However, when a scanlist

begins with [] or [^], this closing square bracket is contained in the scanlist and the next

closing square brocket becomes the end of the scanlist. A hyphen (–) at other than the left or

right end of a scanlist is interpreted as the punctuation mark for hyphenation if the character

at the left of the range specifying hyphen (–) is not smaller than the right-hand character in

ASCII code value.

c Inputs a character string consisting of the number of characters specified by the field width. (If

the field width specification is omitted, 1 is assumed.) The corresponding argument must be a

pointer to the first character of an array that has sufficient size to accommodate this character

string. The null terminator will not be added.

p Reads an unsigned hexadecimal integer. The corresponding argument must be a pointer to

void pointer. For the large model, a hexadecimal 8-digit integer is input, and the higher two

digits are ignored.

n Receives no input from the string s. The corresponding argument must be a pointer to an

integer. The number of characters that are read thus far by this function from the string “s” is

stored in the object that is pointed to by this pointer. The %n format command is not included

in the return value assignment count.

% Reads a % sign. Neither conversion nor assignment takes place.

If a format specification is invalid, the format command execution fails.

If a null terminator appears in the input stream, sscanf will terminate.

If an overflow occurs in an integer conversion (with the d, i, o, u, x, or p format specifier), the higher bits will

be truncated depending on the number of bits of the data type after the conversion.

The syntax of input format commands is illustrated below.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 185

Figure 10-4. Syntax of Input Format Commands

CommandFormat:

Characters except
% and white space

Ordinary characters:

DigitsMax. field width:

\f

\n

\r

\t

\v

Space

White-space
char.

Ordinary
char.

Format
specifier

Command:

L

Format command: % Max. field width h Format specifier*

I

Format specifiers: d

i

o

u

x

s

c

p

n

%

f

e

E

g

G

scanlist

scanlist:

Characters
except

Characters
except

^

White-space
characters:

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM186

4-3 printf I/O Functions

FUNCTION

printf outputs data to SFR according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE

int printf (const char *format, ...);

Function Arguments Return Value

printf format ...Pointer to the

character string that indicates

the output conversion

specification

... ... 0 or more arguments to

be converted

Number of characters output

to s (the null character at the

end is not counted)

EXPLANATION

• (0 or more) arguments following the format are converted and output using the putchar function, according to

the output conversion specification specified in the format.

• The output conversion specification is 0 or more directives. Normal characters (other than conversion

specifications starting with %) are output as is using the putchar function. The conversion specification is

output using the putchar function by fetching and converting the following (0 or more) arguments.

• Each conversion specification is the same as that of the sprintf function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 187

4-4 scanf I/O Functions

FUNCTION

scanf reads data from SFR according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE

int scanf (const char *format, ...);

Function Arguments Return Value

scanf format ... Pointer to the

character string to indicate

input conversion specification

format

... ... Pointer (0 or more)

argument to the object to

assign the converted value

When the character string s is

not null ... number of input

items assigned

EXPLANATION

• Performs input using the getchar function. Specifies the input string permitted by the character string

indicated by format. Uses the arguments after format as pointers to an object. format specifies how the

conversion is performed by the input string.

• When there are not enough arguments for format, normal operation is not guaranteed. When the number of

arguments is excessive, the expression will be evaluated but not input.

• format consists of 0 or more directives. The directives are as follows.

(1) One or more null character (character that makes isspace true)

(2) Normal character (other than %)

(3) Conversion indication

• If a conversion ends with an input character that conflicts with the directive, the conflicting input character is

rounded down. The conversion indication is the same as that of the sscanf function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM188

4-5 vprintf I/O Functions

FUNCTION

vprintf outputs data to SFR according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE

int vprintf (const char *format, va_list p) ;

Function Arguments Return Value

vprintf format ... Pointer to the

character string that indicates

output conversion

specification

p ... Pointer to the argument

list

Number of output characters

(the null character at the end

is not counted)

EXPLANATION

• The argument that the pointer of the argument list indicates is converted and output using the putchar

function according to the output conversion specification specified by the format.

• Each conversion specification is the same as that of the sprintf function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 189

4-6 vsprintf I/O Functions

FUNCTION

vsprintf writes data to character strings according to the format.

HEADER

stdio.h

FUNCTION PROTOTYPE

int vsprintf (char *s, const char * format, va_list p) ;

Function Arguments Return Value

vsprintf s ... Pointer to the character

string that writes the output

format ... Pointer to the

character string that indicates

output conversion

specification

p ... Pointer to the argument

list

Number of characters output

to s (the null character at the

end is not counted)

EXPLANATION

• Writes out the argument that the pointer of argument list indicates to the character strings indicated by s

according to the output conversion specification specified by format.

• The output specification is the same as that of the sprintf function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM190

4-7 getchar I/O Functions

FUNCTION

getchar reads a character from SFR.

HEADER

stdio.h.

FUNCTION PROTOTYPE

int getchar (void);

Function Arguments Return Value

getchar None A character read from SFR

EXPLANATION

• Returns the value read from SFR symbol P0 (port 0).

• An error check related to reading is not performed.

• To change the SFR to be read, it is necessary to either change the source and re-register it to the library or

create a new getchar function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 191

4-8 gets I/O Functions

FUNCTION

gets reads a character string.

HEADER

stdio.h

FUNCTION PROTOTYPE

char *gets (char *s);

Function Arguments Return Value

gets s ... Pointer to input character

string

Normal ... s

If the end of the file is

detected without reading a

character

... null pointer

EXPLANATION

• Reads a character string using the getchar function and stores in the array that s indicates.

• When the end of the file is detected (getchar function returns −1) or when a line feed character is read, the

reading of a character string ends. The line feed character read is abandoned, and a null character is written

at the end of the character stored in the array in the end.

• When the return value is normal, it returns s.

• When the end of the file is detected and no character is read in the array, the contents of the array remain

unchanged, and a null pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM192

4-9 putchar I/O Functions

FUNCTION

putchar outputs a character to SFR.

HEADER

stdio.h

FUNCTION PROTOTYPE

int putchar (int c);

Function Arguments Return Value

putchar c ... Character to be output character to have been output

EXPLANATION

• Writes the character specified by c to the SFR symbol P0 (port 0) (converted to unsigned char type).

• An error check related to writing is not performed.

• To change the SFR to be written, it is necessary to either change the source and re-register to the library or

user create a new putchar function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 193

4-10 puts I/O Functions

FUNCTION

puts outputs a character string.

HEADER

stdio.h

FUNCTION PROTOTYPE

int puts (const char *s);

Function Arguments Return Value

puts s ...Pointer to an output

character string

Normal ... 0

When putchar function

returns –1 ... –1

EXPLANATION

• Writes the character string indicated by s using the putchar function and adds a line feed character at the end

of the output.

• Writing of the null character at the end of the character string is not performed.

• When the return value is normal, 0 is returned, and when the putchar function returns –1, –1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM194

5-1 atoi, Utility Functions
atol

FUNCTION

The string function atoi converts the contents of a decimal integer string to an int value.

The string function atol converts the contents of a decimal integer string to a long value.

HEADER

stdlib. h

FUNCTION PROTOTYPE

int atoi (const char *nptr);

long int atol (const char *nptr);

Function Arguments Return Value

atoi nptr... String to be converted • int value if converted

properly

• INT_MAX (32767) if positive

overflow occurs

• INT_MIN (–32768) if

negative overflow occurs

• 0 if the string is invalid

atol • long int value if converted

properly

• LONG_MAX (2147483647)

for positive overflow

• LONG_MIN (–2147483648)

for negative overflow

• 0 if the string is invalid

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 195

atoi, Utility Functions
atol

EXPLANATION

atoi

• The atoi function converts the first part of the string pointed to by pointer “nptr” to an int value. The string

may consist of zero or more white-space characters possibly followed by a minus or plus sign, followed by a

string of digits.

• The atoi function skips over zero or more white-space characters (for which isspace becomes true) from the

beginning of the string and converts the string from the character next to the skipped white-spaces to an int

value (until other than digits or a null character appears in the string).

• If no digits to convert are found in the string, the function returns 0. If an overflow occurs, the function returns

INT_MAX (32767) for a positive overflow and INT_MIN (−32768) for a negative overflow.

atol

• The atol function converts the first part of the string pointed to by pointer “nptr” to a long value. The string

may consist of zero or more white-space characters, possibly followed by a minus or plus sign, followed by a

string of digits.

• The atol function skips over zero or more white-space characters (for which isspace becomes true) from the

beginning of the string and converts the string from the character next to the skipped white-spaces to a long

value (until other than digits or null character appears in the string).

• If no digits to convert are found in the string, the function returns 0. If an overflow occurs, the function returns

LONG_MAX (2147483647) for a positive overflow and LONG_MIN (−2147483648) for a negative overflow.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM196

5-2 strtol, Utility Functions
strtoul

FUNCTION

The string function strtol converts a string to a long integer.

The string function strtoul converts a string to an unsigned long integer.

HEADER

stdlib. h

FUNCTION PROTOTYPE

long int strtol (const char *nptr, char **endptr, int base);

unsigned long int strtoul (const char *nptr, char **endptr, int base);

Function Arguments Return Value

strtol nptr... String to be converted

endptr ... Address of char

pointer

base ... Base for number

represented in the string

• long int value if converted

properly

• LONG_MAX

(2147483647) for positive

overflow

• LONG_MIN

(–2147483648) for negative

overflow

• 0 if not converted

strtoul • unsigned long if converted

properly

• ULONG_MAX

(4294967295U) if overflow

occurs

• 0 if not converted

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 197

strtol, Utility Functions
strtoul

EXPLANATION

strtol

• The strtol function decomposes the string pointed by pointer nptr into the following three parts.

(1) String of white-space characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of “base”

(3) String of one or more characters that cannot be recognized (including null terminators)

The strtol function converts part (2) of the string into a long integer and returns this integer value.

• A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or

0X indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is

interpreted as decimal. (In this case, the number may be signed.)

• If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be

signed) with any of these bases are taken to represent 10 to 35. A leading 0x or 0X is ignored if the base is

16.

• If endptr is not a null pointer, a pointer to part (3) of the string is stored in the object pointed to by endptr.

• If the correct value causes an overflow, the function returns LONG_MAX (2147483647) for the positive

overflow or LONG_MIN (−2147483648) for the negative overflow depending on the sign and sets errno to

ERANGE (2).

• If the string in (2) is empty or the first non-white-space character of the string (2) is not appropriate for an

integer with the given base, the function performs no conversion and returns 0. In this case, the value of the

string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases

0 and 2 to 36.

strtoul

• The strtoul function decomposes the string pointed by pointer nptr into the following three parts.

(1) String of white-space characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of base

(3) String of one or more characters that cannot be recognized (including null terminators)

The strtoul function converts part (2) of the string into a unsigned long integer and returns this unsigned

long integer value.

• A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or

0X indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is

interpreted as decimal.

• If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be

signed) with any of these bases are taken to represent 10 to 35. A leading 0x or 0X is ignored if the base is

16.

• If endptr is not a null pointer, a pointer to part (3) of the string is stored in the object pointed to by endptr.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM198

strtol, Utility Functions
strtoul

• If the correct value causes an overflow, the function returns ULONG_MAX (4294967295U) and sets errno to

ERANGE (2).

• If the string in (2) is empty or the first non-white-space character of the string in (2) is not appropriate for an

integer with the given base, the function performs no conversion and returns 0. In this case, the value of the

string nptr is stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases

0 and 2 to 36.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 199

5-3 calloc Utility Functions

FUNCTION

The memory function calloc allocates an array area and then initializes the area to 0.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void *calloc (size_t nmemb, size_t size);

Function Arguments Return Value

calloc nmemb ... Number of

members in the array

size ... Size of each member

• Pointer to the beginning of

the allocated area if the

requested size is allocated

• Null pointer if the requested

size is not allocated

EXPLANATION

• The calloc function allocates an area for an array consisting of n number of members (specified by nmemb),

each of which has the number of bytes specified by size and initializes the area (array members) to zero.

• If memory cannot be allocated, the function returns a null pointer. (This memory allocation will start from a

break value and the address next to the allocated space will become a new break value. See 5-11 brk for

break value setting with the memory function brk.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM200

5-4 free Utility Functions

FUNCTION

The memory function free releases the allocated block of memory.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void free (void *ptr);

Function Arguments Return Value

free ptr ... Pointer to the beginning

of block to be released

None

EXPLANATION

• The free function releases the allocated space (before a break value) pointed to by ptr. (malloc, calloc, or

realloc called after free will allocate space that was freed earlier.)

• If ptr does not point to the allocated space, free will take no action. (Freeing the allocated space is performed

by setting ptr as a new break value.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 201

5-5 malloc Utility Functions

FUNCTION

The memory function malloc allocates a block of memory.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void *malloc (size_t size);

Function Arguments Return Value

malloc size ... Size of memory block

to be allocated

• Pointer to the beginning of

the allocated area if the

requested size is allocated

• Null pointer if the requested

size is not allocated

EXPLANATION

• The malloc function allocates a block of memory for the number of bytes specified by size and returns a

pointer to the first byte of the allocated area.

• If memory cannot be allocated, the function returns a null pointer. (This memory allocation will start from a

break value and the address next to the allocated area will become a new break value. See 5-11 brk for

break value setting with the memory function brk.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM202

5-6 realloc Utility Functions

FUNCTION

The memory function realloc reallocates a block of memory (namely, changes the size of the allocated memory).

HEADER

stdlib. h

FUNCTION PROTOTYPE

void *realloc (void *ptr, size_t size);

Function Arguments Return Value

realloc ptr ... Pointer to the beginning

of block previously allocated

size ... New size to be given to

this block

• Pointer to the beginning of

the reallocated space if the

requested size is

reallocated

• Pointer to the beginning of

the allocated space if ptr is

a null pointer

• Null pointer if the requested

size is not reallocated or

“ptr” is not a null pointer

EXPLANATION

• The realloc function changes the size of the allocated space (before a break value) pointed to by ptr to that

specified by size.

• If the value of size is greater than the size of the allocated space, the contents of the allocated space up to

the original size will remain unchanged. The realloc function allocates only for the increased space. If the

value of size is less than the size of the allocated space, the function will free the reduced space of the

allocated space.

• If ptr is a null pointer, the realloc function will newly allocate a block of memory of the specified size (same as

malloc).

• If ptr does not point to the block of memory previously allocated or if no memory can be allocated, the function

executes nothing and returns a null pointer.

(Reallocation will be performed by setting the address of ptr plus the number of bytes specified by size as a

new break value.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 203

5-7 abort Utility Functions

FUNCTION

The program control function abort causes immediate, abnormal termination of a program.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void abort (void);

Function Arguments Return Value

abort None No return to its caller.

EXPLANATION

• The abort function loops and can never return to its caller.

• The user must create the abort processing routine.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM204

5-8 atexit, Utility Functions
exit

FUNCTION

atexit registers the function called at the normal termination.

exit terminates a program.

HEADER

stdlib. h

FUNCTION PROTOTYPE

int atexit (void(*func) (void));

void exit (int status);

Function Arguments Return Value

atexit func ... Pointer to function to

be registered

• 0 if function is registered as

wrap-up function

• 1 if function cannot be

registered

exit status ... Status value

indicating termination

exit can never return.

EXPLANATION

atexit

• The atexit function registers the wrap-up function pointed to by func so that it is called without argument upon

normal program termination by calling exit or returning from main.

• Up to 32 wrap-up functions may be established. If the wrap-up function can be registered, atexit returns 0. If

no more wrap-up functions can be registered because 32 wrap-up functions have already been registered, the

function returns 1.

exit

• The exit function causes immediate, normal termination of a program.

• This function calls the wrap-up functions in the reverse of the order in which they were registered with atexit.

• The exit function loops and can never return to its caller.

• The user must create the exit processing routine.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 205

5-9 abs, Utility Functions
labs

FUNCTION

The mathematical function abs returns the absolute value of its int type argument.

The mathematical function labs returns the absolute value of its long type argument.

HEADER

stdlib. h

FUNCTION PROTOTYPE

int abs (int j);

long int labs (long int j);

Function Arguments Return Value

abs j ... Any signed integer for

which absolute value is to be

obtained

• Absolute value of j if j falls

within

• –32767 ≤ j ≤ 32767

• –32768 (0x8000) if j is

–32768

labs j ... Any long integer for which

absolute value is to be

obtained

• Absolute value of j if j falls

within

–2147483647 ≤ j ≤
2147483647

• –2147483648

(0x80000000) if the value of

j is –2147483648

EXPLANATION

abs

• The abs returns the absolute value of its int type argument. If j is –32768, the function returns –32768.

labs

• The labs returns the absolute value of its long type argument. If the value of j is –2147483648, the function

returns –2147483648.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM206

5-10 div, Utility Functions
ldiv

FUNCTION

The mathematical function div performs the integer division of numerator divided by denominator.

The mathematical function ldiv performs the long integer division of numerator divided by denominator.

HEADER

stdlib.h

FUNCTION PROTOTYPE

div_t div (int numer, int denom);

ldiv_t ldiv (long int numer, long int denom);

Function Arguments Return Value

div numer ... Numerator of the

division

denom ... Denominator of the

division

Quotient to the quot element

of structure type

div_t and the remainder to the

rem element

ldiv Quotient to the quot element

of structure type

ldiv_t and the remainder to

the rem element

EXPLANATION

div

• The div function performs the integer division of numerator divided by denominator. The result of div has a

structure type named div_t with the elements quo (quotient) and rem (remainder).

• The absolute value of the quotient is defined as the largest integer not greater than the absolute value of

numer divided by the absolute value of denom. The remainder always has the same sign as the result of the

division (plus if numer and denom have the same sign; otherwise minus).

• The remainder is the value of numer - denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer. If numer is −32768 and denom

is −1, the quotient becomes −32768 and the remainder becomes 0.

ldiv

• The ldiv function performs the long integer division of numerator divided by denominator. The result of ldiv

has a structure type named “ldiv_t” with the elements quo (quotient) and rem (remainder).

• The absolute value of the quotient is defined as the largest long int type integer not greater than the absolute

value of numer divided by the absolute value of denom. The remainder always has the same sign as the

result of the division (plus if numer and denom have the same sign; otherwise minus).

• The remainder is the value of numer - denom*quotient.

If denom is 0, the quotient becomes 0 and the remainder becomes numer. If numer is −2147483648 and

denom is −1, the quotient becomes −2147483648 and the remainder becomes 0.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 207

5-11 brk, Utility Functions
sbrk

FUNCTION

The memory function brk sets a break value.

The memory function sbrk increments or decrements the set break value.

HEADER

stdlib. h

FUNCTION PROTOTYPE

int brk (char *endds);

char *sbrk (int incr);

Function Arguments Return Value

brk endds ... Break value to be

set

• 0 if break value is set

properly

• –1 if break value cannot be

changed

sbrk incr ... Value (bytes) by which

set break value is to be

incremented/decremented.

• Old break value if

incremented or

decremented properly

• –1 if old break value cannot

be incremented or

decremented

EXPLANATION

brk

• The brk function sets the value given by endds as a break value (the address next to the end address of an

allocated block of memory).

• If endds is outside the permissible address range, the function sets no break value and sets errno to

ENOMEM (3).

sbrk

• The sbrk function increments or decrements the set break value by the number of bytes specified by incr.

(Increment or decrement is determined by the plus or minus sign of incr.)

• If the incremented or decremented break value is outside the permissible address range, the function does

not change the original break value and sets errno to ENOMEM (3).

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM208

5-12 atof Utility Functions
strtod

FUNCTION

atof converts a decimal integer character string to double.

strtod converts a character string to double.

HEADER

stdlib.h

FUNCTION PROTOTYPE

double atof const char *nptr) ;

double strtod (const char *nptr, char **endptr) ;

Function Arguments Return value

atof nptr ... Character string to be

converted

endptr ... Pointer to store a

pointer to an unidentifiable

area (strtod only)

• Normal ... Converted value

• When positive overflow

occurs ... HUGE_VAL (with

the sign of the overflowed

value)

When negative overflow

occurs ... 0

Illegal character string ... 0

strtod nptr ... Character string to be

converted

endptr ... Pointer to store a

pointer to an unidentifiable

area

• Normal ... Converted value

• When positive overflow

occurs ... HUGE_VAL (with

the sign of the overflowed

value)

When negative overflow

occurs ... 0

Illegal character string ... 0

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 209

5-12 atof Utility Functions
strtod

EXPLANATION

atof

• atof converts the character string that is pointed by the pointer nptr to double.

• Skips 0 or more strings of null characters (a character which makes isspace true) from the start and converts

the character string (other than decimal characters or until the last null character appears) from the character

next to the floating-point number.

• If the conversion is performed correctly, a floating point number is returned.

• If an overflow occurs in the conversion, HUGE_VAL, which has the sign of the overflowed value, is returned,

and ERANGE is set to errno.

• If annihilation of valid digits occurs due to underflow or overflow, a non-normalized number and ±0 are

returned, respectively, and ERANGE is set to errno.

• If a conversion cannot be performed, 0 is returned.

strtod

• strtod converts the character string that is pointed by the pointer nptr to double.

• Skips 0 or more strings of null characters (a character which makes isspace true) from the start and converts

the character string (other than decimal characters or until the last null character appears) from the character

next to the floating-point number.

• If the conversion is performed correctly, a floating-point number is returned.

• If an overflow occurs in the conversion, HUGE_VAL, which has the sign of the overflowed value, is returned,

and ERANGE is set to errno.

• If annihilation of valid digits occurs due to underflow or overflow, a non-normalized number and ±0 are

returned, respectively, and ERANGE is set to errno. At the same time, endptr stores the pointer in the next

character string.

• If conversion cannot be performed, 0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM210

5-13 itoa, Utility Functions
ltoa,
ultoa

FUNCTION

The string function itoa converts an int integer to its string equivalent.

The string function ltoa converts a long integer to its string equivalent.

The string function ultoa converts an unsigned long integer to its string equivalent.

HEADER

stdlib. h

FUNCTION PROTOTYPE

char *itoa (int value, char *string, int radix);

char *ltoa (long value, char *string, int radix);

char *ultoa (unsigned long value, char *string, int radix);

Function Arguments Return Value

itoa,

ltoa,

ultoa

value ... String to which

integer is to be converted

string ... Pointer to the

conversion result

radix ... Base of output string

• Pointer to the converted

string if converted properly

• Null pointer if not converted

properly

EXPLANATION

itoa, ltoa, ultoa

• The itoa, ltoa, and ultoa functions all convert the integer value specified by value to its string equivalent,

which is terminated with a null character, and store the result in the area pointed to by “string”.

• The base of the output string is determined by radix, which must be in the range 2 through 36. Each function

performs conversion based on the specified radix and returns a pointer to the converted string. If the

specified radix is outside the range 2 through 36, the function performs no conversion and returns a null

pointer.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 211

5-14 rand, Utility Functions
srand

FUNCTION

The mathematical function rand generates a sequence of psuedorandom numbers.

The mathematical function srand sets a starting value (seed) for the sequence generated by rand.

HEADER

stdlib. h

FUNCTION PROTOTYPE

int rand (void);

void srand (unsigned int seed);

Function Arguments Return Value

rand None Psuedorandom integer in the

range of 0 to RAND_MAX

srand seed ... Starting value for

psuedorandom number

generator

None

EXPLANATION

rand

• Each time the rand function is called, it returns a psuedorandom integer in the range of 0 to RAND_MAX.

srand

• The srand function sets a starting value for a sequence of random numbers. seed is used to set a starting

point for a progression of random numbers that is a return value when rand is called. If the same seed value

is used, the sequence of psuedorandom numbers is the same when srand is called again. Calling rand

before srand is used to set a seed is the same as calling rand after srand has been called with seed = 1.

(The default seed is 1.)

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM212

5-15 bsearch Utility Functions

FUNCTION

The bsearch function performs a binary search.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void *bsearch (const void *key, const void *base, size_t nmemb,

size_t size, int (*compare) (const void *, const void *));

Function Arguments Return Value

bsearch key ... Pointer to key for which

search is made

base ... Pointer to sorted array

that contains information to

search

nmemb ... Number of array

elements

size ... Size of an array

compare ... Pointer to function

used to compare two keys

• Pointer to the first member

that matches “key” if the

array contains the key

• Null pointer if the key is not

contained in the array

EXPLANATION

• The bsearch function performs a binary search on the sorted array pointed to by base and returns a pointer

to the first member that matches the key pointed to by key. The array pointed to by base must be an array

that consists of nmemb number of members each of which has the size specified by size and must have

been sorted in ascending order.

• The function pointed to by compare takes two arguments (key as the 1st argument and array element as the

2nd argument), compares the two arguments, and returns:

- Negative value if the 1st argument is less than the 2nd argument

- 0 if both arguments are equal

- Positive integer if the 1st argument is greater than the 2nd argument

• When the -ZR option is specified, the function passed to the argument of the bsearch function must be a

pascal function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 213

5-16 qsort Utility Functions

FUNCTION

The qsort function sorts the members of a specified array using a quicksort algorithm.

HEADER

stdlib. h

FUNCTION PROTOTYPE

void qsort (void *base, size_t nmemb, size_t size,

 int (*compare)(const void *, const void *));

Function Arguments Return Value

qsort base ... Pointer to array to be

sorted

nmemb ... Number of

members in the array

size ... Size of an array

member

compare ... Pointer to function

used to compare two keys

None

EXPLANATION

• The qsort function sorts the members of the array pointed to by base in ascending order. The array pointed

to by base consists of nmemb number of members each of that has the size specified by size.

• The function pointed to by compare takes two arguments (array element 1 as the 1st argument and array

element 2 as the 2nd argument), compares the two arguments, and returns:

- Negative value if the 1st argument is less than the 2nd argument

- 0 if both arguments are equal

- Positive integer if the 1st argument is greater than the 2nd argument

• If the two array elements are equal, the element nearest to the top of the array will be sorted first.

• When the -ZR option is specified, the function passed to the argument of the qsort function must be a pascal

function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM214

5-17 strbrk Utility Functions

FUNCTION

strbrk sets a break value.

HEADER

stdlib.h

FUNCTION PROTOTYPE

int strbrk (char *endds);

Function Arguments Return Value

strbrk endds ... Break value to be

set

Normal ... 0

When a break value cannot be

changed ... –1

EXPLANATION

• Sets the value given by endds to the break value (the address following the address at the end of the area to

be allocated).

• When endds is out of the permissible range, the break value is not changed. ENOMEM(3) is set to errno and

–1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 215

5-18 strsbrk Utility Functions

FUNCTION

strsbrk increments/decrements a break value.

HEADER

stdlib.h

FUNCTION PROTOTYPE

char *strsbrk (int incr);

Function Arguments Return Value

strsbrk incr ... Amount by which a

break value is to be

incremented/decremented

Normal ... Old break value

When a break value cannot be

incremented/decremened ... –1

EXPLANATION

• incr byte increments/decrements a break value (depending on the sign of incr).

• When the break value is out of the permissible range after incrementing/decrementing, the break value is not

changed. ENOMEM(3) is set to errno, and −1 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM216

&��* ������� ,�����-����
�����

�������

��������

FUNCTION
stritoa converts int to a character string.

strltoa converts long to a character string.

strultoa converts unsigned long to a character string.

HEADER

stdllib.h

FUNCTION PROTOTYPE

char *stritoa (int value, char *string, int radix);

char *strltoa (long value, char *string, int radix);

char *strultoa (unsigned long value, char *string, int radix);

Function Arguments Return Value

stritoa

strltoa

strultoa

value ... Character string to

convert

string ... Pointer to conversion

result

radix ... Radix to specify

Normal ... Pointer to the

converted character string

Other ... Null pointer

EXPLANATION

stritoa, strltoa, strultoa

• Converts the specified numeric value value to the character string that ends with a null character, and stores

the result in the area specified with string. The conversion is performed by the specified radix, and the

pointer to the converted character string will be returned.

• radix must be a value in the range of 2 to 36. In other cases, the conversion is not performed and a null

pointer is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 217

6-1 memcpy, Character String/Memory Functions
memmove

FUNCTION

The memory function memcpy copies a specified number of characters from a source area of memory to a

destination area of memory.

The memory function memmove is identical to memcpy, except that it allows overlap between the source and

destination areas.

HEADER

string. h

FUNCTION PROTOTYPE

void *memcpy (void *s1, const void *s2, size_t n);

void *memmove (void *s1, const void *s2, size_t n);

Function Arguments Return Value

memcpy,

memmove

s1 ... Pointer to object into

which data is to be copied

s2 ... Pointer to object

containing data to be copied

n ... Number of characters to

be copied

Value of s1

EXPLANATION

memcpy

• The memcpy function copies n number of consecutive bytes from the object pointed to by s2 to the object

pointed to by s1.

• If s2 < s1 < s2+n (s1 and s2 overlap), the memory copy operation by memcpy is not guaranteed (because

copying starts in sequence from the beginning of the area).

memmove

• The memmove function also copies n number of consecutive bytes from the object pointed to by s2 to the

object pointed to by s1.

• Even if s1 and s2 overlap, the function performs memory copying properly.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM218

6-2 strcpy, Character String/Memory Functions
strncpy

FUNCTION

The string function strcpy is used to copy the contents of one character string to another.

The string function strncpy is used to copy up to a specified number of characters from one character string to

another.

HEADER

string. h

FUNCTION PROTOTYPE

char *strcpy (char *s1, const char *s2);

char *strncpy (char *s1, const char *s2, size_t n);

Function Arguments Return Value

strcpy,

strncpy

s1... Pointer to copy

destination array

s2 ... Pointer to copy source

array

n ... Number of characters to

be copied

Value of s1

EXPLANATION

strcpy

• The strcpy function copies the contents of the character string pointed to by s2 to the array pointed to by s1

(including the terminating character).

• If s2 < s1 ≤≤≤≤ (s2 + Character length to be copied), the behavior of strcpy is not guaranteed (as copying starts

in sequence from the beginning, not from the specified string).

strncpy

• The strncpy function copies up to the characters specified by n from the string pointed to by s2 to the array

pointed to by s1.

• If s2 < s1 ≤≤≤≤ (s2 + Character length to be copied or minimum value of s2 + n – 1), the behavior of strncpy is

not guaranteed (as copying starts in sequence from the beginning, not from the specified string).

• If the string pointed by s2 is less than the characters specified by n, nulls will be appended to the end of s1

until n characters have been copied. If the string pointed to by s2 is longer than n characters, the resultant

string that is pointed to by s1 will not be null terminated.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 219

6-3 strcat, Character String/Memory Functions
strncat

FUNCTION

The string function strcat concatenates one character string to another.

The string function strncat concatenates up to a specified number of characters from one character string to

another.

HEADER

string. h

FUNCTION PROTOTYPE

char *strcat (char *s1, const char *s2);

char *strncat (char *s1, const char *s2, size_t n);

Function Arguments Return Value

strcat,

strncat

s1... Pointer to a string to

which a copy of another string

(s2) is to be concatenated

s2 ... Pointer to a string, copy

of which is to be concatenated

to another string (s1).

n ... Number of characters to

be concatenated

Value of s1

EXPLANATION

strcat

• The strcat function concatenates a copy of the string pointed to by s2 (including the null terminator) to the

string pointed to by s1. The null terminator originally ending s1 is overwritten by the first character of s2.

• When copying is performed between objects overlapping each other, the operation is not guaranteed.

strncat

• The strncat function concatenates not more than the characters specified by n of the string pointed to by s2

(excluding the null terminator) to the string pointed to by s1. The null terminator originally ending s1 is

overwritten by the first character of s2.

• s1 must always be terminated with a null.

• When copying is performed between objects overlapping each other, the operation is not guaranteed.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM220

6-4 memcmp Character String/Memory Functions

FUNCTION

The memory function memcmp compares two data objects, with respect to a given number of characters.

HEADER

string. h

FUNCTION PROTOTYPE

int memcmp (const void *s1, const void *s2, size_t n);

Function Arguments Return Value

memcmp s1, s2 ... Pointers to two data

objects to be compared

n ... Number of characters to

compare

• 0 if s1 and s2 are equal

• Positive value if s1 is

greater than s2; negative

value if s1 is less than s2

(s1 – s2)

EXPLANATION

• The memcmp function compares the data object pointed to by s1 with the data object pointed to by s2 with

respect to the number of bytes specified by n.

• If the two objects are equal, the function returns 0.

• The function returns a positive value if the object s1 is greater than the object s2 and a negative value if s1 is

less than s2.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 221

6-5 strcmp, Character String/Memory Functions
strncmp

FUNCTION

The string function strcmp compares two character strings.

The string function strncmp compares not more than a specified number of characters from two character

strings.

HEADER

string. h

FUNCTION PROTOTYPE

char *strcmp (char *s1, const char *s2);

char *strncmp (char *s1, const char *s2, size_t n);

Function Arguments Return Value

strcmp s1... Pointer to one string to

be compared

s2 ... Pointer to the other

string to be compared

• 0 if s1 is equal to s2

• Integer less than 0 or

greater than 0 if s1 is less

than or greater than s2 (s1

– s2)

strncmp s1... Pointer to one string to

be compared

s2 ... Pointer to the other

string to be compared

n ... Number of characters to

be compared

• 0 if s1 is equal to s2 within

characters specified by n

• Integer less than 0 or

greater than 0 if s1 is less

than or greater than s2 (s1

– s2) within characters

specified by n

EXPLANATION

strcmp

• The strcmp function compares the two null terminated strings pointed to by s1 and s2, respectively.

• If s1 is equal to s2, the function returns 0. If s1 is less than or grater than s2, the function returns an integer

less than 0 (a negative number) or greater than 0 (a positive number) (s1 – s2).

strncmp

• The strncmp function compares not more than the characters specified by n from the two null terminated

strings pointed to by s1 and s2, respectively.

• If s1 is equal to s2 within the specified characters, the function returns 0. If s1 is less than or greater than s2

within the specified characters, the function returns an integer less than 0 (a negative number) or greater than

0 (a positive number) (s1 – s2).

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM222

6-6 memchr Character String/Memory Functions

FUNCTION

The memory function memchr converts a specified character to unsigned char, searches for it, and returns a

pointer to the first occurrence of this character in an object of a given size.

HEADER

string. h

FUNCTION PROTOTYPE

void *memchr (const void *s, int c, size_t n);

Function Arguments Return Value

memchr s ... Pointer to objects in

memory subject to search

c ... Character to be searched

n ... Number of bytes to be

searched

• Pointer to the first

occurrence of c if c is found

• Null pointer if c is not found

EXPLANATION

• The memchr function first converts the character specified by c to unsigned char and then returns a pointer

to the first occurrence of this character within the n number of bytes from the beginning of the object pointed

to by s.

• If the character is not found, the function returns a null pointer.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 223

6-7 strchr, Character String/Memory Functions
strrchr

FUNCTION

The string function strchr returns a pointer to the first occurrence of a specified character in a string.

The string function strrchr returns a pointer to the last occurrence of a specified character in a string.

HEADER

string. h

FUNCTION PROTOTYPE

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

Function Arguments Return Value

strchr,

strrchr

s... Pointer to string to be

searched

c ... Character specified for

search

• Pointer indicating the first or

last occurrence of c in string

s if c is found in s

• Null pointer if c is not found

in s

EXPLANATION

strchr

• The strchr function searches the string pointed to by s for the character specified by c and returns a pointer

to the first occurrence of c (converted to char type) in the string.

• The null terminator is regarded as part of the string.

• If the specified character is not found in the string, the function returns a null pointer.

strrchr

• The strrchr function searches the string pointed to by s for the character specified by c and returns a pointer

to the last occurrence of c (converted to char type) in the string.

• The null terminator is regarded as part of the string.

• If no match is found, the function returns a null pointer.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM224

6-8 strspn, Character String/Memory Functions
strcspn

FUNCTION

The string function strspn returns the length of the initial substring of a string that is made up of only those

characters contained in another string.

The string function strcspn returns the length of the initial substring of a string that is made up of only those

characters not contained in another string.

HEADER

string. h

FUNCTION PROTOTYPE

size_t strspn (const char *s1, const char *s2);

size_t strcspn (const char *s1, const char *2);

Function Arguments Return Value

strspn s1... Pointer to string to be

searched

s2 ... Pointer to string whose

characters are specified for

Length of substring of the

string s1 that is made up of

only those characters

contained in the string s2

strcspn match Length of substring of the

string s1 that is made up of

only those characters not

contained in the s2

EXPLANATION

strspn

• The strspn function returns the length of the substring of the string pointed to by s1 that is made up of only

those characters contained in the string pointed to by s2. In other words, this function returns the index of the

first character in the string s1 that does not match any of the characters in the string s2.

• The null terminator of s2 is not regarded as part of s2.

strcspn

• The strcspn function returns the length of the substring of the string pointed to by s1 that is made up of only

those characters not contained in the string pointed to by s2. In other words, this function returns the index of

the first character in the string s1 that matches any of the characters in the string s2.

• The null terminator of s2 is not regarded as part of s2.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 225

6-9 strpbrk Character String/Memory Functions

FUNCTION

The string function strpbrk returns a pointer to the first character in a string to be searched that matches any

character in a specified string.

HEADER

string. h

FUNCTION PROTOTYPE

char *strpbrk (const char *s1, const char *s2);

Function Arguments Return Value

strpbrk s1... Pointer to string to be

searched

s2 ... Pointer to string whose

characters are specified for

match

• Pointer to the first character

in the string s1 that

matches any character in

the string s2 if any match is

found

• Null pointer if no match is

found

EXPLANATION

• The strpbrk function returns a pointer to the first character in the string pointed to by s1 that matches any

character in the string pointed to by s2.

• If none of the characters in the string s2 is found in the string s1, the function returns a null pointer.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM226

6-10 strstr Character String/Memory Functions

FUNCTION

The string function strstr returns a pointer to the first occurrence in the string to be searched of a specified

string.

HEADER

string. h

FUNCTION PROTOTYPE

char *strstr (const char *s1, const char *s2);

Function Arguments Return Value

strstr s1... Pointer to string to be

searched

s2 ... Pointer to specified string

• Pointer to the first

appearance in the string s1

of the string s2 if s2 is

found in s1

• Null pointer if s2 is not

found in s1

• Value of s1 if s2 is a null

string

EXPLANATION

• The strstr function returns a pointer to the first appearance in the string pointed to by s1 of the string pointed

to by s2 (except the null terminator of s2).

• If the string s2 is not found in the string s1, the function returns a null pointer.

• If the string s2 is a null string, the function returns the value of s1.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 227

6-11 strtok Character String/Memory Functions

FUNCTION

The string function strtok returns a pointer to a token taken from a string (by decomposing it into a string

consisting of characters other than delimiters).

HEADER

string. h

FUNCTION PROTOTYPE

char *strtok (char *s1, const char *s2);

Function Arguments Return Value

strtok s1... Pointer to string from

which tokens are to be

obtained or null pointer

s2 ... Pointer to string

containing delimiters of token

• Pointer to the first character

of a token if it is found

• Null pointer if there is no

token to return

EXPLANATION

• A token is a string consisting of characters other than delimiters in the string to be specified.

• If s1 is a null pointer, the string pointed to by the saved pointer in the previous strtok call will be decomposed.

However, if the saved pointer is a null pointer, the function returns a null pointer without doing anything.

• If s1 is not a null pointer, the string pointed to by s1 will be decomposed.

• The strtok function searches the string pointed to by s1 for any character not contained in the string pointed

to by s2. If no character is found, the function changes the saved pointer to a null pointer and returns it. If

any character is found, the character becomes the first character of a token.

• If the first character of a token is found, the function searches for any characters contained in the string s2

after the first character of the token. If none of the characters is found, the function changes the saved pointer

to a null pointer. If any of the characters is found, the character is overwritten by a null character and a

pointer to the next character becomes a pointer to be saved.

• The function returns a pointer to the first character of the token.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM228

6-12 memset Character String/Memory Functions

FUNCTION

The memory function memset initializes a specified number of bytes in an object in memory with a specified

character.

HEADER

string. h

FUNCTION PROTOTYPE

void *memset (void *s, int c, size_t n);

Function Arguments Return Value

memset s ... Pointer to object in

memory to be initialized

c ... Character whose value is

to be assigned to each byte

n ... Number of bytes to be

initialized

Value of s

EXPLANATION

The memset function first converts the character specified by c to unsigned char and then assigns the value of

this character to the n number of bytes from the beginning of the object pointed to by s.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 229

6-13 strerror Character String/Memory Functions

FUNCTION

The strerror function returns a pointer to the location which stores a string describing the error message

associated with a given error number.

HEADER

string. h

FUNCTION PROTOTYPE

char *strerror (int errnum);

Function Arguments Return Value

strerror errnum ... Error number • Pointer to string describing

error message if message

associated with error

number exists

• Null pointer if no message

associated with error

number exists

EXPLANATION

• The strerror function returns a pointer to one of the following strings associated with the value of errnum

(error number):

0 “Error 0”

1 (EDOM) “Argument too large”

2 (ERANGE)....... “Result too large”

3 (ENOMEM)...... “Not enough memory”

Otherwise, the function returns a null pointer.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM230

6-14 strlen Character String/Memory Functions

FUNCTION

The string function strlen returns the length of a character string.

HEADER

string. h

FUNCTION PROTOTYPE

size_t strlen (const char *s);

Function Arguments Return Value

strlen s... Pointer to character string Length of string s

EXPLANATION

The strlen function returns the length of the null terminated string pointed to by s.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 231

6-15 strcoll Character String/Memory Functions

FUNCTION

strcoll compares two character strings based on the information specific to the locale.

HEADER

string.h

FUNCTION PROTOTYPE

int strcoll (const char *s1, const char *s2) ;

Function Arguments Return Value

strcoll s1 ... Pointer to comparison

character string

s2 ... Pointer to comparison

character string

When character strings s1 and

s2 are equal ... 0

When character strings s1 and

s2 are different

... The difference between the

values whose first different

characters are converted to int

(character of s1 – character of

s2)

EXPLANATION

• This compiler does not support operations specific to a cultural sphere. The operations are the same as that

of strcmp.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM232

6-16 strxfrm Character String/Memory Functions

FUNCTION

strxfrm converts a character string based on the information specific to the locale.

HEADER

string.h

FUNCTION

size_t strxfrm (char *s1, const char *s2, size_t n);

Function Arguments Return Value

strxfrm s1 ... Pointer to a compared

character string

s2 ... Pointer to a compared

character string

n ... Maximum number of

characters to s1

Returns the length of the

character string of the result of

the conversion (does not

include a character string to

indicate the end)

If the returned value is n or

more, the contents of the

array indicated by s1 is

undefined.

EXPLANATION

• This compiler does not support operations specific to a cultural sphere. The operations are the same as

those of the following functions.

strncpy (s1, s2, c) ;

return (strlen (s2)) ;

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 233

7-1 acos Mathematical Functions

FUNCTION

acos finds acos.

HEADER

math.h

FUNCTION PROTOTYPE

double acos (double x);

Function Arguments Return Value

acos x ... Numeric value to perform

operation

When –1 ≤ x ≤ 1 ... acos of x

When x < –1, 1 < x, x = NaN

... NaN

EXPLANATION

• Calculates acos of X (range between 0 and p).

• When X is non-numeric, NaN is returned.

• In the case of the definition area error of x < –1, 1 < x, NaN is returned and EDOM is set.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM234

7-2 asin Mathematical Functions

FUNCTION

asin finds asin.

HEADER

math.h

FUNCTION PROTOTYPE

double asin (double x);

Function Arguments Return Value

asin x ... Numeric value to perform

operation

When –1 ≤ x ≤ 1 ... asin of x

When x ≤ –1, 1 ≤ x, x = NaN

... NaN

When x = –0 ... –0

When underflow occurs ...

non-normalized number

EXPLANATION

• Calculates asin (range between –π/2 and +π/2) of x.

• In the case of area error of x < –1, 1 < x, NaN is returned and EDOM is set to errno.

• When x is non-numeric, NaN is returned.

• When x is –0, –0 is returned.

• If an underflow occurs as a result of conversion, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 235

7-3 atan Mathematical Functions

FUNCTION

atan finds atan.

HEADER

math.h

FUNCTION PROTOTYPE

double atan (double x);

Function Arguments Return Value

atan x ... numeric value to perform

operation

Normal ... atan of x

When x = NaN ... NaN

When x = –0 ... –0

EXPLANATION

• Calculates atan (range between –π/2 and +π/2) of x.

• When x is non-numeric, NaN is returned.

• When x is –0, –0 is returned.

• If an underflow occurs as a result of conversion, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM236

7-4 atan2 Mathematical Functions

FUNCTION

atan2 finds atan of y/x.

HEADER

math.h

FUNCTION PROTOTYPE

double atan2 (double y, double x);

Function Arguments Return Value

atan2 x ... Numeric value to perform

operation

y ... Numeric value to perform

operation

Normal ... atan of y/x

When both x and y are 0 or

y/x is the value that cannot be

expressed, or either x or y is

NaN and both x and y are ± ∞
... NaN

Non-normalized number ...

When underflow occurs

EXPLANATION

• atan (range between –π and +π) of y/x is calculated. When both x and y are 0 or y/x is the value that cannot

be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.

• If either x or y is non-numeric, NaN is returned.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 237

7-5 cos Mathematical Functions

FUNCTION

cos finds cos.

HEADER

math.h

FUNCTION PROTOTYPE

double cos (double x);

Function Arguments Return Value

cos x ... Numeric value to perform

operation

Normal ... cos of x

When x = NaN, x = ±∞ ... NaN

EXPLANATION

• Calculates cos of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM238

7-6 sin Mathematical Functions

FUNCTION

sin finds sin

HEADER

math.h

FUNCTION PROTOTYPE

double sin (double x);

Function Arguments Return Value

sin x ... Numeric value to perform

operation

Normal ... sin of x

When x = NaN, x = ±∞ ... NaN

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates sin of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 239

7-7 tan Mathematical Functions

FUNCTION

tan finds tan.

HEADER

math.h

FUNCTION PROTOTYPE

double tan (double x);

Function Arguments Return Value

tan x ... Numeric value to perform

operation

Normal ... tan of x

When x = NaN, x = ±∞ ... NaN

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates tan of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM240

7-8 cosh Mathematical Functions

FUNCTION

cosh finds cosh.

HEADER

math.h

FUNCTION PROTOTYPE

double cosh (double x) ;

Function Arguments Return Value

cosh x ... Numeric value to perform

operation

Normal ... cosh of x

When overflow occurs, x =

NaN, x = ±∞ ... HUGE_VAL

(with positive sign)

x = NaN ... NaN

EXPLANATION

• Calculates cosh of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, a positive infinite value is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned, and ERANGE is

set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 241

7-9 sinh Mathematical Functions

FUNCTION

sinh finds sinh.

HEADER

math.h

FUNCTION PROTOTYPE

double sinh (double x);

Function Arguments Return Value

sinh x ... Numeric value to perform

operation

Normal ... sinh of x

When x = NaN ... NaN

When x = ±∞ ... ±∞
When overflow occurs ...

HUGE_VAL (with the sign of

the overflowed value)

When underflow occurs ... ±0

EXPLANATION

• Calculates sinh of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±∞ is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with the sign of the overflowed value is

returned, and ERANGE is set to errno.

• If an underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM242

7-10 tanh Mathematical Functions

FUNCTION

tanh finds tanh.

HEADER

math.h

FUNCTION PROTOTYPE

double tanh (double x);

Function Arguments Return Value

tanh x ... Numeric value to perform

operation

Normal ... tanh of x

When x = NaN ... NaN

When x = ±∞ ... ±1

When underflow occurs ... ±0

EXPLANATION

• Calculates tanh of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±1 is returned.

• If an underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 243

7-11 exp Mathematical

FUNCTION

exp finds exponent function.

HEADER

math.h

FUNCTION PROTOTYPE

double exp (double x);

Function Arguments Return Value

exp x ... Numeric value to perform

operation

Normal ... Exponent function of

x

When x = NaN ... NaN

When x = ±∞ ... ±∞
When overflow occurs ...

HUGE_VQAL (with positive

sign)

When underflow occurs ...

Non-normalized number

When annihilation of valid

digits occurs due to underflow

... +0

EXPLANATION

• Calculates the exponent function of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±∞ is returned.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If annihilation of valid digits due to underflow occurs as a result of the operation, +0 is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is

set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM244

7-12 frexp Mathematical Functions

FUNCTION

frexp finds the mantissa and exponent part.

HEADER

math.h

FUNCTION PROTOTYPE

double frexp (double x, int *exp) ;

Function Arguments Return Value

frexp x ... Numeric value to perform

operation

exp ... Pointer to store

exponent part

Normal ... Mantissa of x

When x = NaN, x = ±∞ ... NaN

When x = ±0 ... ±0

EXPLANATION

• Divides a floating-point number x into mantissa m and exponent n such as x = m*2^n and returns mantissa m.

• Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and

less than 1.0.

• If x is non-numeric, NaN is returned and the value of *exp is 0.

• If x is infinite, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

• If x is ±0, ±0 is returned and the value of *exp is 0.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 245

7-13 ldexp Mathematical Functions

FUNCTION

ldexp finds x*2^exp.

HEADER

math.h

FUNCTION PROTOTYPE

double ldexp (double x, int exp);

Function Arguments Return Value

exp x ... Numeric value to perform

operation

exp ... Exponentiation

Normal ... x*2 ^ exp

When x = NaN ... NaN

When x = ±∞ ... ±∞
When x = ±0 ... ±0

When overflow occurs ...

HUGE_VAL (with the sign of

the overflowed value)

When underflow occurs ...

Non-normalized number

When annihilation of valid

digits occurs due to underflow

... ±0

EXPLANATION

• Calculates x*2^exp

• If x is non-numeric, NaN is returned

• If x is ±∞, ±∞ is returned.

• If x is ±0, ±0 is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with the overflowed value is returned and

ERANGE is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If annihilation of valid digits due to underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM246

7-14 log Mathematical Functions

FUNCTION

log finds the natural logarithm.

HEADER

math.h

FUNCTION PROTOTYPE

double log (double x);

Function Arguments Return Value

log x ... Numeric value to perform

operation

Normal ... Natural logarithm of

x

When x ≤ 0 ... HUGE_VAL

(with negative sign)

When x is non-numeric ... NaN

When x is infinite ... +∞

EXPLANATION

• Finds the natural logarithm of x.

• If x is non-numeric, NaN is returned.

• If x is +∞, +∞ is returned.

• In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, EDOM is set to errno.

• If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 247

7-15 log10 Mathematical Functions

FUNCTION

log10 finds the logarithm with 10 as the base.

HEADER

math.h

FUNCTION PROTOTYPE

double log10 (double x) ;

Function Arguments Return Value

log10 x ... Numeric value to perform

operation

Normal ... Logarithm with 10 of

x as the base

When x ≤ 0 ... HUGE_VAL

(with negative sign)

When x is non-numeric ... NaN

When x is infinite ... +∞

EXPLANATION

• Finds the logarithm with 10 of x as the base.

• If x is non-numeric, NaN is returned.

• If x is +∞, +∞ is returned.

• In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, EDOM is set to errno.

• If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM248

7-16 modf Mathematical Functions

FUNCTION

modf finds the fraction part and integer part.

HEADER

math.h

FUNCTION PROTOTYPE

double modif (double x, double *iptr);

Function Arguments Return Value

modif x ... Numeric value to perform

operation

iptr ... Pointer to integer part

Normal ... Fraction part of x

When x is non-numeric or

infinite ... NaN

When x is ±0 ... ±0

EXPLANATION

• Divides a floating-point number x into a fraction part and integer part

• Returns the fraction part with the same sign as that of x, and stores the integer part in the location indicated

by the pointer iptr.

• If x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

• If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to

errno.

• If x = ±0, ±0 is stored in the location indicated by the pointer iptr.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 249

7-17 pow Mathematical Functions

FUNCTION

pow finds the yth power of x.

HEADER

math.h

FUNCTION PROTOTYPE

double pow (double x, double y);

Function Arguments Return Value

pow x ... Numeric value to perform

operation

y ... Multiplier

Normal ... x^y

Either when x = NaN or y =

NaN,

x = +∞ and y = 0

x < 0 and y≠ integer,

x < 0 and y = ±∞,

x = 0 and y < 0 ... NaN

When underflow occurs ...

Non-normalized number

When overflow occurs ...

HUGE_VAL (with the sign of

overflowed value)

When annihilation of valid

digits occurs due to underflow

... ±0

EXPLANATION

• Calculates x^y.

• If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflown value is returned, and

ERANGE is set to errno.

• When x = NaN or y = NaN, NaN is returned.

• Either when x = +∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = ±∞ or x = 0 and y ≤ 0, NaN is returned and

EDOM is set to errno.

• If an underflow occurs, a non-normalized number is returned.

• If annihilation of valid digits occurs due to underflow, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM250

7-18 sqrt Mathematical Functions

FUNCTION

sqrt finds the square root.

HEADER

math.h

FUNCTION PROTOTYPE

double sqrt (double x);

Function Arguments Return Value

sqrt x ... Numeric value to perform

operation

When x ≥ 0 ... Square root of x

When x = ±0 ... ±0

When x < 0 ... NaN

EXPLANATION

• Calculates the square root of x.

• In the case of an area error of x < 0, 0 is returned and EDOM is set to errno.

• If x is non-numeric, NaN is returned.

• If x is ±0, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 251

7-19 ceil Mathematical Function

FUNCTION

ceil finds the minimum integer no less than x.

HEADER

math.h

FUNCTION PROTOTYPE

double ceil (double x);

Function Arguments Return Value

ceil x ... Numeric value to perform

operation

Normal ... The minimum

integer no less than x

When x is non-numeric or x =

±∞ ... NaN

When x = –0 ... +0

When the minimum integer no

less than x cannot be

expressed ... x

EXPLANATION

• Finds the minimum integer no less than x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the minimum integer no less than x cannot be expressed, x is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM252

7-20 fabs Mathematical Functions

FUNCTION

fabs returns the absolute value of the floating-point number x.

HEADER

math.h

FUNCTION PROTOTYPE

double fabs (double x) ;

Function Arguments Return Value

fabs x ... Numeric value to find the

absolute value

Normal ... Absolute value of x

When x is non-numeric ... NaN

When x = –0 ... +0

EXPLANATION

• Finds the absolute value of x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 253

7-21 floor Mathematical Functions

FUNCTION

floor finds the maximum integer no more than x.

HEADER

math.h

FUNCTION PROTOTYPE

double floor (double x);

Function Arguments Return Value

floor x ... Numeric value to perform

operation

Normal ... The maximum

integer no more than x

When x is non-numeric or x =

±∞ ... NaN

When x = –0 ... +0

When the maximum integer no

more than x cannot be

expressed

EXPLANATION

• Finds the maximum integer no more than x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the maximum integer no more than x cannot be expressed, x is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM254

7-22 fmod Mathematical Functions

FUNCTION

fmod finds the remainder of x/y.

HEADER

math.h

FUNCTION PROTOTYPE

double fmod (double x, double y);

Function Arguments Return Value

fmod x ... Numeric value to perform

operation

y ... Numeric value to perform

operation

Normal ... Remainder of x/y

When x is non-numeric or y is

non-numeric, when y is ±0,

when x is ±∞ ... NaN

When x ≠ ∞ and y = ±∞ ... x

EXPLANATION

• Calculates the remainder of x/y expressed with x – i*y. i is an integer.

• If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than that of y.

• If y is ± 0 or x = ±∞, NaN is returned and EDOM is set to errno.

• If x is non-numeric or y is non-numeric, NaN is returned.

• If y is infinite, x is returned unless x is infinite.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 255

7-23 matherr Mathematical Functions

FUNCTION

matherr performs exception processing of the library that deals with floating-point numbers.

HEADER

math.h

FUNCTION PROTOTYPE

void matherr (struct exception *x) ;

Function Arguments Return Value

matherr struct exception {

 int type;

 char *name;

}

typenumeric value to

indicate

 arithmetic exception

name ... function name

None

EXPLANATION

• When an exception is generated, matherr is automatically called in the standard and runtime libraries that

deal with floating-point numbers.

• When called from the standard library, EDOM and ERANGE are set to errno.

The following shows the relationship between the arithmetic exception type and errno.

Type Arithmetic Exception Value Set to errno

1

2

3

4

5

Underflow

Annihilation

Overflow

Zero division

Inoperable

ERANGE

ERANGE

ERANGE

EDOM

EDOM

Original error processing can be performed by changing or creating matherr.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM256

7-24 acosf Mathematical Functions

FUNCTION

acosf finds acos.

HEADER

math.h

FUNCTION PROTOTYPE

float acosf (float x);

Function Arguments Return Value

acosf x ... Numeric value to perform

operation

When –1 ≤ x ≤ 1 ... acos of x

When x ≤ –1, 1 < x, x = ...

NaN

EXPLANATION

• Calculates acos (range between 0 and π) of x

• If x is non-numeric, NaN is returned.

• In the case of a definition area error of x ≤ –1, 1 ≤ x, NaN is returned and EDOM is set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 257

7-25 asinf Mathematical Functions

FUNCTION

asinf finds asin.

HEADER

math.h

FUNCTION PROTOTYPE

float asinf (float x);

Function Arguments Return Value

asinf x ... Numeric value to perform

operation

When –1 ≤ x ≤ 1 ... asin of x

When x ≤ –1, 1 < x, x = NaN

... NaN

x = –0 ... –0

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates asin (range between –π/2 and +π/2) of x

• If x is non-numeric, NaN is returned.

• In the case of definition area error of x ≤ –1, 1 ≤ x, NaN is returned and EDOM is set to errno.

• If x = –0, –0 is returned.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM258

7-26 atanf Mathematical Functions

FUNCTION

atanf finds atan.

HEADER

math.h

FUNCTION PROTOTYPE

float atanf (float x);

Function Arguments Return Value

atanf x ... Numeric value to perform

operation

Normal ... atan of x

When x = NaN ... NaN

When x = –0 ... –0

EXPLANATION

• Calculates atan (range between –π/2 and +π/2) of x

• If x is non-numeric, NaN is returned.

• If x = –0, –0 is returned.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 259

7-27 atan2f Mathematical Functions

FUNCTION

atan2f finds atan of y/x.

HEADER

math.h

FUNCTION PROTOTYPE

float atan2f (float y, float x);

Function Arguments Return Value

atan2f x ... Numeric value to perform

operation

y ... Numeric value to perform

operation

Normal ... atan of y/x

When both x and y are 0 or a

value whose y/x cannot be

expressed, or either x or y is

NaN, both x and y are ±∞ ...

NaN

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates atan (range between –π and +π) of y/x. When both x and y are 0 or the value whose y/x cannot

be expressed, or when both x and y are infinite, NaN is returned and EDOM is set to errno.

• When either x or y is non-numeric, NaN is returned.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM260

7-28 cosf Mathematical Functions

FUNCTION

cosf finds cos.

HEADER

math.h

FUNCTION PROTOTYPE

float cost (float x);

Function Arguments Return Value

cosf x ... Numeric value to perform

operation

Normal ... cos of x

When x = NaN, x = ±∞ ... NaN

EXPLANATION

• Calculates cos of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 261

7-29 sinf Mathematical Functions

FUNCTION

sinf finds sin.

HEADER

math.h

FUNCTION PROTOTYPE

float sinf (float x);

Function Arguments Return Value

sinf x ... Numeric value to perform

operation

Normal ... sin of x

When x = NaN, x = ±∞ ... NaN

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates sin of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM262

7-30 tanf Mathematical Functions

FUNCTION

tanf finds tan.

HEADER

math.h

FUNCTION PROTOTYPE

float tanf (float x);

Function Arguments Return Value

tanf x ... Numeric value to perform

operation

Normal ... tan of x

When x = NaN, x = ±∞ ... NaN

When underflow occurs ...

Non-normalized number

EXPLANATION

• Calculates tan of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 263

7-31 coshf Mathematical Functions

FUNCTION

coshf finds cosh.

HEADER

math.h

FUNCTION PROTOTYPE

float coshf (float x) ;

Function Arguments Return Value

coshf x ... Numeric value to perform

operation

Normal ... cosh of x

When overflow occurs, x = ±∞
... HUGE_VAL (with a positive

sign)

x = NaN ... NaN

EXPLANATION

• Calculates cosh of x.

• If x is non-numeric, NaN is returned.

• If x is infinite, positive infinite value is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is

set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM264

7-32 sinhf Mathematical Functions

FUNCTION

sinhf finds sinh.

HEADER

math.h

FUNCTION PROTOTYPE

float sinhf (float x);

Function Arguments Return Value

sinhf x ... Numeric value to perform

operation

Normal ... sinh of x

When overflow occurs ...

HUGE_VAL (with a sign of the

overflowed value)

x = NaN ... NaN

When x = ±∞ ... ±∞
When underflow occurs ... ±0

EXPLANATION

• Calculates sinh of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±∞ is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned

and ERANGE is set to errno.

• If an underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 265

7-33 tanhf Mathematical Functions

FUNCTION

tanhf finds tanh.

HEADER

math.h

FUNCTION PROTOTYPE

float tanhf (float x);

Function Arguments Return Value

tanhf x ... Numeric value to perform

operation

Normal ... tanh of x

x = NaN ... NaN

When x = ±∞ ... ±1

When underflow occurs ... ±0

EXPLANATION

• Calculates tanh of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±1 is returned.

• If an underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM266

7-34 expf Mathematical Functions

FUNCTION

expf finds the exponent function.

HEADER

math.h

FUNCTION PROTOTYPE

float expf (float x);

Function Arguments Return Value

expf x ... Numeric value to perform

operation

Normal ... Exponent function of

x

When overflow occurs ...

HUGE_VAL (with positive sign)

x = NaN ... NaN

When x = ±∞ ... ±∞
When underflow occurs ...

Non-normalized number

When annihilation of valid

digits occurs due to underflow

... +0

EXPLANATION

• Calculates exponent function of x.

• If x is non-numeric, NaN is returned.

• If x is ±∞, ±∞ is returned.

• If an overflow occurs as a result of the operation, HUGE_VAL with a positive sign is returned and ERANGE is

set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If annihilation of effective digits occurs due to underflow as a result of the operation, +0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 267

7-35 frexpf Mathematical Functions

FUNCTION

frexpf finds the mantissa and exponent part.

HEADER

math.h

FUNCTION PROTOTYPE

float frexpf (float x, int *exp) ;

Function Arguments Return Value

frexpf x ... Numeric value to perform

operation

exp ... Pointer to store exponent

part

Normal ... Mantissa of x

When x = NaN, x = ±∞ ... NaN

When x = ±0 ... ±0

EXPLANATION

• Divides a floating-point number x into mantissa m and exponent n such as x = m*2^n and returns mantissa

m.

• Exponent n is stored in where the pointer exp indicates. The absolute value of m, however, is 0.5 or more

and less than 1.0.

• If x is non-numeric, NaN is returned and the value of *exp is 0.

• If x is ±∞, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

• If x is ±0, ±0 is returned and the value of *exp is 0.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM268

7-36 ldexpf Mathematical Functions

FUNCTION

ldexpf finds x*2^exp.

HEADER

math.h

FUNCTION PROTOTYPE

float ldexpf (float x, int exp);

Function Arguments Return Value

ldexpf x ... Numeric value to perform

operation

exp ... Exponentiation

Normal ... x*2^exp

When x = NaN ... NaN

When x = ±∞ ... ±∞
When x = ±0 ... ±0

When overflow occurs ...

HUGE=VAL (with the sign of

overflowed value)

When underflow occurs ...

Non-normalized numberV

When annihilation of valid

digits occurs due to underflow

... ±0

EXPLANATION

• Calculates x*2^exp.

• If x is non-numeric, NaN is returned. If x is ±∞, ±∞ is returned. If x is ±0, ±0 is returned.

• If overflow occurs as a result of operation, HUGE_VAL with the sign of overflowed value is returned and

ERANGE is set to errno.

• If an underflow occurs as a result of the operation, a non-normalized number is returned.

• If annihilation of valid digits due to underflow occurs as a result of the operation, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 269

7-37 logf Mathematical Functions

FUNCTION

logf finds the natural logarithm.

HEADER

math.h

FUNCTION PROTOTYPE

float logf (float x);

Function Arguments Return Value

logf x ... Numeric value to perform

operation

Normal ... Natural logarithm of x

When x is non-numeric ... NaN

When x is infinite ... +∞
When x ≤ 0 ... HUGE_VAL

(with negative sign)

EXPLANATION

• Finds natural logarithm of x.

• If x is non-numeric, NaN is returned.

• If x is +∞, +∞ is returned.

• In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.

• If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM270

7-38 log10f Mathematical Functions

FUNCTION

log10f finds the logarithm with 10 as the base.

HEADER

math.h

FUNCTION PROTOTYPE

float log10f (float x);

Function Arguments Return Value

log10f x ... Numeric value to perform

operation

Normal ... Logarithm with 10 of

x as the base

When x is non-numeric ... NaN

When x = +∞ ... +∞
When x ≤ 0 ... HUGE_VAL

(with negative sign)

EXPLANATION

• Finds the logarithm with 10 of x as the base.

• If x is non-numeric, NaN is returned.

• If x is +∞, +∞ is returned.

• In the case of an area error of x < 0, HUGE_VAL with a negative sign is returned, and EDOM is set to errno.

• If x = 0, HUGE_VAL with a negative sign is returned, and ERANGE is set to errno.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 271

7-39 modff Mathematical Functions

FUNCTION

modff finds the fraction part and integer part.

HEADER

math.h

FUNCTION PROTOTYPE

float modff (float x, float *iptr);

Function Arguments Return Value

modff x ... Numeric value to perform

operation

iptr ... Pointer for integer part

Normal ... Fraction part of x

When x is non-numeric or

infinite ... NaN

When x = ±0 ... ±0

EXPLANATION

• Divides a floating-point number x into a fraction part and integer part.

• Returns the fraction part with the same sign as that of x, and stores the integer part in the location indicated

by the pointer iptr.

• If x is non-numeric, NaN is returned and stored in the location indicated by the pointer iptr.

• If x is infinite, NaN is returned and stored in the location indicated by the pointer iptr, and EDOM is set to

errno.

• If x = ±0, ±0 is returned and stored in the location indicated by the pointer iptr.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM272

7-40 powf Mathematical Functions

FUNCTION

powf finds the yth power of x.

HEADER

math.h

FUNCTION PROTOTYPE

float powf (float x, float y);

Function Arguments Return Value

powf x ... Numeric value to perform

operation

y ... Multiplier

Normal ... x^y

Either when =

x = NaN or y = NaN

x = +∞ and y = 0

x < 0 and y≠ integer,

x < 0 and y = ±∞
x = 0 and y≠ 0 ... NaN

When underflow occurs ...

Non-normalized number

When overflow occurs ...

HUGE_VAL (with the sign of

overflowed value)

When annihilation of valid

digits occurs due to underflow

... ±0

EXPLANATION

• Calculates x^y.

• If an overflow occurs as a result of the operation, HUGE_VAL with the sign of overflowed value is returned,

and ERANGE is set to errno.

• When x = NaN or y = NaN, NaN is returned.

• Either when x = +∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = ±∞, or x = 0 and y ≤ 0, NaN is returned and

EDOM is set to errno.

• If an underflow occurs, a non-normalized number is returned.

• If annihilation of valid digits occurs due to underflow, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 273

7-41 sqrtf Mathematical Functions

FUNCTION

sqrtf finds the square root.

HEADER

math.h

FUNCTION PROTOTYPE

float sqrtf (float x);

Function Arguments Return Value

sqrtf x ... Numeric value to perform

operation

When x ≥ 0 ... Square root of x

When x = ±0 ... ±0

When x < 0 ... NaN

EXPLANATION

• Calculates the square root of x.

• In the case of area error of x < 0, 0 is returned and EDOM is set to errno.

• If x is non-numeric, NaN is returned.

• If x is ±0, ±0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM274

7-42 ceilf Mathematical Functions

FUNCTION

ceilf finds the minimum integer no less than x.

HEADER

math.h

FUNCTION PROTOTYPE

float ceilf (float x);

Function Arguments Return Value

ceilf x ... Numeric value to perform

operation

Normal ... The minimum

integer no less than x

When x is non-numeric or x =

±∞ ... NaN

When x = –0 ... +0

When the minimum integer no

less than x cannot be

expressed ... x

EXPLANATION

• Finds the minimum integer no less than x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the minimum integer no less than x cannot be expressed, x is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 275

7-43 fabsf Mathematical Functions

FUNCTION

fabsf returns the absolute value of the floating-point number x.

HEADER

math.h

FUNCTION PROTOTYPE

float fabsf (float x);

Function Arguments Return Value

fabsf x ... Numeric value to find the

absolute value

Normal ... Absolute value of x

When x is non-numeric ... NaN

When x = –0 ... +0

EXPLANATION

• Finds the absolute value of x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM276

7-44 floorf Mathematical Functions

FUNCTION

floorf finds the maximum integer no more than x.

HEADER

math.h

FUNCTION PROTOTYPE

float floorf (float x);

Function Arguments Return Value

floorf x ... Numeric value to perform

operation

Normal ... The maximum

integer no more than x

When x is non-numeric or

infinite ... NaN

When x = –0 ... +0

When the maximum integer no

more than x cannot be

expressed ... x

EXPLANATION

• Finds the maximum integer no more than x.

• If x is non-numeric, NaN is returned.

• If x is –0, +0 is returned.

• If x is infinite, NaN is returned and EDOM is set to errno.

• If the maximum integer no more than x cannot be expressed, x is returned.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 277

7-45 fmodf Mathematical Functions

FUNCTION

fmodf finds the remainder of x/y.

HEADER

math.h

FUNCTION PROTOTYPE

float fmodf (float x, float y);

Function Arguments Return Value

fmodf x ... Numeric value to perform

operation

y ... Numeric value to perform

operation

Normal ... Remainder of x/y

When x is non-numeric or y is

non-numeric

When y is ±0, when x is ±∞ ...

NaN

When x ≠ ∞ and y = ±∞ ... x

EXPLANATION

• Calculates the remainder of x/y expressed with x – i*y. i is an integer.

• If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than y.

• If y is ± 0 or x = ±∞, NaN is returned and EDOM is set to errno.

• If x is non-numeric or y is non-numeric, NaN is returned.

• If y is infinite, x is returned unless x is infinite.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM278

8-1 _ _ assertfail Diagnostic Functions

FUNCTION

_ _ assertfail supports the assert macro.

HEADER

math.h

FUNCTION PROTOTYPE

int _ _assertfail (char*_ _msg, char*_ _cond, char*_ _file, int_ _line);

Function Arguments Return Value

_ _assertfail _ _msg ... Pointer to character

string to indicate output

conversion specification to be

passed to printf function

_ _cond ... Actual argument of

assert macro

_ _file ... Source file name

_ _line ... Source line number

Undefined

EXPLANATION

The _ _ assertfail function receives information from the assert macro (refer to 10.2 Headers (13) assert.h),

calls the printf function, outputs information, and calls the abort function.

The assert macro adds diagnostic functions to a program. When an assert macro is executed, if p is false

(equal to 0), an assert macro passes information related to the specific call that has brought the false value

(actual argument text, source file name, and source line number are included in the information. The other two

are the values of macro_FILE_ _ and _ _LINE_ _, respectively) to the _ _assertfail function.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 279

10.5 Batch Files for Update of Startup Routine and Library Functions

This compiler is provided with batch files for updating a part of the standard library functions and the startup

routine. The batch files in the BAT directory are shown in Table 10-3 below.

Caution The file d4025.78k in the BAT directory is used during batch file activation for updating the

library, not for development. When developing a system, it is necessary to have a device file

(sold separately).

Table 10-3. Batch Files for Updating Library Functions

Batch File Application

mkstup.bat Updates the startup routine (cstart*.asm).

When changing the startup routine, perform assembly using this batch file.

reprom.bat Updates the firmware ROM termination routine (rom.asm).

When changing rom.asm, update the library using this batch file.

repgetc.bat Updates the getchar function.

The default assumption sets P0 of the SFR to input port. When it is necessary to change this setting, change

the defined value of EQU of PORT in getchar.asm and update the library using this batch file.

repputc.bat Updates the putchar function.

The default assumption sets P0 of the SFR to output port. When it is necessary to change this setting, change

the defined value of EQU of PORT in putchar.asm and update the library using this batch file.

repputcs.bat Updates the putchar function to SM78K4-supporting.

When it is necessary to check the output of the putchar function using the SM78K4, update the library using

this batch file.

repselo.bat Saves/restores the reserved area of the compiler (_@KREGxx) as part of the save/restore processing of the

setjmp/longjmp functions (the default assumption is to not save/restore).

Update the library using this batch file when the -QR option is specified.

repselon.bat Does not save/restore the reserved area of the compiler (_@KREGxx) as part of the save/restore processing

of the setjmp/longjmp functions (the default assumption is to not save/restore).

Update the library using this batch file when the -QR option is not specified.

repvect.bat Updates the address value setting processing of the branch table of the interrupt vector table allocated in the

flash area (vect*.asm).

The default assumption sets the top address of the flash area branch table to 4000H. When it is necessary to

change this setting, change the defined value of EQU of ITBLTOP in vect.inc and update the library using this

batch file.

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM280

10.5.1 Using batch files

Use the batch files in the subdirectory BAT. Because these files are the batch files used to activate the assembler

and librarian, an environment in which the assembler package RA78K4 Ver. 1.50 or later operates is necessary.

Before using the batch files, set the directory that contains the RA78K4 execution format file using the

environment variable PATH.

Create a subdirectory (LIB) of the same level as BAT for the batch files and put the post-assembly files in this

subdirectory.

When a C startup routine or library is installed in a subdirectory LIB that is the same level as BAT, these files are

overwritten.

To use the batch files, move the current directory to the subdirectory BAT and execute each batch file. At this

time, the following parameters are necessary.

Product type = chiptype (classification of target chip)

4026 ··· µPD784026, etc.

The following is an illustration of how to use each batch file.

The batch file for:

(1) Startup routine

• For PC-9800 series, IBM PC/ATTM and compatibles

mkstup chiptype

Example mkstup 4026

• For HP9000 series 700™, SPARCstation™ Family

/bin/sh mkstup.sh chiptype

Example /bin/sh mkstup.sh 4026

(2) Firmware ROM routine update

• For PC-9800 series, IBM PC/AT and compatibles

reprom chiptype

Example reprom 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh reprom.sh chiptype

Example /bin/sh reprom.sh 4026

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM 281

(3) getchar function update

• For PC-9800 series, IBM PC/AT and compatibles

repgetc chiptype

Example repgetc 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repgetc.sh chiptype

Example /bin/sh repgetc.sh 4026

(4) putchar function update

• For PC-9800 series, IBM PC/AT and compatibles

repputc chiptype

Example repputc 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repputc.sh chiptype

Example /bin/sh repputc.sh 4026

(5) putchar function (SM78K4-supporting) update

• For PC-9800 series, IBM PC/AT and compatibles

repputcs chiptype

Example repputcs 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repputcs.sh chiptype

Example /bin/sh repputcs.sh 4026

CHAPTER 10 LIBRARY FUNCTIONS

User’s Manual U15556EJ1V0UM282

(6) setjmp/longjmp function update (with restore/save processing)

• For PC-9800 series, IBM PC/AT and compatibles

repselo chiptype

Example repselo 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repselo.sh chiptype

Example /bin/sh repselo.sh 4026

(7) setjmp/longjmp function update (without restore/save processing)

• For PC-9800 series, IBM PC/AT and compatibles

repselon chiptype

Example repselon 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repselon.sh chiptype

Example /bin/sh repselon.sh 4026

(8) Interrupt vector table update

• For PC-9800 series, IBM PC/AT and compatibles

repvect chiptype

Example repvect 4026

• For HP9000 series 700, SPARCstation Family

/bin/sh repvect.sh chiptype

Example /bin/sh repvect.sh 4026

User’s Manual U15556EJ1V0UM 283

CHAPTER 11 EXTENDED FUNCTIONS

This chapter describes the extended functions unique to this C compiler and not specified in the ANSI (American

National Standards Institute) Standard for C.

The extended functions of this C compiler are used to generate codes for effective utilization of the target devices

in the 78K/IV Series. Not all of these extended functions are always effective. Therefore, it is recommended to use

only the effective ones according to the purpose of use. For the effective use of the extended functions, refer to

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER along with this chapter.

C source programs created by using the extended functions of the C compiler utilize microcontroller-dependent

functions. As regards portability to other microcontrollers, they are compatible at the C language level. For this

reason, C source programs developed by using these extended functions are portable to other microcontrollers with

easy-to-make modifications.

Remark In the explanation of this chapter, “RTOS” indicates the 78K/IV Series real-time OS.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM284

11.1 Macro Names

This C compiler has two types of macro names: those indicating the series name for target devices and those

indicating device name (processor type). These macro names are specified according to the option for compilation to

output object code for a specific target device or according to the processor type in the C source. In the example

below, _ _K4_ _ and _ _4026_ are specified.

For details of these macro names, see 9.8 Compiler-Defined Macro Names.

[Example]

Option for compilation

>CC78K4 -C4026 prime.c …

Specification of device type:

#pragma pc (4026)

11.2 Keywords

The following tokens are added to this C compiler as keywords to realize the extended functions. Similarly to

ANSI-C keywords, these tokens cannot be used as labels or as variable names. All the keywords must be described

in lowercase letters. A keyword containing an uppercase letter is not interpreted as a keyword by the C compiler.

This following shows the list of keywords added to this compiler. Of these keywords, ones not starting with “_ _”

can be disabled by specifying the option (-ZA) that enables only ANSI-C language specifications (for the ANSI-C

keywords, refer to 2.1 Keywords).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 285

Table 11-1. List of Added Keywords

Keyword Use

____ ____callt callt callt/____ ____callt functions

____ ____callf callf callf/____ ____callf functions

____ ____sreg sreg sreg/____ ____sreg variables

____ ____sreg1 ____ ____sreg1 variables

noauto noauto functions

____ ____leaf norec norec/____ ____leaf functions

____ ____boolean boolean boolean type/_ ____boolean type

bit bit type variables

____ ____boolean1 ____ ____boolean1 type variables

____ ____interrupt Hardware interrupt

____ ____interrupt____brk Software interrupt

____ ____asm ASM statements

____ ____rtos____interrupt Handler to allocate for RTOS

____ ____pascal Pascal function

____ ____flash Firmware ROM function

____ ____directmap Absolute address allocation specification

(1) Functions

The keywords callt, _ _callt, callf _ _callf, noauto, norec, _ _leaf, _ _interrupt, _ _interrupt_brk,

_ _rtos_interrupt, and _ _flash are attribute qualifiers.

These keywords must be described before any function declaration. The format of each attribute qualifier is

shown below.

Attribute-qualifier ordinary-declarator function-name (parameter type list/identifier list)

_ _callt int func (int);

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM286

Attribute qualifier specifications are limited to those listed below. (The noauto and norec/_ _leaf qualifiers

cannot be specified at the same time.) callt and _ _callt, callf and _ _callf, norec and _ _leaf are regarded as

the same specifications. However, qualifiers that include ‘_ _’ are enabled even when the -ZA option is

specified.

• callt

• callf

• noauto

• norec

• callt noauto

• callt norec

• noauto callt

• norec callt

• callf noauto

• callf norec

• noauto callf

• norec callf

• _ _interrupt

• _ _interrupt_brk

• _ _rtos_interrupt

• _ _pascal

• _ _pascal noauto

• _ _pascal callt

• _ _pascal callf

• noauto_ _pascal

• callt_ _pascal

• callf_ _pascal

• callt noauto_ _pascal

• callf noauto_ _pascal

• _ _flash

(2) Variables

• The keyword sreg, _ _sreg, or _ _sreg1 is specified in a similar manner to the register storage class

specifier of C. (For details, see 11.5 (3) How to use the saddr area.)

• The keyword bit, boolean, _ _boolean, or _ _boolean1 is specified in a similar manner to the char or int

type specifier of C.

However, these types can be specified only for the variables defined outside a function (external variables).

• The same regulations apply to the _ _directmap specification as to the type qualifiers in C language (refer to

11.5 (42) Absolute address allocation specification for details).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 287

11.3 Memory

The memory model is determined by the memory space of the target device.

(1) Memory model

A maximum of 1 MB of program memory space and a maximum of 16 MB of data memory space are available

(for the memory map, refer to the user’s manual of each target device).

This compiler has the three types of memory models: small, medium, and large. Objects are changed and output

by specifying each memory model option. For details of each model, refer to Table 11-2.

Table 11-2. Memory Model

Memory Model (Option) Explanation

Small model (-MS) A model with a combined code/data block capacity of 64

KB.

Medium model (-MM) A model with a capacity of up to 1 MB for the code block

and 64 KB for the data block

Large model (-ML) A model with a combined code/data block capacity of 16

MB, including up to 1 MB for the code block and 16 MB for

the data block.

(2) Register bank

• The register bank is set to ‘RB0’ at startup (set in the startup routine of this compiler). Register bank 0 is

made always used (unless the register bank is changed) by this setting.

• The specified register bank is set at the start of the interrupt function that has specified the change of the

register bank.

(3) Location function

• With the large model or medium model, the location function (-CS option) allows changing the location of the

internal RAM (including saddr area and sfr area) between 64 KB (LOCATION 00H) and 1024 KB (LOCATION

0FH) (with the small model, the location of the internal RAM is fixed to 64 KB). For the -CS option, refer to the

CC78K4 C Compiler Operation User’s Manual (U15557E).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM288

(4) Memory space

This C compiler uses memory space as shown in Table 11-3 below.

Table 11-3. Utilization of Memory Space

Address Use Size (Bytes)

00 40 to 7FH CALLT table 64

0800 to 0FFFH CALLF entry 2048

(F)FD 20 to DFH sreg variables, boolean type variables 192

(F)FD 20 to FFH Arguments of norec functionsNote 1 8

Automatic variables of norec functionsNote 1 8

Register variablesNote 1 16

(F)FE 00 to 7FH sreg1 variables, boolean1 type variables 128

(F)FE 80 to EFH RB7 to RB1Note 2 (work registers) 112

F0 to FFH RB0 (work registers) 16

(F)FF 00 to FFH sfr variables 256

Notes 1. The restore to this area is not processed within the interrupt function when the -qr option is not

specified (default). This reduces the preprocessing/postprocessing of interrupt functions and allows

users to use the areas of Note 1 as sreg variable or boolean type variable areas when using a real-

time OS, etc. For the save/restore processing code output, refer to 11.5 (10) Interrupt function. This

area, as shown in APPENDIX A LIST OF LABELS FOR saddr AREA, defines labels and secures

areas in a library.

Standard library functions setjmp, longjmp refer to a part of this area _@KREG00.

2. Used when a register bank is specified.

Consecutive 32-byte area in

the interval above

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 289

11.4 #pragma directives

The #pragma directives are preprocessing directives supported by ANSI. A #pragma directive, depending on the

character string to follow #pragma, instructs the compiler to translate using the method determined by the compiler.

If the compiler does not support #pragma directives, the #pragma directive is ignored and compilation is continued.

If keywords are added by a directive, an error is output if the C source includes the keywords. In order to avoid this,

the keywords in the C source should either be deleted or sorted by the #ifdef directive.

This C compiler supports the following #pragma directives to realize the extended functions.

The keywords specified after #pragma can be described either in uppercase or lowercase letters.

For the extended functions using #pragma directives, refer to 11.5 How to Use Extended Functions.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM290

Table 11-4. List of #pragma Directives

#pragma Directive Applications

#pragma sfr Describes SFR name in C → 11.5 (4) How to use the sfr area

#pragma asm Inserts ASM statement in C source → 11.5 (9) ASM statements

#pragma vect

#pragma interrupt

Describes interrupt processing in C → 11.5 (10) Interrupt functions

#pragma di

#pragma ei

Describes DI/EI instructions in C → 11.5 (12) Interrupt functions

#pragma halt

#pragma stop

#pragma nop

#pragma brk

Describes CPU control instructions in C → 11.5 (13) CPU control instruction

#pragma access Uses absolute address access functions → 11.5 (17) Absolute address access function

#pragma section Changes compiler output section name and specifies section location

→ 11.5 (19) Changing compiler output section name

#pragma name Changes module name → 11.5 (21) Module name changing function

#pragma rot Uses rotate function → 11.5 (22) Rotate function

#pragma mul Uses multiplication function → 11.5 (23) Multiplication function

#pragma div Uses division function → 11.5 (24) Division function

#pragma opc Uses data insertion function → 11.5 (25) Data insertion function

#pragma rtos_interrupt Uses interrupt handler for real-time OS (RX78K/IV)

→ 11.5 (26) Interrupt handler for real-time OS (RTOS)

#pragma rtos_task Uses task function for real-time OS (RX78K/IV)

→ 11.5 (28) Task function for real-time OS (RTOS)

#pragma ext_table Specifies the first address of the flash area branch table

 → 11.5 (34) Flash area branch table

#pragma ext_func Calls a function to the flash area from the boot area

→ 11.5 (35) Function call function from the boot area to the flash area.

#pragma inline Expands the standard library functions memcpy and memset inline

→ 11.5 (38) Memory manipulation function

#pragma addnaccess Uses 3-byte address reference/generation function

→ 11.5 (41) Three-byte address reference/generation function

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 291

11.5 How to Use Extended Functions

This section describes the extended functions in the following format.

FUNCTION:

Outlines the function that can be implemented with the extended function.

EFFECT:

Explains the effect brought about by the extended function.

USAGE:

Explains how to use the extended function.

EXAMPLE:

Gives an application example of the extended function.

RESTRICTIONS:

Explains restrictions if any on the use of the extended function.

EXPLANATION:

Explains the above application example.

COMPATIBILITY:

Explains the compatibility of a C source program developed by another C compiler when it is to be compiled with this

C compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM292

(1) callt functions

callt Functions callt/____ ____callt

FUNCTION

• The callt instruction stores the address of a function to be called in an area [40H to 7FH] called the callt table,

so that the function can be called with a shorter code than the one used to call the function directly.

• To call a function declared by the callt (or _ _ callt) (called the callt function), a name with ? prefixed to the

function name is used. To call the function, the callt instruction is used.

• The function to be called is not different from the ordinary function.

EFFECT

The object code can be shortened.

USAGE

Add the callt/_ _ callt attribute to the function to be called as follows (described at the beginning).

callt extern type-name function-name

_ _callt extern type-name function-name

EXAMPLE

_ _callt void func1 (void) ;

_ _callt void func1 (void) {

:

/* function body */

:

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 293

callt Functions callt/____ ____callt

RESTRICTIONS

• The address of each function declared with callt/_ _ callt will be allocated to the callt table at the time of

linking object modules. For this reason, when using the callt table in an assembler source module, the

routine to be created must be made “relocatable” using symbols.

• A check on the number of callt functions is made at linking time.

• When the -ZA option is specified, _ _callt is enabled and callt is disabled.

• When the -ZF option is specified, callt functions cannot be defined. If a callt function is defined, an error will

occur.

• The area of the callt table is 40F to 70F.

• When the callt table is used exceeding the number of callt attribute functions permitted, a compilation error

will occur.

• The callt table is used by specifying the -QL option. For that reason, the number of callt attributes permitted

per load module and the total in the linking modules is as shown in Table 11-5.

Table 11-5. Number of callt Attribute Functions That Can Be Used When −−−−QL Option Is Specified

Number of Functions That Can Be Used
Memory Model

-QL1 -QL2 -QL3 -QL4

Small model 32 32 15 10

Medium model 32 25 8 3

Large model 32 23 6 1

• Cases in which the -QL option is not used and the defaults are as shown below.

Table 11-6. Restriction on callt Function Usage

callt Function Restriction Value

Number per load module 32 Max.

Total number in linked module 32 Max.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM294

EXAMPLE

(C source)

============ ca1.c ============ ============ ca2.c ============

_ _callt extern int tsub ();

void main () _ _callt int tsub ()

{ {

 int ret_val; int val;

 ret_val = tsub(); return val;

} }

(Output object of assembler)

ca1 module

 EXTRN ?tsub ;Declaration

 callt [?tsub] ;Call

ca2 module

 PUBLIC _tsub ;Declaration

 PUBLIC ?tsub ;

@@CALT CSEG CALLT0 ;Allocation to segment

?tsub: DW _tsub

@@CODE CSEG

_tsub: ;Function definition

:

Function body

:

EXPLANATION

The callt attribute is given to the function tsub() so that it can be stored in the callt table.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword callt/_ _ callt is not used.

• When changing functions to callt functions, use the method above.

From this C compiler to another C compiler

• #define must be used. For details, see 11.6 Modifications of C Source.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 295

(2) Register variables

Register Variables register

FUNCTION

• Allocates the declared variables (including arguments of function) to the register (RP3, VP) and saddr2 area

(_@KREG00 to _@KREG15). Saves and restores registers or saddr2 area during the preprocessing/

postprocessing of the module that declared a register.

• When the -ZO option is specified, register variables are allocated in the order of declaration. When the -ZO

option is not specified (default), on the other hand, the allocation is performed based on the number of

references. Therefore, it is undefined to which register or saddr2 area the register variable is allocated. For

details of the allocation of register variables, refer to 11.7 Function Call Interface.

• Register variables are allocated to different areas depending on the compilation condition as shown below (for

each option, refer to the CC78K4 C Compiler Operation User’s Manual (U15557E)).

1. Register variables are allocated to saddr2 area only when the -QR option is specified.

2 When the -QF option is specified and the -ZO option is not specified, register variables are also allocated

also to register UP.

3. When neither the -ZO option nor the -QF option is specified, all the register arguments and register

variables are allocated to registers and saddr2 area. When there is no argument or automatic variable

allocated to the stack area (that is, a stack frame is not generated), register variables are also allocated to

register UP (when the -ML option is specified and the -QR option is not specified, however, register

variables are allocated only if the total size allocated to the register is 6 bytes or less assuming the pointer

is 3 bytes).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM296

Register Variables register

These are summarized in Table 11-7.

Table 11-7. Registers to Allocate Register Variables

Without –ZO

Option Specification Registers to Allocate

Without -QR RP3, VP

With –QR RP3, VP, saddr2 area (_@KREG00 to _@KREG15)

With -QF *1 RP3, VP, UP

Without -QF

and a stack frame not generated *2

RP3, VP, UP

Above *1 or *2 and with -QR RP3, VP, UP, saddr2 area (_@KREG00 to _@KREG15)

With –ZO

Option Specification Registers to Allocate

Without -QR RP3, VP

With -QR RP3, VP, saddr2 area (_@KREG00 to _@KREG15)

With -QF *1 RP3, VP

Without -QF

and a stack frame not generated *2

RP3, VP

Above *1 or *2 and with -QR RP3, VP, saddr2 area (_@KREG00 to _@KREG15)

EFFECT

• Instructions to the variables allocated to the register or saddr2 area are generally shorter in code length than

those to memory. This helps shorten object code and also improves program execution speed.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 297

Register Variables register

USAGE

Declare a variable with the register storage class specifier as follows.

Register type-name variable-name

EXAMPLE

void main (void) {

 register unsigned char c;

 :

}

RESTRICTIONS

• If register variables are not used so frequently, object code may increase (depending on the size and contents

of the source).

• Register variable declarations may be used for char/int/short/long/float/double/long double and pointer

data types.

• With the medium model, function pointers are allocated to saddr2 area for register variables. Function

pointers cannot be allocated to registers.

• A char type register variable uses only half the space required for the register variable of any other type. A

long/float/double/long double type variable uses twice the space.

• The function pointer type of the medium model and the pointer of the large model use one and a half the

amount of space.

• All the types have byte boundaries.

• If the register variables exceed the ‘usable number’ shown in Table 11-8, they are handled the same as

automatic variables without a register storage class specifier and allocated to ordinary memory space.

• Up to 20 bytes or 22 bytes can be allocated as register variables (6 bytes when 16 bytes of saddr2 area and

4 bytes of registers or UP are used).

Table 11-8. Restrictions on Register Variables Usage

Data Type Usable Number (Per Function)

int/short 10 variables max.

Function pointer of medium model 5 variables max.

Pointer of large model 6 variables max.

long/float/double/long double 5 variables max.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM298

Register Variables register

EXAMPLE 1

1. Example of register variable allocation to register

(With the large model, and when the optimization option is the default)

(C source 1)

void main () {

register int i, j;

j = 0;

j = 1;

I + = j;

}

(Output object of compiler)

@@CODE CSEG

_main:

push uup ;Saves register contents at the beginning of the function.

Push rp3 ;

subw rp3, rp3 ;Assigns 0 to i

movw up, #01H ;Assigns 1 to j

addw rp3, up ;Assigns i to the result of i + j

pop rp3 ;Restores register contents at the end of the function.

Pop uup ;

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 299

Register Variables register

EXAMPLE 2

2. Example of register variable allocation to register and saddr2 area

(With the large model, and when the optimization option -QR is specified)

(C source 2)

void main () {

register unsigned int a, b, c, d;

d = a - b;

d = b - c;

}

(Output object of compiler)

EXTRN SADDR2(_@KREG00) ; Performs reference declaration of saddr2 area to be used.

PUBLIC _main

@@CODE CSEG

_main;

push uup ; Saves register contents at the beginning of the function.

push rp3 ;

push vvp ;

movw ax, _@KREG00 ; Saves contents of saddr2 are at the beginning of the function.

push ax

movw ax, rp3 ;

subw ax, up ; a − b

movw vp, ax ; Assigns the result of a − b to d

movw ax, up

subw ax, _@KREG00 ; b − c

movw vp, ax ; Assigns the result of b − c to d

pop ax

movw _@KREG00, ax ; Restores contents of saddr2 area at the end of the function.

pop vvp

pop rp3

pop uup ; Restores register contents at the end of the function.

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM300

��	��������	����� ���	����

EXPLANATION

• To use register variables, you only need to declare them with the register storage class specifier.

• Label _@KREG00, etc. includes the modules declared with PUBLIC in the library attached to this C compiler.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the other C compiler supports register declarations.

• When changing to register variables, add the register declarations for the variables to the program.

From this C compiler to another C compiler

• Modification is not required if the other compiler supports register declarations.

• How many variable registers can be used and to which area they will be allocated depends on the

implementation of the other C compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 301

(3) How to use the saddr area

Usage of saddr Area sreg/_ _sreg

(1) Usage with sreg declaration

FUNCTION

• The external variables and in-function static variables (sreg variables) declared with the keyword sreg or

_ _sreg are automatically allocated to saddr2 [XFD20H to XFDFFH] area with relocatability (X: 0 or F by

specifying location). When those variables exceed the area shown above, a compilation error occurs.

• The sreg variables are treated in the same manner as the ordinary variables in the C source.

• Each bit of sreg variables of char, short, int, and long type becomes a boolean type variable automatically.

• sreg variables declared without an initial value take 0 as the initial value.

• The area of sreg variables declared in the assembler source that can be referenced is the saddr2 area

[XFD20H to XFDFFH]. When the -QR option is specified, however, the compiler may use up to 32 MB of

saddr2 area, so care must be taken (refer to Table 11-3 Utilization of Memory Space).

EFFECT

• Instructions to the saddr2 area are generally shorter in code length than those to memory. This helps shorten

object code and also improves program execution speed.

USAGE

• Declare variables with the keywords sreg and ____ ____sreg inside a module and a function that defines the

variables. Only a variable with a static storage class specifier can become a sreg variable inside a function.

sreg type-name variable-name / sreg static type-name variable-name

_ _sreg type-name variable-name / _ _sreg static type-name variable-name

• Declare the following variables inside a module that refers to sreg external variables. They can be described

inside a function as well.

extern sreg type-name variable-name / extern _ _sreg type-name variable-name

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM302

Usage of saddr Area sreg/_ _sreg

RESTRICTIONS

If const type is specified, or if sreg/_ _sreg is specified for a function, a warning message is output, and the

sreg declaration is ignored.

Arguments of functions and automatic variables cannot be specified to this area.

char type uses half the space of other types and long/float/double/long double types use twice the space.

Function pointers of the medium model and the large model use one and a half the amount of space as other

types.

All the types have byte boundaries.

When -ZA is specified, only _ _sreg is enabled and sreg is disabled.

The following shows the maximum number of sreg variables that can be used per load module.

Table 11-9. Restrictions on sreg Variable Usage

Data Type Usable Number of sreg Variables (Per Load Module)

int/short Max. 112 (96 when -QR is specified)Note

Function pointer of medium model Max. 74 (64 when -QR is specified)Note

Pointer of large model Max. 74 (64 when -QR is specified)Note

Note When the -QR option is not specified, the reserved area for the argument of the norec function/automatic

variables and register variables (32 bytes of saddr2 area) can be used as sreg variable area. When bit and

boolean type variables are used, the usable number is decreased.

EXAMPLE

The following shows an example when the large model is used.

(C source)

extern sreg int hsmm0;

extern sreg int hsmm1;

extern sreg int *hsptr;

void main () {

hsmm0 -= hsmm1;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 303

Usage of saddr Area sreg/_ _sreg

(Assembler source)

The following example shows a definition code for an sreg variable that the user creates. If an extern declaration is

not made in the C source, the C compiler outputs the following codes. In this case, the ORG quasi directive will not

be output.

PUBLIC _hsmm0 ;Declaration

PUBLIC _hsmm1 ;

PUBLIC _hsptr ;

@@DATS DSEG SADDR2 ;Allocation to segment

ORG 0FFD20H ;

_hsmm0: DS (2) ;

_hsmm1: DS (2) ;

_hsptr: DS (3) ;

(Output object of compiler)

 EXTRN SADDR2(_hsmm1)

 EXTRN SADDR2(_hsmm0)

 PUBLIC _main

@@CODE CSEG

_main:

 subw _hsmm0, _hsmm1

 ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the other compiler does not use the keyword sreg/_ _sreg.

When changing to sreg variable, use the method above.

From this C compiler to another C compiler

• Modifications are made by #define. For details, refer to 11.6 Modifications of C Source. By this

modification, sreg variables are handled as ordinary variables.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM304

Usage of saddr Area -RD

(2) Usage with saddr automatic allocation option of external variables/external static variables

FUNCTION

• External variables/external static variables (except const type) are automatically allocated to the saddr2 area

regardless of whether an sreg declaration is made or not.

• Depending on the value of n, the external variables and external static variables to allocate can be specified

as follows.

Table 11-10. Variables Allocated to saddr2 Area by -RD Option

Value of n Variables Allocated to saddr2 Area

If 1 Variables of char and unsigned char types

If 2 Variables if n is 1 and variables of short, unsigned short, int, unsigned int, enum,

small model pointer, and medium model data pointer type

If 4 Variables if n is 2 and variables of long, unsigned long, float, double, long double,

medium model pointer, and large model pointer type

If omitted All variables (including structures, unions, and arrays in this case only)

• Variables declared with the keyword sreg are allocated to the saddr2 area, regardless of the above

specification.

• The above rule also applies to variables referenced by an extern declaration, and processing is performed as

if these variables were allocated to the saddr2 area.

• The variables allocated to the saddr2 area by this option are treated in the same manner as the sreg

variable. The functions and restrictions of these variables are as described in (1).

METHOD OF SPECIFICATION

Specify the -RD [n] (n: 1, 2, or 4) option.

RESTRICTIONS

• With the -RD [n] option, modules specifying different n values cannot be linked to each other.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 305

Usage of saddr Area -RS

(3) Usage with saddr automatic allocation option of internal static variables

FUNCTION

• Automatically allocates internal static variables (except const type) to saddr2 area regardless of an sreg

declaration.

• Depending on the value of n, the internal static variables to allocate can be specified as follows.

Table 11-11. Variables Allocated to saddr2 Area by -RS Option

Value of n Variables Allocated to saddr2 Area

If 1 Variables of char and unsigned char types

If 2 Variables if n is 1 and variables of short, unsigned short, int, unsigned it, enum,

small model pointer, and medium model data pointer type

If 4 Variables if n is 2 and variables of long, unsigned long, float, double, long double,

medium model function pointer, and large model pointer type

If omitted All variables (including structures, unions, and arrays in this case only)

• Variables declared with the keyword sreg are allocated to the saddr2 area regardless of the above

specification.

• The variables allocated to the saddr2 area by this option are handled in the same manner as the sreg

variable. The functions and restrictions for these variables are as described in (1).

METHOD OF SPECIFICATION

Specify the -RS [n] (n: 1, 2, or 4) option.

Remark With the -RS [n] option, modules specifying different n values can also be linked to each other.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM306

Usage of saddr Area _ _sreg1

(4) Usage with _ _sreg1 declaration

FUNCTION

• Variables declared with the keyword _ _sreg1 (called sreg1 variables) are automatically allocated to saddr1

[XFE00H to XFE7FH] area (x: 0 or F by specifying location) with relocatability. When the sreg1 variable

exceeds the area shown above, a compilation error occurs.

• saddr1 area [XFE00H to XFEFFH] can be used as sreg1 variables by changing the location of segments in

the assembler source or at the time of linking. However, care must be taken because the compiler uses the

area [XFE80H to XFEFFH] as a general-purpose register area.

• The sreg1 variables are handled in the same manner as ordinary variables in the C source.

• Each bit of sreg1 variables of char/short/int/long type automatically becomes a _ _boolean1 type variable.

• sreg1 variables declared without an initial value take 0 as the initial value.

EFFECT

• Instructions to the saddr1 area are generally shorter in code length than those to memory. This helps shorten

object code and also improves program execution speed.

USAGE

• Declare a variable with the keyword _ _sreg1 inside the module in which the variable is to be defined.

_ _sreg1 type-name variable-name

• Declare the following variables inside the module in which the sreg1 variable is referenced.

extern _ _sreg1 type-name variable-name

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 307

Usage of saddr Area _ _sreg1

RESTRICTIONS

• When _ _sreg1 type is specified for a const type or function, a warning message is output and the _ _sreg1

declaration is ignored.

• Arguments of functions and automatic variables cannot be specified to this area.

• char type uses half the space of other types, and long/float/double/long double types use twice the space.

• All the types have byte boundaries.

Medium model function pointers and large model pointers use one and a half the space of other types.

The following shows the maximum number of sreg variables that can be used per load module.

Table 11-12. Restrictions on sreg1 Variable Usage

Data Type Usable Number of sreg Variables (Per Load Module)

int/short Max. 64Note

Medium model function pointer Max. 42Note

Large model pointer Max. 42Note

Note saddr1 area [XFE00H to XFE7FH] is used. When _ _boolean1 type variables are used, the usable

number is decreased.

EXAMPLE

The following shows an example when the large model is used.

(C source)

extern _ _sreg1 int s1;

extern _ _sreg1 int s2;

extern _ _sreg1 int *spr;

void main() {

s1 -= s2;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM308

Usage of saddr Area _ _sreg1

(Assembler source)

The following example shows a definition code for a sreg1 variable that the user creates. If an extern declaration is

not made in the C source, the C compiler outputs the codes in the same way as those of assembler source. In this

case, the ORG quasi directive will not be output.

PUBLIC _s1 ;Declaration

PUBLIC _s2 ;

PUBLIC _sptr ;

@@DATS1 DSEG SADDR ;Allocation to segment

ORG 0FFE00H ;

_s1: DS (2) ;

_s2: DS (2) ;

_sptr: DS (3) ;

(Output object of compiler)

EXTRN _s2

EXTRN _s1

PUBLIC _main

@@CODE CSEG

_main:

subw _s1,_s2

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword _ _sreg1 is not used in the program.

• When changing to sreg1 variables, use the method above.

From this C compiler to another C compiler

• #define must be used. For details, see 11.6 Modifications of C Source. By this modification, sreg1

variables will be handled as ordinary variables.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 309

(4) How to use the sfr area

Usage of sfr Area sfr

FUNCTION

• The sfr area refers to a group of special function registers such as mode registers and control registers for the

various peripherals of the 78K/IV Series microcontrollers.

• By declaring use of sfr names, manipulations on the sfr area can be described at the C source level.

• sfr variables are external variables without initial values (undefined).

• A write check will be performed on read-only sfr variables.

• A read check will be performed on write-only sfr variables.

• Assignment of illegal data to an sfr variable will result in a compilation error.

• The sfr names that can be used are those allocated to an area consisting of addresses FF00H to FFFFH with

the small model, or XFF00H to XFFFFH with the medium large model. (x: 0 or F by specifying location)

EFFECT

• Manipulations on the sfr area can be described at the C source level.

• Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code

and also improves program execution speed.

USAGE

• Declare the use of an sfr name in the C source with the #pragma preprocessing directive, as follows. (The

keyword sfr can be described in uppercase or lowercase letters.).

#pragma sfr

• The #pragma sfr directive must be described at the beginning of the C source line. If #pragma PC

(processor type) is specified, however, describe #pragma sfr after that.

The following statement and directives may precede the #pragma sfr directive.

. Comment statement

. Preprocessing directives that do not define or refer to a variable or function

• In the C source program, describe an sfr name that the device has as is (without change). In this case, the

sfr need not be declared.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM310

Usage of sfr Area sfr

RESTRICTIONS

• All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

EXAMPLE

(C source)

#ifdef _ _K4_ _

#pragma sfr

#endif

void main ()

{

CMK00 = 1;

PM0 = 0x11;

P0 = 10;

:

}

(Output object of compiler)

The C compiler outputs no declaration-related code but outputs the following code inside the function.

@@CODE CSEG

_main:

set1 CIC00.6

mov PM0, #011H ;17

sub P0, #0AH ;10

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 311

Usage of sfr Area sfr

EXPLANATION

• In the above example, use of sfr variables is declared with the #pragma sfr directive. By this declaration,

special function registers such as P0 (port 0) and CIC00 (one of the interrupt control registers����) can be used.

Note Bit 6 of the CIC00 register has the SFR bit name CMK00. For sfr, refer to the user’s manual of the

target device used.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if those portions of the C source program do not depend on the device or

compiler.

From this C compiler to another C compiler

• Delete the #pragma sfr statement or sort by #ifdef and add the declaration of the variable that was formerly

an sfr variable. The following shows an example.

#ifdef _ _K4_ _

#pragma sfr

#else

/* declaration of variables */

unsigned char P0;

#endif

void main(void) {

P0 = 0;

}

• In the case of a device that has the sfr or its alternative functions, a dedicated library must be created to

access that area.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM312

(5) noauto function

noauto Function noauto

FUNCTION

• The noauto function sets restrictions for automatic variables not to output the codes of preprocessing/

postprocessing (generation of stack frame).

• All the arguments are allocated to registers. If there is an argument that cannot be allocated to registers, a

compilation error occurs.

(a) When -ZO option is specified

• Arguments are passed via registers.

• The locations where arguments are passed to the function call side and the function definition side become

the locations where arguments are allocated.

• The save and restore of the register to which arguments are allocated are performed before/after the

function call.

• Automatic variables cannot be used.

• Arguments are allocated in the same order as ordinary functions.

• Table 11-13 shows the registers to which the arguments of the noauto function are passed/allocated.

Table 11-13. Registers Used for noauto Function Arguments (With -ZO)

Data Type First Argument Second Argument Third Argument or Later

char R6 R7 R8, R9, R10, R11

int, short RP3 VP UP

(only when −−−−MS −−−−QF is

specified)

long/float/double/

long double

VP (higher 16 bits)

RP3 (lower 16 bits)

Small model pointer VP UP (only when −−−−QF is specified) RP3

Large model pointer VVP

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 313

noauto Function noauto

(b) When -ZO option is not specified

• Arguments are passed on the function call side in the same manner as ordinary functions (refer to 11.7.2

Ordinary function call interface).

• The arguments passed via a register or stack are copied to the register shown in Table 11-14 on the

function definition side (copying register is necessary even when an argument is passed via a register

because the registers of the function call side and the function definition side are different).

• The save and restore of registers to which arguments are allocated are performed on the function definition

side.

Table 11-14. Registers Used for noauto Function Arguments (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later

char (with 4-byte argument) Note

char (without 4-byte argument) Note

R10

R6

R11

R7

R6, R7, R8, R9, R10,

R11, R8, R9

int, short, enum

(with 4-byte argument)Note

(without 4-byte argument)Note

UP

RP3
RP3

UP

VP

VP

long/float/double/long double VP (higher 16 bits)

RP3 (lower 16 bits)

Small model pointer

Medium model data pointer

UP VP RP3

Large model pointer UUP VVP

Note 4-byte arguments are arguments of long, float, double, long double type

Remarks 1. The medium model function pointer cannot be used as an argument to be allocated to a register.

2. The order of the register allocation in this function is the same as the order when the -QF option is

specified in ordinary functions.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM314

noauto Function noauto

• Automatic variables can be used only when all the automatic variables can be allocated to the registers

remaining after the argument allocation and to the saddr2 area (_@KREGXX) for register variables.

However, automatic variables are allocated to the saddr2 area for register variables only when the -QR option

is specified during compilation. If the -QRO option is specified during compilation, a warning message is

output and automatic variables are not allocated to saddr2 area.

• Automatic variables are allocated in the same order as arguments are allocated. The automatic variables

allocated to saddr2 area (_@KREGXX) are allocated in the order of declaration (if they are not allocated, a

compilation error occurs).

• The save and restore of _@KREGXX, the register to which automatic variables are allocated, are performed

on the function definition side.

EFFECT

• The object code can be shortened and execution speed can be improved.

USAGE

Declare a function with the noauto attribute in the function declaration, as follows.

noauto type-name function-name

RESTRICTIONS

• When the -ZO option is specified, automatic variables cannot be used inside the noauto function, and neither

can the register variables.

• When the -ZA option is specified, the noauto function is disabled.

• The arguments and automatic variables of the noauto function (only when the -ZO option is specified) have

restrictions on their types and numbers. The following shows the types of arguments that can be used inside

a noauto function.

• Pointer

• char / signed char/ unsigned char

• int / signed int / unsigned int

• short / signed short / unsigned short

• enum

• long / signed long / unsigned long

• float / double / long double

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 315

noauto Function noauto

Table 11-15. Restrictions on noauto Function Arguments (With -ZO)

Data Type Restriction

Type other than pointer Max. 4 bytes (Max. 6 bytes)Note

Small model pointer Max. 4 bytes (Max. 6 bytes)Note

Medium model data pointer Max. 4 bytes

Large model pointer Max. 1 variable

Note Up to 6 bytes can be used only when the -MS and -QF options are specified.

Table 11-16. Restrictions on noauto Function Arguments and Automatic Variables (Without -ZO)

Data Type Restriction

Type other than pointer Max. 6 bytes (Max. 22 bytes)Note 1

Small model pointer

Medium model data pointer

Max. 6 bytes (Max. 22 bytes)Note 1

Medium model function pointer (Max. 5 variables)Note 2

Large model pointer Max. 2 variables (Max. 7 variables)Note 3

Notes 1. When the -QR option is specified, only automatic variables can be used up to 22 bytes.

2. When the -QR option is specified, only automatic variables can be used up to 5 variables. The

medium model function pointer cannot be used as a register argument (not allocated to registers).

3. When the -QR option is specified, only automatic variables can be used up to 7 variables.

• These restrictions are checked during compilation.

• If arguments and automatic variables are declared with a register (only when the -ZO is not specified), the

register declaration is ignored.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM316

noauto Function noauto

EXAMPLE

(C source)

noauto short nfunc (short, short, short);

short l, m;

void main (void)

{

static short s1, s2, s3;

l = nfunc (s1, s2, s3);

}

noauto short nfunc(short a, short b, short c)

{

m = a + b + c;

rturn(m);

}

(Output object of compiler) With small model, when -ZO option is not specified

@@DATA DSEG

_l : DS (2)

_m : DS (2)

?L0003: DS (2)

?L0004: DS (2)

?L0005: DS (2)

@@CODES CSEG BASE

_main: s3

push ax

movw ax,!?L0004 ;s2

push ax

movw ax,!?L0003 ;s1

call !_nfunc ;Calls nfunc (a, b, c)

pop ax,de

movw !_l,bc ;Assigns return value to external variable l

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 317

noauto Function noauto

(Output object of compiler … continued)

_nfunc:

push rp3,vp,up ;Saves register for arguments

movw rp3,ax ;Assigns first argument a to RP3

movw ax,[sp+9] ;Assigns second argument b to UP

movw up,ax ;

movw ax,[sp+11] ;Assigns third argument c to VP

movw vp,ax ;

movw ax,rp3 ;To a (RP3)

addw ax,up ;Adds b (UP)

addw ax,vp ;Adds c (VP)

movw !_m,ax ;Assigns the result of operation to external variable m

movw bc,ax ;Returns external variable m

pop rp3,vp,up ;Restores register for arguments

g

EXPLANATION

• In the above example, the noauto attribute is added at the header part of the C source.

noauto is declared and stack frame formation is not performed.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword noauto is not used.

• When changing variables to noauto variables, modify the program according to the method above.

From this C compiler to another C compiler

• #define must be used. For details, see 11.6 Modifications of C Source.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM318

(6) norec function

norec Function norec

FUNCTION

• A function that does not call another function by itself can be changed to a norec function.

• With the norec function, code for preprocessing and postprocessing (stack frame formation) is not output.

• All the arguments of norec function are allocated to registers and saddr2 area (_@NRARGX) for arguments

of the norec function. When the -QR option is not specified during compilation (default), however, saddr2

area is not used.

• If arguments cannot be allocated to registers and saddr2 area, a compilation error occurs.

(a) When -ZO option is specified

• Arguments are passed via a register and saddr2 area (_@NRARGX). When a register is used, arguments

are stored in the same manner as the noauto function (refer to Table 11-13).

• If arguments cannot be passed via a register, a register is not used, but arguments are passed via saddr2

area (_@NRARGX) (a register and saddr2 area are not used simultaneously).

When saddr2 area is used, arguments are sequentially stored in ascending order from _@NRARG0

starting from the first argument.

• The locations where arguments are passed on the function call side and the function definition side

become the locations where arguments are allocated.

• The save and restore of the register to which arguments are allocated are performed before/after the

function call.

• Automatic variables are allocated to saddr2 area (_@NRATXX), and so are the register variables. They

are allocated in the sequence they have been declared in ascending order starting from _@NRAT00. If

there are excess registers for arguments, automatic variables are allocated to registers first. However,

automatic variables are allocated to saddr2 area only when the -QR option is specified. If automatic

variables cannot be allocated to registers or saddr2 area, a compilation error occurs.

• The save and restore of the register to which automatic variables are allocated are performed on the

function definition side.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 319

norec Function norec

(b) When -ZO option is not specified

On the function call side, arguments are passed via a register and saddr2 area (_@NRARGX) for the

arguments of norec functions. On the function definition side, the arguments passed via a register are copied

to a register (because the registers of the function call side and the function definition side are different). If

arguments are passed via saddr2 area, the location where arguments are passed becomes the location

where arguments are allocated.

Arguments are allocated to registers first, and then the arguments that cannot be allocated to registers are

allocated to saddr2 area.

The save and restore of registers to store arguments are performed on the function definition side.

Automatic variables are allocated to registers or to saddr2 area (_@NRARGX) for the arguments of the norec

function if registers can be used. If the areas above cannot be used, automatic variables are allocated to

saddr2 area (_@NRATXX) for the automatic variables of the norec function in the sequence they have been

declared and in ascending order.

The following shows the registers to be used for passing the arguments of norec functions.

Table 11-17. Registers Used for norec Function Arguments: Passing Side (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later

char A C DE, RP2, saddr2 Note

int, short, enum AX DE RP2, saddr2 Note

long/float/double/

long double

DE (higher 16 bits)

AX (lower 16 bits)

saddr Note saddr2

Small model pointer

Medium model data pointer

AX DE RP2, saddr2 Note

Large model pointer TDE saddr2 Note saddr2 Note

Note When the -QR option is specified, there arguments can be passed via _@NRARGX (saddr2). Medium

model function pointers (3 bytes) cannot be used as the arguments to be allocated to registers.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM320

norec Function norec

Table 11-18. Registers Used for norec Function Arguments: Receiving Side (Without -ZO)

Data Type First Argument Second Argument Third Argument or Later

char (with 4-byte arguments)Note 1

char (without 4-byte arguments)Note 1

R10

R6

R11

R7

R6, R7, R8, R9, saddr2Note 2

R10, R11, R8, R9, saddr2Note 2

int, short, enum

(without 4-byte arguments)Note 1

(with 4-byte arguments)Note 1

UP

RP3

RP3

UP

VP, saddr2Note 2

VP, saddr2Note 2

long/float/double/long double VP (higher16 bits)

RP3 (lower 16 bits)

saddr2Note 2 saddr2Note 2

Small model pointer

Medium model data pointer

UP VP RP3, saddr2Note 2

Large model pointer VVP saddr2Note 2 saddr2Note 2

Notes 1 4-byte arguments are arguments of long, float, double and long double type

2 When the -QR option is specified, these arguments can be passed via _@NRARGX (saddr2). The

medium model’s function pointer (3 bytes) cannot be used as an argument assigned to the register.

Cautions 1. The medium model function pointers cannot be used as arguments to be allocated to

registers.

2. The order of allocating registers of this function is the same as that of an ordinary function

with the -QF option specified.

EFFECT

• The object code can be shortened and program execution speed can be improved.

USAGE

Declare a function with the norec attribute in the function declaration as follows.

norec type-name function-name

• _ _ leaf can also be described instead of norec.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 321

norec Function norec

RESTRICTIONS

• No other function can be called from a norec function.

• There are restrictions on the type and number of arguments and automatic variables that can be used in a

norec function.

• When -ZA is specified, norec is disabled and only _ _leaf is enabled.

• The restrictions for arguments and automatic variables are checked during compilation, and an error occurs.

• If arguments and automatic variables are declared with a register, the register declaration is ignored.

• The following shows the types of arguments and automatic variables that can be used in norec functions.

• Pointer

• char/signed char/unsigned char

• int/signed int/unsigned int

• short/signed short/unsigned short

• long/signed long/unsigned long

• float/double/long double

(a) Restrictions for arguments of function when -ZO option is specified

• The char type arguments do not perform int extension.

Table 11-19. Restrictions on norec Function Arguments (When -ZO Is Specified)

Data Type Restriction

char type Max. 8 variables

int, short, small model pointer type Max. 4 variables

Large model pointer, long, float, double, long double type Max. 2 variables

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM322

norec Function norec

(b) Restrictions for arguments of function when -ZO option is not specified

Table 11-20. Restrictions on norec Function Arguments (When -ZO Is Not Specified)

Data Type Restriction

Other than pointer Max. 14 bytes (Max. 6 bytes)Note

Small model pointer, medium model data pointer Max. 14 bytes (Max. 6 bytes)Note

Medium model function pointer Max. 2 variables (cannot be used)Note

Large model pointer Max. 3 variables (Max. 1 variable)Note

Note The figures enclosed in parentheses indicate values when -QR is not specified.

(c) Restrictions for automatic variables when -ZO option is specified

• Up to 8 bytes of the automatic variables can be used in the norec function.

If there are excess registers used for arguments, they are added to the 8 bytes. Automatic variables are

allocated to saddr2 area in 1-byte alignment.

• In the case that the -QR option is not specified during compilation, if the total size of the arguments and

automatic variables exceeds 4 bytes (6 bytes when -MS -QF is specified), an error occurs.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 323

norec Function norec

(d) Restrictions for automatic variables when -ZO option is not specified

The automatic variables that can be used are allocated to the registers remaining after allocation of

arguments, saddr2 area (_@NRARGX) for the arguments of norec functions, and saddr2 area (_@NRATXX)

for automatic variables of norec functions.

Table 11-21. Restrictions on norec Function Automatic Variables (When -ZO Is Not Specified)

Data Type Restriction

Other than pointer Max. 22 bytes (Max. 6 bytes)Note

Small model pointer, medium model data pointer Max. 22 bytes (Max. 6 bytes)Note

Medium model function pointer Max. 4 variables (cannot be used)Note

Large model pointer Max. 6 variables (Max. 2 variable)Note

Note The figures enclosed in parentheses indicate values when -QR is not specified.

EXAMPLE

(C source)

norec int rout (int a, int b, int c);

int i, j;

void main () {

 int k, l, m;

 i = l + rout (k, l, m) + ++k ;

}

norec int rout (int a, int b, int c)

{

 int x, y;

 return (x + (a<<2));

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM324

norec Function norec

(Output object of compiler) (With large model, when –QR option is specified, and -ZO option is not specified)

EXTRN SADDR2 (_@NRARG0) ;Refers to saddr2 area to be used.

PUBLIC _rout

PUBLIC _I

PUBLIC _j

PUBLIC _main

@@DATA DSEG

_i: DS (2)

_j: DS (2)

@@CODE CSEG

_main:

push uup

subwg sp, #06H

movg whl, sp

movg uup, whl

movw ax, [up+2] ;Stores argument l to register RP2.

movw rp2, ax

movw ax, [up] ;Stores argument m to register DE.

movw de, ax

movw ax, [up+4] ;Stores argument k to register AX.

call $!_rout ;Calls norec function

movw ax, [up+2] ;Adds return value of norec function to l.

addw bc, ax ;

movw ax, [up+4] ;Increments k

incw ax ;

movw [up+4], ax ;

addw bc, ax ;Assigns the result of addition to i.

movw !!_i, bc

addwg sp, #06H

pop uup

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 325

norec Function norec

(Output object of compiler…continued)

_rout:

push uup Saves register for arguments.

push rp3 ;

push vvp ;

movw rp3, ax ;Assigns the first argument a to RP3.

movw vp, de ;Assigns the third argument c to VP.

movw up, rp2 ;Assigns the second argument b to UP.

movw ax, rp3 ;Receives the first argument a from register RP3.

shlw ax, 2 ;

addw ax, _@NRARG0 ;Automatic variable x assigned to saddr2

movw bc, ax ;Assigns return value to BC register

L0004:

pop vvp ;Restores registers for arguments.

pop rp3

pop uup

ret

END

EXPLANATION

In the above example, the norec attribute is added in the definition of the rout function as well to indicate that the

function is norec.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword norec is not used.

• When changing variables to norec variables, modify the program according to the method above.

From this C compiler to another C compiler

• #define must be used. For details, see 11.6 Modifications of C Source.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM326

(7) bit type variables

bit Type Variables bit
boolean Type Variables boolean

_ _boolean

FUNCTION

• A bit or boolean type variable is handled as 1-bit data and allocated to saddr2 area.

• These variables can be handled the same as an external variable that has no initial value (or has an unknown

value).

• The C compiler outputs the following bit manipulation instructions for these variables.

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF instructions

EFFECT

• Programming at the assembler source level can be performed in C, and the saddr and sfr areas can be

accessed in bit units.

USAGE

• Declare a bit or boolean type inside the module in which the bit or boolean type variable is to be used, as

follows.

• _ _boolean can also be described instead of bit.

Bit variable-name

Boolean variable-name

_ _boolean variable-name

• Declare a bit or boolean type inside the module in which the bit or boolean type variable is to be used, as

follows.

extern bit variable-name

extern boolean variable-name

extern _ _boolean variable-name

• char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and

8-bit sfr variables can be automatically used as bit type variables.

variable-name.n (where n = 0 to 31)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 327

bit Type Variables bit
boolean Type Variables boolean

_ _boolean

RESTRICTIONS

• An operation on two bit or boolean type variables is performed by using the carry flag.

For this reason, the contents of the carry flag between statements are not guaranteed.

• Arrays cannot be defined or referenced.

• A bit or boolean type variable cannot be used as a member of a structure or union.

• This type of variable cannot be used as the argument type of a function.

• The variable cannot be declared with an initial value.

• If the variable is described along with a const declaration, the const declaration is ignored.

• Only operations using 0 and 1 can be performed by the operators and constants shown in the following table.

• *, & (pointer reference, address reference), and sizeof operations cannot be performed.

• When the -ZA option is specified, only _ _boolean is enabled.

Table 11-22. Operators That Use Only Constants 0 or 1 (When Using bit Type Variable)

Classification Operator Classification Operator

Assignment =

Bitwise AND &, &= Bitwise OR |, |=

Bitwise XOR ^, ^=

Logical AND && Logical OR ||

Equal == Not Equal !=

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM328

bit Type Variables bit
boolean Type Variables boolean

_ _boolean

Table 11-23. Number of Usable bit Type Variables

Condition Restrictions (Per Load Module)

When -QR option is specified

(saddr2 area [XFD20H to XFDDFH])

Max. 1536 variables can be used.

When -QR option is not specified

(saddr2 area [XFD20H to XFDFFH])

Max. 1792 variables can be used.

The number of usable bit type variables is decreased if sreg variables are used or the -RD and -RS (automatic

saddr allocation option) options are specified.

EXAMPLE

(C source)

#define ON 1

#define OFF 0

extern void testb (void);

extern void chgb (void);

extern bit data1;

extern _ _boolean data2;

void main () {

data1 = ON;

data2 = OFF;

while (data1) {

data1 = data2;

testb();

}

if (data1 && data2) {

chgb();

}

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 329

bit Type Variables bit
boolean Type Variables boolean

_ _boolean

(Assembler source)

Indicates the case where the user creates a definition code of a bit type variable. The following example shows

the case of the large model (-ML) and the location 0FH (-CS15). In this example, if the compiler output section

name @@ BITS is used, a link error occurs since the bit segment is changed to the AT attribute. Therefore,

other segment names should be used (if the attribute is saddr2, the @@BITS segment name can be used).

PUBLIC _data1 ;Declaration

PUBLIC _data2

BIT_SEG BSEG AT 0FFD20H ;Allocation to segment

_data1 DBIT

_data2 DBIT

(Output object of compiler)

If an extern declaration is not added, the compiler outputs the codes shown below. The following shows the

case of the large model.

EXTRN _testb

EXTRN _chgb

PUBLIC _data1

PUBLIC _data2

PUBLIC _main

@@BITS BSEG SADDR2

_data1 DBIT

_data2 DBIT

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM330

bit Type Variables bit
boolean Type Variables boolean

_ _boolean

(Output object of compiler…continued)

@@CODE CSEG

_main:

set1 _data1 ;Initialize by 1

clr1 _data2 ;Initialize by 0

L0003:

bf _data1, $L0004 ;Judgment

mov1 CY, _data2 ;Assignment

mov1 _data1, CY ;Assignment

call !!_testb

br $L0003

L0004:

bf _data1, $L0005 ;Logical AND expression

bf _data2, $L0005 ;Logical AND expression

call !!_chgb

L0005:

L0006:

ret

END

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword bit, boolean, or _ _boolean is not used.

• When changing variables to bit or boolean type variables, modify the program according to the method

above.

From this C compiler to another C compiler

• #define must be used. For details, see 11.6 Modifications of C Source (As a result of this modification,

the bit or boolean type variables are handled as ordinary variables.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 331

(8) _ _boolean1 type variables

_ _boolean1 type variables _ _boolean1

FUNCTION

• _ _boolean1 type variables are handled as 1-bit data and allocated to saddr1 area.

• _ _boolean1 type variables are handled in the same manner as external variables without an initial value

(undefined).

• The compiler outputs the following bit manipulation instructions for these bit variables.

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF instructions

EFFECT

• Programming at the assembler source level and bit access to saddr1 area are enabled by C description.

USAGE

• Declares _ _boolean1 type in the module that uses _ _boolean1 type variables.

_ _boolean1 variable-name

• Declares the extern _ _boolean1 in the module that refers to _ _boolean1 type variables.

extern _ _boolean1 variable-name

• The sreg1 variables (except the element of an array and member of a union) of char/int/short/long types are

automatically enabled to be used as _ _boolean1 type variables.

variables-name.n (n is 0 to 31)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM332

_ _boolean1 type variables _ _boolean1

RESTRICTIONS

• The operations between _ _boolean1 type variables can be performed using carry flags. Therefore, the

contents of the carry flag between statements are not guaranteed.

• _ _boolean1 type variables cannot define/reference or array.

• _ _boolean1 type variables cannot be used as a member of a structure or union.

• _ _boolean1 type variables cannot be used as an argument type of a function.

• _ _boolean1 type variables cannot be used as a return value of a function.

• _ _boolean1 type variables cannot declare with an initial value.

• If described with the const declaration, the const declaration is ignored.

• Only operations using 0 and 1 can be performed by the operators and constants shown in the following table.

• *, & (pointer reference, address reference), and sizeof operations cannot be performed.

Table 11-24. Operators That Use Only Constants 0 or 1 (When Using bit Type Variables)

Classification Operator Category Operator

Assignment =

AND in bit units &, &= OR in bit units |, | =

XOR in bit units ^, ^

Logical AND && Logical OR ||

Equal == Not equal !=

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 333

_ _boolean1 type variables _ _boolean1

The following shows the number of usable _ _boolean1 type variables.

Table 11-25. Number of Usable _ _boolean1 Type Variables

Condition Restrictions (Per Load Module)

When using saddr1 area [XFE00H to XFE7FH] Max. 1024 variables can be used.

When sreg1 variables are used, however, the number of usable _ _boolean1 type variables is decreased.

EXAMPLE

(C source)

#define ON 1

#define OFF 0

extern void testb (void);

extern void chgb (void);

extern _ _boolean1 data1;

extern_ _boolean1 data2 ;

void main() {

data1 = ON;

data2 = OFF

while (data1) {

data1 = data2;

testb();

}

if (data1 && data2) {

chgb();

}

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM334

_ _boolean1 type variables _ _boolean1

(Assembler source)

Indicates the case where the user creates a definition code of a _ _boolean1 type variable. The following

example shows the case of the large model (-ML) and the location 0FH (-CS15). In this example, if the compiler

output section name @@ BITS1 is used, a link error occurs since the bit segment is changed to an AT attribute.

Therefore, other segment names should be used (if the attribute is saddr, the segment name @@BITS1 can be

used).

PUBLIC _data1 ;Declaration

PUBLIC _data2

BIT1_SEG BSEG AT 0FFE00H ;Allocation to segment

_data1 DBIT

_data2 DBIT

(Output object of compiler)

The compiler outputs the following codes if an extern declaration is not added. The following shows the case of

the large model.

EXTRN _testb

EXTRN _chgb

PUBLIC _data1

PUBLIC _data2

PUBLIC _main

@@BITS 1 BSEG SADDR

_data1 DBIT

_data2 DBIT

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 335

_ _boolean1 type variables _ _boolean1

(Output object of compiler…continued)

@@CODE CSEG

_main :

set1 _data1 ;Initialize by 1

clr1 _data2 ;Initialize by 0

L0003 :

bf _data1, $L0004 ;Judgment

mov1 CY, _data2 ;Assignment

mov1 _data1, CY ;Assignment

call !!_testb

br $L0003

L0004 :

bf _data1, $L0005 ;Logical AND expression

bf _data2, $L0005 ;Logical AND expression

call !!_chgb

L0005 :

L0006 :

ret

END

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword _ _boolean1 is not used.

• When changing to _ _boolean1 type variables, modify the program according to the method above.

From this C compiler to another C compiler

• Changes are made by #define. For details, refer to 11.6 Modifications of C Source (by these changes,

 _ _boolean1 type variables are handled as ordinary variables).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM336

(9) ASM statements

ASM Statements #asm, #endasm
_ _asm

FUNCTION

(a) #asm - #endasm

• The assembler source program described by the user can be embedded in an assembler source file to be

output by this C compiler by using the preprocessing directives #asm and #endasm.

• #asm and #endasm lines will not be output.

(b) _ _asm

• An assembly instruction is output and inserted in an assembler source by describing an assembly code for

a character string literal.

EFFECT

• Global variables of the C source can be manipulated in the assembler source

• Functions that cannot be described in the C source can be implemented

• The assembler source output by the C compiler can be manually optimized and embeded it in the C source

(to obtain efficient objects)

USAGE

(a) #asm - #endasm

• Indicate the start of the assembler source with the #asm directive and the end of the assembler source

with the #endasm directive. Describe the assembler source between #asm and #endasm.

#asm

 : /* assembler source */

#endasm

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 337

ASM Statements #asm, #endasm
_ _asm

(b) _ _asm

• Use of _ _asm is declared by the #pragma asm specification made at the beginning of the module in

which the ASM statement is to be described (the uppercase letters and lowercase letters are distinguished

for the keywords following #pragma).

• The following items can be described before #pragma asm.

 • Comment

 • Other #pragma directive

• Preprocessing directive not creating variable definition/reference or function definition/reference

• The ASM statement is described in the following format in the C source.

_ _asm (string literal);

• The description method of the character string literal conforms to ANSI, and a line can be continued by using

an escape character string (\n: line feed, \t: tab) or ´, or character strings can be linked.

RESTRICTIONS

• Nesting of #asm directives is not allowed.

• If ASM statements are used, no object module file will be created. Instead, an assembler source file will be

created.

• Only lowercase letters can be described for _ _asm. If _ _asm is described with uppercase and lowercase

characters mixed, it is regarded as a user function.

• When the -ZA option is specified, only _ _asm is enabled.

• #asm - #endasm and the _ _asm block can only be described inside a function of the C source. Therefore,

the assembler source is output to CSEG (with medium/large model) of the segment name @@CODE or

@@CODES CSEG BASE (with small model).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM338

ASM Statements #asm, #endasm
_ _asm

EXAMPLE

(a) #asm - #endasm

(C source)

void main () {

#asm

callt [60H]

#endasm

}

(Output object of compiler)

The assembler source written by the user is output to the assembler source file.

@@CODE CSEG

_main:

callt [60H]

ret

END

EXPLANATION

• In the above example, statements between #asm and #endasm will be output as an assembler source

program to the assembler source file.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 339

ASM Statements #asm, #endasm
_ _asm

(b) _ _asm

(C source)

#pragma asm

int a, b;

void main() {

_ _asm(“\tmovw ax, !_a\t;ax <- a”);

_ _asm(“\tmovw !_b, ax\t;b <- ax”);

}

(Assembler source)

@@CODE CSEG

_main:

movw ax, !_a ;ax <- a

movw !_b, ax ;b <- ax

ret

END

COMPATIBILITY

• With a C compiler that supports #asm, modify the program according to the format specified by the C

compiler.

• If the target device is different, modify the assembler source part of the program.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM340

(10) Interrupt functions

Interrupt Functions #pragma vect
#pragma interrupt

FUNCTION

• The address of a described function name is registered to an interrupt vector table corresponding to a

specified interrupt request name.

• An interrupt function outputs a code to save or restore the following data (except that used in the ASM

statement) to or from the stack at the beginning and end of the function (after the code if a register bank is

specified).

(1) Registers

(2) saddr area for register variables

(3) saddr2 area for arguments/auto variables of norec function (regardless of whether the arguments or

variables are used)

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is

performed differently, as follows.

• If no change is specified, codes that change the register bank or save/restore register contents, and that

save/restore the contents of the saddr2 area are not output regardless of whether the codes are used or not.

• If a register bank is specified, a code to select the specified register bank is output at the beginning of the

interrupt function, therefore the contents of the registers are not saved or restored.

• If “no change” is not specified and if a function is called in the interrupt function, however, the entire register

area is saved or restored, regardless of whether use of registers is specified or not.

• If the -QR option is not specified during compilation, the saddr2 area for register variables and the saddr2

area for the arguments/auto variables of the norec function is not used; therefore, the saved/restored code is

not output.

• If the size of the saved code is smaller than that of the restored code, the restored code is output.

• Table 11-26 summarizes the above and shows the save/restore area.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 341

Interrupt Functions #pragma vect
#pragma interrupt

Table 11-26. Save/Restore Area When Interrupt Function Is Used

Function Called Function Not Called

Without -QR With -QR Without -QR With -QR

Save/Restore Area

NO

BANK
Stack RBn Stack RBn Stack RBn Stack RBn

Register used × × × × × × ×

All registers × × × × × × ×

saddr2 area for register variable used × × × × ×

Entire saddr2 area for argument/auto

variable of norec function

× × × × × × ×

Stack: Use of stack is specified. : Saved

RBn: Register bank is specified. ×: Not saved

Caution If there is an ASM statement in an interrupt function, and if the area reserved for registers of the

compiler is used in that ASM statement, the area must be saved by the user.

EFFECT

• Interrupt functions can be described at the C source level.

• Because the register bank can be changed, codes that save the registers are not output; therefore, object

codes can be shortened and program execution speed can be improved.

• You do not have to be aware of the addresses of the vector table to recognize an interrupt request name.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM342

Interrupt Functions #pragma vect
#pragma interrupt

USAGE

• Specify an interrupt request name, a function name, stock switching registers, and whether the saddr2 area is

saved/restored, with the #pragma directive. Describe the #pragma directive at the beginning of the C source.

The #pragma directive is described at the start of the C source (for the interrupt request names, refer to the

user’s manual of the target device used). For the software interrupt BRK, describe BRK_I.

• To describe #pragma PC (processor type), describe this #pragma directive after that. The following items

can be described before this #pragma directive.

• Comment statements

• Preprocessing directive that neither defines nor references a variable or a function

#pragma ∆ vect (or interrupt) ∆ interrupt request name ∆ function name ∆

[stack change specification] ∆ stack use specification

no change specification

register bank specification

Interrupt request name: Described in uppercase letters. Refer to the user’s manual of the target

device used (example: NMI, INTP0, etc.).

For the software interrupt BRK, describe BRK_I.

Function name: Name of the function that describes interrupt processing

Stack change specification: SP = array name [+ offset location] (example: SP = buff + 10)

Define the array by unsigned char (example: unsigned char buff [10];).

Stack use specification: STACK (default)

No change specification: NOBANK

Register bank specification: RB0/RB1/RB2/RB3/RB4/RB5/RB6/RB7

∆: Space

Caution The startup routine of this compiler is initialized to register bank 0. Therefore, specifying

register banks 1 to 7 is necessary.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 343

Interrupt Functions #pragma vect
#pragma interrupt

RESTRICTIONS

• An interrupt request name must be described in uppercase letters.

• A duplication check on interrupt request names will be made within only one module.

• If the same or another interrupt occurs because of the contents of the priority specification flag register and

interrupt mask flag register while a vectored interrupt is being processed, the contents of the registers may be

changed if a register bank is specified or no change is specified, resulting in an error. The compiler, however,

cannot check this error.

• callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _rtos_interrupt/_ _pascal/_ _flash cannot be specified

as the interrupt function.

• An interrupt function is specified with void type (example: void func (void);) because it cannot have an

argument or a return value.

• Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas are

not output. If an area reserved for the compiler is used in the ASM statement in the interrupt function,

therefore, or if a function is called in the ASM statement, the user must save the registers and variable areas

on their own responsibility.

• If a function specifying no change, register bank, or stack change as the saving destination via a #pragma

vect/#pragma interrupt specification is not defined in the same module, a warning message is output and

the stack change is ignored. In this case, the default stack is used.

• When stack change is specified, the stack pointer is changed to the location where offset is added to the array

name symbol. The area of the array name is not secured by the #pragma directive. It needs to be defined

separately as a global unsigned char type array.

• The code that changes the stack pointer is generated at the start of a function, and the code that sets the

stack pointer back is generated at the end of a function.

• When the keywords sreg/_ _sreg are added to the array for stack change, it is regarded that two or more

variables with the different attributes and the same name are defined, and a compilation error occurs. It is

possible to allocate an array in saddr area using the -RD option, but code and speed efficiency will not be

improved because the array is used as a stack. It is recommended to use the saddr area for purposes other

than a stack.

• A stack change cannot be specified simultaneously with “no change”. If specified so, an error occurs.

• The stack change must be described before the stack use/register bank specification. If the stack change is

described after the stack use/register bank specification, an error occurs.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM344

Interrupt Functions #pragma vect
#pragma interrupt

EXAMPLE

(C source 1)

#pragma interrupt NMI inter rb1

void inter()

{

/* interrupt handling to NMI pin input */

}

(Output object of compiler)

@@BASE CSEG BASE

_inter:

Register bank switching code

 Save code of saddr area for use by C compiler

Interrupt handling to NMI input (function body)

Restore code of saddr area for use by C compiler

reti

@@VECT02 CSEG AT 02H ; NMI

 DW _inter

(C source 2)

(When stack change and register bank are specified)

 #pragma interrupt INTP0 inter sp=buff+10 rb2

unsigned char buff[10];

void func();

void inter();

{

func();

}

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 345

Interrupt Functions #pragma vect
#pragma interrupt

(Output object of compiler) With large model

@@BASE CSEG BASE

_inter:

sel RB2 ;Changes register bank

push whl ;

movg whl,sp ;Changes stack pointer

movg sp,#_buff+10 ;

push whl ;

call !!_func

pop whl ;

movg sp,whl ;Sets back stack pointer

pop whl ;

reti

@@VECT06 CSEG AT 0006H

 DW _inter

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if interrupt functions are not used at all.

• When changing an ordinary function to an interrupt function, modify the program according to the method

above.

From this C compiler to another C compiler

• An interrupt function can be used as an ordinary function by deleting its specification with the #pragma

vect, #pragma interrupt directive.

• When an ordinary function is to be used as an interrupt function, change the program according to the

specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM346

(11) Interrupt function qualifier (_ _interrupt, _ _interrupt_brk)

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

FUNCTION

• A function declared with the _ _interrupt qualifier is regarded as a hardware interrupt function, and execution

is returned by the return RETI instruction for non-maskable/maskable interrupt functions.

• By declaring a function with the _ _interrupt_brk qualifier, the function is regarded as a software interrupt

function, and execution is returned by the return instruction RETB for software interrupt functions.

• A function declared with this qualifier is regarded as a (non-maskable/maskable/software) interrupt function,

and saves or restores the registers and variable areas (1) and (3) below, which are used as the work area of

the compiler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

(1) Registers

(2) saddr area for register variables

(3) saddr area for arguments/auto variables of norec function (regardless of usage)

Remark If the -QR option is not specified (default) during compilation, codes to save or restore areas (2) and (3)

are not output because these areas are not used.

EFFECT

• By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be

described in separate files.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 347

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

USAGE

• Describe either _ _interrupt or _ _interrupt_brk as the qualifier of an interrupt function.

(For non-maskable/maskable interrupt function)

_ _interrupt void func() {processing}

(For software interrupt function)

_ _interrupt_brk void func() {processing}

RESTRICTIONS

• callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _rtos_interrupt/_ _pascal/_ _flash cannot be specified

for the interrupt function.

CAUTIONS

• The vector address is not set by merely declaring this qualifier. The vector address must be separately set by

using the #pragma vect/interrupt directive or assembler description.

• The saddr area and registers are saved to the stack.

• Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the

change in the saving destination is ignored if there is no function definition in the same file, and the default

stack is assumed.

• To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the

function name specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this

qualifier is not described (for details of #pragma vect/interrupt, refer to 11.5 (10) Interrupt functions).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM348

Interrupt Function Qualifier _ _interrupt
_ _interrupt_brk

EXAMPLE

Declare or define interrupt functions in the following format. The code to set the vector address is generated by

#pragma interrupt.

#pragma interrupt INTP0 inter RB1

#pragma interrupt BRK_I inter_b RB2 /* Note */

_ _interrupt void inter(); /* prototype declaration */

_ _interrupt_brk void inter_b(); /* prototype declaration */

_ _interrupt void inter() {processing}; /* function body */

_ _interrupt_brk void inter_b() {processing}; /* function body */

Note The interrupt request name of the software interrupt is “BRK_I.”

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required unless interrupt functions are supported.

• Modify the interrupt functions, if necessary, according to the method above.

From this C compiler to another C compiler

• #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.

• To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of

each compiler.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 349

(12) Interrupt functions

Interrupt Functions #pragma DI
#pragma EI

FUNCTIONS

• Codes DI and EI are output to an object and an object file is created.

• If the #pragma directive is missing, DI() and EI() are regarded as ordinary functions.

• If “DI();” is described at the beginning in a function (except for the declaration of an automatic variable, a

comment, or a preprocessing directive), the DI code is output before the preprocessing of the function

(immediately after the label of the function name).

• To output the code of DI after the preprocessing of the function, open a new block before describing “DI();”

(delimit this block with ‘{‘).

• If “EI();” is described at the end of a function (except for comments and preprocessing directives), the EI

code is output after the postprocessing of the function (immediately before the code RET).

• To output the EI code before the postprocessing of a function, close a new block after describing “EI();”

(delimit this block with ‘}’).

EFFECT

• A function disabling interrupts can be created.

USAGE

• Describe the #pragma DI and #pragma EI directives at the beginning of the C source. However, the

following statement and directives may precede the #pragma DI and #pragma EI directives.

• Comment statement

• Other #pragma directives

• Preprocessing directive that neither defines nor references a variable or function

• Describe DI(); or EI(); in the source in the same manner as a function call.

• DI and EI can be described in either uppercase or lowercase letters after #pragma.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM350

Interrupt Functions #pragma DI
#pragma EI

RESTRICTIONS

• When using these interrupt functions, DI and EI cannot be used as function names.

• DI and EI must be described in uppercase letters. If described in lowercase letters, they will be handled as

ordinary functions.

EXAMPLE

(C source 1)

#pragma DI

#pragma EI

void main ()

{

DI ();

Function body

EI ();

}

(Output object of compiler)

_main:

di

Preprocessing

Function body

Postprocessing

ei

ret

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 351

Interrupt Functions #pragma DI
#pragma EI

<To output DI after preprocessing and EI before postprocessing>

(C source 2)

#pragma DI

#pragma EI

void main ()

{

 {

DI();

Function body

EI();

 }

}

(Output object of compiler)

_main:

Preprocessing

di

Function body

ei

Postprocessing

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if interrupt functions are not used at all.

• When changing an ordinary function to an interrupt function, modify the program according to the method

above.

From this C compiler to another C compiler

Delete the #pragma DI and #pragma EI directives or invalidate these directives by separating them with

#ifdef. DI and EI can be used as ordinary function names (example: #ifdef_ _K4_ _ ... #endif).

When an ordinary function is to be used as an interrupt function, modify the program according to the

specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM352

(13) CPU control instruction

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

FUNCTION

• The following codes are output to an object to create an object file.

(1) Instruction for HALT operationNote 1

(2) Instruction for STOP operationNote 2

(3) BRK instruction

(4) NOP instruction

Notes 1. The setting of STOP mode and selection of the internal system clock is possible using the STBC

register. The C compiler reads STBC, checks the CK1/CK0 value of the internal system clock

selection, and accordingly outputs the instruction to set the value for HALT to STBC.

2. The C compiler reads STBC, checks the CK1/CK0 value of the internal system clock selection, and

accordingly outputs the instruction to set the value for STOP to STBC.

EFFECT

• The standby function of a microcontroller can be used with a C program.

• A software interrupt can be generated.

• The clock can continue without the CPU operating.

USAGE

• Describe the #pragma HALT, #pragma STOP, #pragma NOP, and #pragma BRK instructions at the

beginning of the C source.

• The following items can be described before the #pragma directive.

• Comment statement

• Other #pragma directive

• Preprocessing directive that neither defines nor references a variable or function

• The keywords following #pragma can be described in either uppercase or lowercase letters.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 353

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

• Describe as follows in uppercase letters in the C source in the same format as a function call.

(1) HALT();

(2) STOP();

(3) BRK();

(4) NOP();

RESTRICTIONS

• When this feature is used, HALT(), STOP(), BRK(), and NOP() cannot be used as function names.

• Describe HALT, STOP, BRK, and NOP in uppercase letters. If they are described in lowercase letters, they

are handled as ordinary functions.

EXAMPLE

(C source)

#pragma HALT

#pragma STOP

#pragma BRK

#pragma NOP

void main()

{

HALT();

STOP();

BRK();

NOP();

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM354

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

(Output object of compiler) With large model

@@CODE CSEG

_main :

; line 7 : HALT();

mov a,STBC

bt a,4,$$+12

bt a.5,$$+24

mov STBC,#01H

br $$+21

bt a.5,$$+9

mov STBC,#011H

br $$+12

mov STBC,#031H

br $$+6

mov STBC,#021H

; line 8 : STOP() ;

mov a,STBC

bt a.4,$$+12

bt a.5,$$+24

mov STBC,#02H

br $$+21

bt a.5,$$+9

mov STBC,#012H

br $$+12

mov STBC,#032H

br $$+6

mov STBC,#022H

; line 9 : BRK() ;

brk

; line 10 : NOP() ;

nop

ret

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 355

CPU Control Instructions #pragma HALT/STOP/BRK/NOP

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the CPU control instructions are not used.

• When the CPU control instructions are used, modify the program according to the method above.

From this C compiler to another C compiler

• If “#pragma HALT”, “#pragma STOP”, “#pragma BRK”, and “#pragma NOP” statements are deleted or

delimited with #ifdef, HALT, STOP, BRK, and NOP can be used as function names.

• To use these instructions as CPU control instructions, modify the program according to the specifications

of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM356

(14) callf functions

callf Functions callf/_ _callf

FUNCTION

• The callf instruction stores the body of a function in the callf area. This makes code shorter than ordinary call

instructions.

• If a function stored in the callf area is to be referenced without a prototype declaration, the function must be

called by an ordinary call instruction.

• The callee (the function to be called) is the same as an ordinary function.

EFFECT

• The object code can be shortened.

USAGE

• Add the callf attribute or _ _callf attribute to the beginning of a function at the time of the function declaration

as follows.

callf extern type-name function-name

_ _callf extern type-name function-name

RESTRICTIONS

• Functions declared with callf will be located in the callf entry area. At which address in the area each

function is to be located will be determined at the time of linking object modules. For this reason, when using

any callf function in an assembler source module, the routine to be created must be made “relocatable” using

symbols.

• A check on the number of callf functions is made at linking time.

• callf entry area: 800H to FFFH

• The number of functions that can be declared with the callf attribute is not limited.

• The total number of functions with the callf attribute is not limited as long as the first function is within the

range of [800H to FFFH].

• When the -ZA option is specified, only _ _callf is enabled.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 357

callf Functions callf/_ _callf

EXAMPLE

(C source 1) (C source 2)

(Output object of compiler) With large model

<C source 1>

EXTRN _fsub ;Declaration

Callf !_fsub ;Call

<C source 2> (to be allocate to callf entry area)

PUBLIC _fsub ;Declaration

@@CALF CSEG FIXED

_fsub: ;Function definition

 :

Function body

 :

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword callf/_ _callf is not used.

• When changing functions to callf functions, modify the program according to the method above.

From this C compiler to another C compiler

• #define must be used to allow callf functions to be handled as ordinary functions.

_ _callf extern int fsub();

void main ()

{

 int ret_val;

 ret_val = fsub();

}

_ _callf int fsub()

{

 int val;

 return val;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM358

(15) 16 MB expansion space utilization

16 MB Expansion Space Utilization
16 MB expansion -ML

FUNCTION

• An object file that can linearly access a 16 MB expansion space is created.

EFFECT

• The 16 MB expansion space can be accessed in the same manner as 16-bit addressing (64 KB) mode.

USAGE

• Specify the -ML option (default) during compilation.

RESTRICTIONS

• When the -MS option is specified at the time of startup:

Small model: Combined code/data block capacity of 16 KB

• When the -MM option is specified at the time of startup:

Medium model: Capacity of up to 1 MB for the code block and 16 KB for the data block

• When the -ML option is specified at the time of startup:

Large model: Combined code/data block capacity of 16 MB, including up to 1 MB for the code block and 16

MB for the data block.

EXAMPLE

(C source)

sreg int *ladr;

int *grob;

void main () {

 int atval;

 *ladr = atval;

 *grob = atval;

}

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 359

16 MB Expansion Space Utilization 16 MB expansion -ML

(Output object of compiler)

With small model

@@CODES CSEG BASE

_main :

push rp3 ;Preprocessing of function

movw ax,rp3

movw [_ladr],ax ;*ladr = atval

movw hl,!_grob

movw ax,rp3

movw [hl],ax ;*grob = atval

pop rp3 ;Postprocessing of function

ret

With medium model

@@CODE CSEG

_main:

push rp3 ;Preprocessing of function

movw de,_ladr

movw ax,rp3

movw [de],ax ;*ladr = atval

movw de,!!_grob

movw ax,rp3

movw [de],ax ;*grob = atval

pop rp3 ;Postprocessing of function

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM360

16 MB Expansion Space Utilization 16 MB expansion -ML

(Output object of compiler)

With large model

@@CODE CSEG

_main :

push rp3 ;Preprocessing of function

movw ax,rp3

movw [%_ladr],ax ;*ladr = atval

movg whl,!!_grob

movw [hl],ax ;*grob = atval

pop rp3 ;Postprocessing of function

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if it has been re-compiled with the -ML option added during compilation, when

the 16 MB expansion space is to be used.

From this C compiler to another C compiler

• The source program need not be modified if it is re-compiled with each compiler.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 361

(16) Allocation function

Allocation Function Allocation function -CS

FUNCTION

• With the medium model (when the -MM option is specified) or with the large model (when the -ML option is

specified), the allocation of the saddr area can be changed by using the -CS option.

EFFECT

• When the -CS15 option is specified, the code space can be continuously used.

USAGE

• The -CS option is specified during compilation.

The -CS option performs the following operation.

-CS0: Allocates saddr area to 0FD20H to 0FFFFH

-CS15/-CS0FH: Allocates saddr area to 0FFD20H to 0FFFFFH

-CSA: Does not check with compiler but with linker

RESTRICTIONS

• Use the startup routine included with to this compiler that specifies the location specified by the -CS option.

The LOCATION instruction is described in the startup routine (for details of the startup routine, refer to the

CC78K4 C Compiler Operation User’s Manual (U15557E)).

EXAMPLE

(C source)

void main () {

 /* function body */

}

(Output object of compiler)

 With large model (-ML) and location 0 (-CS0) specified

$CHGSFR (0)

$PROCESSOR(4026)

 ;Variable declaration etc.

@@CODE CSEG

_main:

 ;Function preprocessing

 ;Function body processing

 ;Function postprocessing

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM362

Allocation Function Allocation function -CS

With large model (-ML) and location 15 (-CS15) specified

$CHGSFR (15)

$PROCESSOR 4026)

 ;Variable declaration etc.

@@CODE CSEG

_main:

 ;Function preprocessing

 ;Function body processing

 ;Function postprocessing

 ret

With large model (-ML) and without compile check (-CSA) specified

$CHGSFRA

$PROCESSOR(4026)

 ;Variable declaration etc.

@@CODE CSEG

_main:

 ;Function preprocessing

 ;Function body processing

 ;Function postprocessing

ret

COMPATIBILITY

From another C compiler to this C compiler

• When using the medium model or large model, modification is not required if the location position is

specified by the -CS option during compilation and the source program is re-compiled.

From this C compiler to another C compiler

• The source program need not be modified if it is re-compiled with each compiler.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 363

(17) Absolute address access function

Absolute Address Access Function #pragma access

FUNCTION

• A code to access the ordinary RAM space is output to the object with direct inline expansion, not by function

call, and an object file is created.

• If the #pragma directive is not described, a function accessing an absolute address is regarded as an

ordinary function.

EFFECT

• A specific address in the ordinary memory space can be easily accessed using C description.

USAGE

• Describe the #pragma access directive at the beginning of the C source.

• Describe the directive in the source in the same format as a function call.

• The following items can be described before #pragma access.

. Comment statement

. Other #pragma directives

. Preprocessing directive that neither defines nor references a variable or function

• The keywords following #pragma can be described in either uppercase or lowercase letters.

The following four function names are available for absolute address accessing.

peekb, peekw, pokeb, pokew

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM364

Absolute Address Access Function #pragma access

[List of functions for absolute address accessing]

(a) unsigned char peekb (addr);

unsigned int addr; (small model)

unsigned long addr; (medium model/large model)

Returns 1-byte contents of address addr.

(b) unsigned int peekw (addr);

unsigned int addr; (small model)

unsigned long addr; (medium model/large model)

Returns 2-byte contents of address addr.

(c) void pokeb (addr, data);

unsigned int addr; (small model)

unsigned long addr; (medium model/large model)

unsigned char data;

Writes 1-byte contents of data to the position indicated by address addr.

(d) void pokew (addr, data);

unsigned int addr; (small model)

unsigned long addr; (medium model/large model)

unsigned int data;

Writes 2-byte contents of data to the position indicated by address addr.

RESTRICTIONS

• A function name for absolute address accessing must not be used.

• Describe functions for absolute address accessing in lowercase letters. Functions described in uppercase

letters are handled as ordinary functions.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 365

Absolute Address Access Function #pragma access

EXAMPLE

(C source)

#pragma access

char a;

int b;

void main ()

{

a = peekb(0x1234);

a = peekb(0xfe23);

b = peekw(0x1256);

b = peekw(0xfe68);

pokeb(0x1234, 5);

pokeb(0xfe23, 5);

pokew(0x1256, 100);

pokew(0xfe68, 100);

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM366

Absolute Address Access Function #pragma access

(Output object of compiler)

With large model

@@CODE CSEG

-main:

mov a, !01234H

mov !!_a,a

mov a, !0FE23H

mov !!_a,a

movw ax, !01256H

movw !!_b,ax

movw ax, 0FE68H

movw !!_b,ax

mov a, #05H ;5

mov !01234H,a

mov !0FE23H,a

movw ax, #064H ;100

movw !01256H,ax

movw !0FE68H,ax

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if a function for absolute address accessing is not used.

• Modify the program according to the method above if a function for absolute address accessing is used.

From this compiler to another C compiler

• Delete the “#pragma access” statement or delimit with #ifdef. The function name of absolute address

accessing can be used as a function name.

• When using a function for absolute address accessing, modify the program according to the specifications

of each compiler (#asm, #endasm, asm();,etc.)

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 367

(18) Bit field declaration

Bit Field Declaration Bit field declaration

(1) Extension of type specifier

FUNCTION

• The bit field of unsigned char type is not allocated straddling over a byte boundary.

• The bit field of unsigned int type is not allocated straddling over a word boundary, but can be allocated

straddling over a byte boundary.

• The bit fields of the same type are allocated in the same byte units (or word units). If the types are different,

the bit fields are allocated in different byte units (or word units).

EFFECT

• The memory can be saved, the object code can be shortened, and the execution speed can be improved.

USAGE

• As a bit field type specified, unsigned char type can be specified in addition to unsigned int type. Declare as

follows.

struct tag-name {

unsigned char field-name: bit-width;

unsigned char field-name: bit-width;

 :

unsigned int field-name: bit-width;

};

EXAMPLE

struct tagname {

unsigned char A:1;

unsigned char B:1;

 :

unsigned int C:2;

unsigned int D:1;

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM368

Bit Field Declaration Bit field declaration

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required.

• Change the type specifier to use unsigned char as the type specifier.

From this C compiler to another C compiler

• Modification is not required if unsigned char is not used as a type specifier.

• Change unsigned char, if it is used as a type specifier, to unsigned int.

 (2) Allocation direction of bit field

FUNCTION

• The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB side

when the -RB option is specified.

• If the -RB option is not specified, the bit field is allocated from the LSB side.

USAGE

• The -RB option is specified during compilation to allocate the bit field from the MSB side.

• Do not specify the option to allocate the bit field from the LSB side.

EXAMPLE 1

(Bit field declaration)

struct t {

unsigned char a:1;

unsigned char b:1;

unsigned char c:1;

unsigned char d:1;

unsigned char e:1;

unsigned char f:1;

unsigned char g:1;

unsigned char h:1;

};

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 369

Bit Field Declaration Bit field declaration

EXPLANATION

Because a through h are 8 bits or less, they are allocated in 1-byte units.

If the bit field is allocated to saddr2 or saddr1 area by the keywords sreg/_ _sreg/_ _sreg1, a bit manipulation

instruction is output, and codes can be reduced.

Figure 11-1. Bit Allocation by Bit Field Declaration (Example 1)

Bit allocation from MSB

with -RB option specified

Bit allocation from LSB

without -RB option specified

MSB LSB MSB LSB

a b c d e f g h h g f e d c b a

EXAMPLE 2

(Bit field declaration)

struct t {

char a;

unsigned char b:2;

unsigned char c:3;

unsigned char d:4;

Int e;

unsigned int f:5;

unsigned int g:6;

unsigned char h:2;

unsigned int i:2;

};

EXPLANATION

If the bit field is allocated to saddr2 or saddr1 area by the keywords sreg/_ _sreg/_ _sreg1, the code efficiency

can be improved.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM370

Bit Field Declaration Bit field declaration

Figure 11-2. Bit Allocation by Bit Field Declaration (Example 2) (1/2)

Bit allocation from MSB

with -RB option specified

Bit allocation from LSB

without -RB option specified

MSB LSB

b c Vacant a

1 0

Member a of char type is allocated to the first byte unit. b and c are allocated from the next byte unit. If the

vacancy has run short, the members are allocated to the next byte unit. Because the vacancy is 3 bits and d is 4

bits in this example, d is allocated to the next byte unit.

e d Vacant

3 2

g Vacant e

5 4

The 78K/IV Series has 1-byte alignment; therefore, e (2 bytes) can straddle over a byte boundary.

h Vacant f g

7 6

Because g is an unsigned int type bit field, it can be allocated across byte boundary. h is an unsigned char

type bit field; it is therefore allocated to the next byte unit, instead to the same byte unit as g, which is an

unsigned int type bit field.

h Vacant Vacant

9 8

i is an unsigned int type bit field and can be allocated to the next word unit.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

MSB LSB

Vacant c b a

1 0

e Vacant d

3 2

g f e

5 4

Vacant h Vacant g

7 6

Vacant Vacant i

9 8

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 371

Bit Field Declaration Bit field declaration

When the -RA option or -RP option is specified, the bit field is made 2-byte alignment. The location of the bit

field above is as follows.

Figure 11-2. Bit Allocation by Bit Field Declaration (Example 2) (2/2)

Bit allocation from MSB

with -RB option specified

Bit allocation from LSB

without -RB option specified

MSB LSB

b c Vacant a

1 0

e d Vacant

3 2

e e

5 4

f g g Vacant

7 6

Vacant h Vacant

9 8

i Vacant Vacant

11 10

MSB LSB

Vacant c b a

1 0

Vacant Vacant d

3 2

e e

5 4

Vacant g g f

7 6

Vacant Vacant h

9 8

Vacant Vacant i

11 10

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM372

Bit Field Declaration Bit field declaration

EXAMPLE 3

(Bit field declaration)

struct

char a;

unsigned int b:6;

unsigned int c:7;

unsigned int d:4;

unsigned char e:3;

unsigned int f:10;

unsigned int g:2;

unsigned int h:5;

unsigned int i:6;

};

Figure 11-3. Bit Allocation by Bit Field Declaration (Example 3) (1/2)

Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.

Since d is also a bit field of type unsigned int, it is allocated from the next word unit.

Vacant de Vacant eVacant Vacant

Since e is a bit field of type unsigned char, it is allocated to the next byte unit.

MSB LSB

c

Vacant b c

Vacant a c b a

dVacant Vacant c

MSB LSB

Bit allocation from MSB
with –RB option specified

Bit allocation from LSB
without –RB option specified

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 373

Bit Field Declaration Bit field declaration

Figure 11-3. Bit Allocation by Bit Field Declaration (Example 3) (2/2)

f and g, and h and i are each allocated to separate word units.

When the –RA option or –RP option is specified, the bit field is made 2-byte alignment. The location of the bit

field above is as follows.

aVacant aVacant

cVacant Vacant

dVacant dd Vacant Vacant

e VacantVacant

c bcVacant

eVacant Vacant

f f g Vacant Vacant g f f

i i hh i i VacantVacant

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

ffgVacant

h

f f g Vacant

i i Vacant Vacant i i h

MSB LSB MSB LSB

Bit allocation from MSB
with –RB option specified

Bit allocation from LSB
without –RB option specified

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM374

Bit Field Declaration Bit field declaration

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required.

From this C compiler to another C compiler

• Modification is required if the -RB option is used and coding is performed taking the bit field allocation

sequence into consideration.

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 375

(19) Changing compiler output section name

#pragma section… #pragma section

FUNCTION

• A compiler output section name is changed and a start address is specified. If the start address is omitted,

the default allocation is assumed. For the compiler output section name and default location, refer to

APPENDIX B LIST OF SEGMENT NAMES. In addition, the location of sections can be specified by omitting

the start address and using the link directive file at the time of link. For the link directives, refer to the

RA78K4 Assembler Package Operation User’s Manual.

• To change section names @@CALT and @@CALF with an AT start address specified, the callt and callf

functions must be described before or after the other functions in the source file.

• If data is described after the #pragma directive is described, that data is located in the data change section.

Another change instruction is possible, and if data is described after the rechange instruction, that data is

located in the rechange section. If data defined before a change is redefined after the change, it is located in

the rechanged section. Note that this is valid in the same way for static variables (within the function).

EFFECT

• Changing the compiler output section repeatedly in one file enables location of each section independently, so

that data can be located independently in the desired data unit.

USAGE

• Specify the name of the section to be changed, a new section name, and the start address of the section, by

using the #pragma directive as indicated below.

Describe this #pragma directive at the beginning of the C source.

Describe this #pragma directive after #pragma PC (processor type).

The following items can be described before this #pragma directive.

• Comment statement

• Preprocessing directive that neither defines nor references a variable or a function

However, all the sections in BSEG and DSEG, and the @@CNST, @@CNSTS and @@CNSTM sections in

CSEG can be described anywhere in the C source, and rechange instructions can be performed repeatedly. To

return to the original section name, describe the compiler output section name in the changed section name.

Declare as follows at the beginning of the file.

#pragma section compiler-output-section-name new section-name [AT start address]

• Of the keywords to be described after #pragma, be sure to describe the compiler output section name in

uppercase letters. section, AT can be described in either uppercase or lowercase letters, or in a combination

of these.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM376

#pragma section… #pragma section

• The format in which the new section name is to be described conforms to the assembler specifications (up to

eight letters can be used for a segment name).

• Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be

described as the start address.

[Hexadecimal numbers of C language]

0xn / 0xn...n

0Xn / 0xn...n

(n = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

[Hexadecimal numbers of assembler]

nH/n...nH

nh/n...nh

(n = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

• The hexadecimal number must start with a numeral.

Example To express a numeric value with a value of 255 in hexadecimal numbers, specify zero before F.

It is therefore 0FFH.

• When the -QR option is not specified, the start address specification is within the following range.

0XFE2C to 0XFE7F

• For sections other than the @@CNST, @@CNSTS and @@CNSTM sections in CSEG, that is, sections

which locate functions, this #pragma directive cannot be described at other than the beginning of the C

source (after the C text is described). If described, it causes an error.

• If this #pragma directive is executed after the C text is described, an assembler source file is created without

an object module file being created.

• If this #pragma directive is described after the C text is described, a file that contains this #pragma directive

and that does not have the C text (including external reference declarations for variables and functions)

cannot be included. This results in an error (refer to ERROR DESCRIPTION EXAMPLE 1).

• An #include statement cannot be described in a file that executes this #pragma directive following the C text

description. If described, it causes an error (refer to ERROR DESCRIPTION EXAMPLE 2).

• If #include statement follows the C text, this #pragma directive cannot be described after this description. If

described, it causes an error. (Refer to ERROR DESCRIPTION EXAMPLE 3).

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 377

#pragma section… #pragma section

EXAMPLE 1

Section name @@CODE is changed to CC1 and address 2400H is specified as the start address.

(C source)

#pragma section @@CODE CC1 AT 2400H

 void main()

 {

Function body

}

(Output object)

 CC1 CSEG AT 2400H

 _main:

Preprocessing

Function body

Postprocessing

ret

EXAMPLE 2

This example shows a description in which this #pragma directive is described following the C text. The

statement beginning with the double slashes (//) indicates the section to be located.

#pragma section @@DATA ??DATA

int a1; // ??DATA

_sreg int b1; // @@DATS

int c1 = 1; // @@INIT and @@R_INIT

const int d1 = 1; // @@CNST

#pragma section @@DATS ??DATS

int a2; // ??DATA

_sreg int b2; // ??DATS

int c2 = 2; // @@INIT and @@R_INIT

const int d2 = 2; // @@CNST

#pragma section @@DATA ??DATA2 // ??DATA is closed automatically and ??DATA2 becomes valid.

int a3; // ??DATA2

_sreg int b3; // ??DATS

int c3 = 3; // @@INIT and @@R_INIT

const int d3 = 3; // @@CNST

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM378

#pragma section… #pragma section

#pragma section @@DATA @@DATA // ??DATA2 is closed and processing returns to the default

// @@DATA.

#pragma section @@INIT ??INIT

#pragma section @@R_INIT ??R_INIT

//If both names @@INIT and @@R_INIT are not changed,

// ROMization becomes invalid.

int a4; // @@DATA

_sreg int b4; // ??DATS

int c4 = 4; // ??INIT and ??R_INIT

const int d4 = 4; // @@CNST

#pragma section @@INIT @@INIT

#pragma section @@R_INIT @@R_INIT

// ??INIT and ??R_INIT are closed and return to the defaults

#pragma section @@BITS ??BITS

 _boolean e4; // ??BITS

#pragma section @@CNST ??CNST

 char*const p = “Hello”; // both p and “Hello” ??CNST

EXAMPLE 3

#pragma section @@INIT ??INIT1

#pragma section @@R_INIT ??R_INT1

#pragma section @@DATA ??DATA1

char c1;

int i2;

#pragma section @@INIT ??INIT2

#pragma section @@R_INIT ??R_INT2

#pragma section @@DATA ??DATA2

char c1;

int i2 = 1;

#pragma section @@DATA ??DATA3

#pragma section @@INIT ??INIT3

#pragma section @@R_INIT ??R_INT3

 extern char c1; // ??DATA3

int i2; // ??INIT3 and ??R_INT3

#pragma section @@DATA ??DATA4

#pragma section @@INIT ??INIT4

#pragma section @@R_INIT ??R_INT4

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 379

#pragma section… #pragma section

EXAMPLE 4

(Method to specify the location of a section by link directives)

1. Change the section name whose location is to be changed in the C source.

(In this example, @@DATA is changed to DAT1, and @@INIT is changed to DAT2)

(C source)

#pragma section @@DATA DAT1

#pragma section @@INIT DAT2

unsigned int d1,d2,d3;

unsigned long l1, l2;

unsigned int i =1;

 :

(Output object of compiler)

@@R_INT CSEG ;

DW 01H ;1

DAT2 DSEG

_I : DS (2)

DAT1 DSEG

_d1 : DS (2)

_d2 : DS (2)

_d3: DS (2)

_l1 : DS (4)

_l2 : DS (4)

2. Create a link directive file.

(Link directive file lk78k4.job)

memory EXTRAM1:(0F0000h , 01000h)

memory EXTRAM2:(0F1000h , 01000h)

:

merge DAT1 : = EXTRAM1

merge DAT2 : AT(0F1000h) = EXTRAM2

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM380

#pragma section… #pragma section

3. Link by specifying the link directive file using the linker option -D.

> lk78k4 s4.rel sample.rel -BCl4.lib -Dlk78k4.job -S

The following example explains the restrictions on describing this #pragma directive following the C text.

ERROR DESCRIPTION EXAMPLE 1

a1.h

#pragma section @@DATA ??DATA1 // File with a #pragma section only.

a2.h

extern int func1 (void);

#pragma section @@DATA ??DATA2 // File where there is C text and this #pragma directive follows

// after.

a3.h

#pragma section @@DATA ??DATA3 // File with a #pragma section only.

a4.h

#pragma section @@DATA ??DATA3

extern int func2 (void); // File that includes C text.

a.c

#include “a1.h”

#include “a2.h”

#include “a3.h” // ← Error.

// There is C text in a2.h and after that this #pragma directive is

// included, so the file that includes this #pragma directive only, //

a3.h, cannot be included.

#include “a4.h”

 CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 381

#pragma section… #pragma section

ERROR DESCRIPTION EXAMPLE 2

b1.h

const int i;

b2.h

const int j;

#include “b1.h” // There is C text and there is no file (b.c) where this #pragma

// directive is executed after it, so there is no error.

b.c

const int k;

#pragma section @@DATA ??DATA1

#include “b2.h” // ←Error.

// There is C text, and in the file following it where this #pragma

// directive is executed (b.c), a subsequent #include statement

// cannot be described.

ERROR DESCRIPTION EXAMPLE 3

c1.h

extern int j;

#pragma section @@DATA ??DATA1 // This #pragma directive is included and processed before c3.h

processing, so there is

// no error.

c2.h

extern int k;

#pragma section @@DATA ??DATA2 // ← Error.

// There is C text in c3.h and after that there is an #include

// statement, so this #pragma directive cannot be included after

// that.

c3.h

#include “c1.h”

extern int i;

#include “c2.h”

#pragma section @@DATA ??DATA3 // ← Error.

// There is C text, and after that there is an #include statement, so

// this #pragma directive cannot be included after that.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM382

#pragma section… #pragma section

c.c

#include “c3.h”

#pragma section @@DATA??DATA4 // ← Error.

// There is C text in c3.h and after that there is an #include

// statement, so this #pragma directive cannot be included after

// that.

int i;

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the section name change function is not supported.

• When changing the section name, modify the program according to the method above.

From this C compiler to another C compiler

• Delete #pragma section ... or delimit it with #ifdef.

• When changing the section name, modify the program according to the specifications of each compiler.

RESTRICTIONS

• A section name that indicates a segment for the vector table (e.g., @@VECT02) must not be changed.

• If two or more sections with the same name as the one specifying the AT start address exist in another file, a

link error occurs.

• When changing compiler output section names @@DATS, @@BITS, and @@INIS, limit the range of the

specified address within saddr2 area.

(saddr2 area)

0xFD20 to 0xFDFF (With the small model, or when -CS0 of the medium model/large model is specified)

0xFFD20 to 0xFFDFF (When -CS15 of the medium model/large model is specified or default)

• When changing compiler output section names @@DATS1, @@BITS1, and @@INIS1, limit the range of the

specified address within saddr1 area.

(saddr1 area)

0xFE00 to 0xFEFF (With the small model, or when -CS0 of the medium model/large model is specified)

0xFFE00 to 0xFFEFF (When -CS15 of the medium model/large model is specified or default)

Remark Of the areas shown above, 0xXFE80 to 0xXFEFF (When -CS0 is specified: X = 0, when -CS15 is

specified: X = F) are areas for registers. Care must be taken when specifying these areas.

• When the -CSA option is specified, the following addresses cannot be specified for the start address

specification.

0xFD00 to 0xFEFF, 0xFFD00 to 0xFFEFF

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 383

#pragma section… #pragma section…

CAUTION

• A section is equivalent to a segment of the assembler.

• The compiler does not check whether the new section name is duplicated with another symbol. Therefore,

the user must check that the section name is not duplicated by assembling the output assemble list.

• If a section name (*) related to ROMization is changed by using #pragma section, the startup routine must be

changed by the user on his/her own responsibility.

(*) ROMization-related section name

@@R_INIT, @@R_INIS, @@RSINIT, @@RSINIS

@@INIT, @@INIS, @@RSINS1, @@R_INS1, @@INIS1

The startup routine to be used when a section related to ROMization is changed, and an example of changing

the end module are described below.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM384

#pragma section… #pragma section…

[Examples of Changing Startup Routine in Connection with Changing Section Name Related to ROMization]

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and end module (rom.asm) in

connection with changing a section name related to ROMization.

(C source)

#pragma section @@R_INIT RTT1

#pragma section @@INIT TT1

If a section name that stores an external variable with an initial value has been changed by describing #pragma

section indicated above, the user must add to the startup routine the initial processing of the external variable to

be stored in the new section.

Therefore, add the declaration of the first label of the new section and the portion that copies the initial value to

the startup routine, and add the portion that declares the end label to the end module, as described below.

RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the

names of the first and end labels of section TT1.

(Changing startup routine cstartx.asm)

(1) Add the declaration of the end label of the section whose name has been changed.

EXTRN _main, _@STBEG, _hdwinit

EXTRN RTT1_E, TT1_E ← Add EXTRN declaration of RTT1_E, TT1_E

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 385

#pragma section… #pragma section…

(2) Add the portion that copies the initial value from the RTT1 section whose name has been changed to the TT1

section.

The initial value copying processing codes differ depending on the memory model. Initial value copying

processing can easily be added by copying the corresponding portion (initial value copying processing code)

from the startup routine referring to the memory model specified by $_IF, changing the symbols of the changed

section _@R_INIT, _?R_INIT, etc. to RTT1_S, RTT1_E, etc., and adding the changed branch symbol (to LTT1,

etc.).

:

MOV [DE+],A

BR $LDATS11

LDATS12 :

; RTT1-> part added with TT1 copying processing (start)

MOVG TDE,#TT1_S

MOVG WHL,#RTT1_S

LTT1 :

SUBG WHL,#RTT1_E

BE $LTT2

ADDG WHL,#RTT1_E

MOV A,[HL+]

MOV [DE+],A

BR $LTT1

LTT2 :

; RTT1 -> part added with TT1 copying processing (end)

$_IF(SMALL)

CALL !_main ;main();

$ELSE

CALL !!_main ;main();

$ENDIF

BR $$

Add portion that copies initial value

from RTT1 section to TT1 section

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM386

#pragma section… #pragma section…

(3) Set the first label of the section whose name has been changed. For the attribute of segment, refer to

APPENDIX B LIST OF SEGMENT NAMES.

 :

$_IF(SMALL)

@@RSINS1 CSEG BASE

$ELSE

@@R_INS1 CSEG

$ENDIF

_@R_INS1:

@@INIS1 DSEG SADDR

_@INIS1:

@@DATS1 DSEG SADDR

_@DATS1:

RTT1 CSEG

RTT1_S: Add setting of label indicating beginning of section RTT1

TT1 DSEG

TT1_S: Add setting of label indicating beginning of section TT1

$_IF(SMALL) BASE

@@CALFS CSEG FIXEDA

@@CNSTS CSEG BASE

$ENDIF

$_IF(MEDIUM)

@@CODE CSEG

 :

;

END

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 387

#pragma section… #pragma section…

(Changing end module rom.asm)

(1) Declare the label indicating the end of the section whose name has been changed.

:

$ELSE

NAME @rom

$ENDIF

:

PUBLIC _?R_INIT,_?R_INIS

PUBLIC _?INIT,_?DATA,_?INIS,_?DATS

PUBLIC _?R_INS1,_?INIS1,_?DATS1

PUBLIC RTT1_E, TT1_E ← Add RTT1_E and TT1_E

;

$ELSE

@@INIT DSEG

_?INIT:

@@DATA DSEG

_?DATA:

$ENDIF

@@INIS DSEG SADDR2

_?INIS:

@@DATS DSEG SADDR2

_?DATS:

@@R_INS1 CSEG

_?R_INS1:

@@INIS1 DSEG SADDR

_?INIS1:

@@DATS1 DSEG SADDR

_?DATS1:

$ENDIF

;

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM388

#pragma section… #pragma section…

(2) Set the label indicating the ends.

 :

RTT1 CSEG Add setting of label indicating end of section RTT1

RTT1_E:

TT1 DSEG Add setting of label indicating end of section TT1

TT1_E:

 ;

 END

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 389

(20) Binary constant

Binary Constant Binary constant 0bxxx

FUNCTION

• Describes binary constants at the location where integer constants can be described.

EFFECT

• Constants can be described in bit strings without being replaced with octal or hexadecimal numbers.

Readability is also improved.

USAGE

• Describe binary constants in the C source. The following shows the description method for binary constants.

0b binary number

0B binary number

Remark Binary number: Either ‘0’ or ‘1’

• A binary constant has 0b or 0B at the start and is followed by the list of numbers 0 or 1.

• The value of a binary constant is calculated with 2 as the base.

• The type of a binary constant is the first one that can express the value in the following list.

. Non-subscripted binary number: int,

unsigned int,

long int

unsigned long int

. Subscripted u or U: unsigned int,

unsigned long int

. Subscripted l or L: long int

unsigned long int

. Subscripted u or U and subscripted l or L: unsigned long int

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM390

Binary Constant Binary constant 0bxxx

EXAMPLE

(C source)

unsigned i;

i = 0b11100101;

Output object of compiler is the same as the following case.

Unsigned i;

i = 0xE5;

COMPATIBILITY

From another C compiler to this C compiler

• Modifications are not needed.

From this C compiler to another C compiler

• Modification is required to meet the specifications of the compiler if the compiler supports binary constants.

• Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the compiler

does not support binary constants.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 391

(21) Module name changing function

Module Name Changing Function #pragma name

FUNCTION

• Outputs the first eight letters of the specified module name to the symbol information table in an object module

file.

• Outputs the first eight letters of the specified module name to the assemble list file as symbol information

(MOD_NAM) when –G2 is specified and as the NAME quasi directive when -NG is specified.

• If a module name with nine or more letters is specified, a warning message is output.

• If unauthorized letters are described, an error occurs and the processing is aborted.

• If more than one of this #pragma directive exists, a warning message is output, and whichever is described

later is enabled.

EFFECT

• The module name of an object can be changed to any name.

USAGE

• The following shows the description method.

#pragma name module name

A module name must consist of the characters that the OS authorizes as a file name except ‘(‘ ‘)’. Upper case

and lowercase letters are distinguished.

EXAMPLE

#pragma name module1

 :

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not support the module name changing function.

• When changing a module name, modify the program according to the method above.

From this C compiler to another C compiler

• Delete #pragma name … or delimit it with #ifdef.

• When changing a module name, modify the program according to the specification of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM392

(22) Rotate function

Rotate Function #pragma rot

FUNCTION

• Outputs the code that rotates the value of an expression to the object with direct inline expansion instead of

function call and generates an object file.

• If there is not a #pragma directive, the rotate function is regarded as an ordinary function.

EFFECT

• The rotate function can be realized using C source or ASM description without describing the processing to

perform rotate.

USAGE

• Describe in the source in the same format as a function call. There are the following four function names.

rorb, rolb, rorw, rolw

[List of functions for rotate]

(a) unsigned char rorb (x, y) ;

unsigned char x ;

unsigned char y ;

Rotates x to the right y times.

(b) unsigned char rolb (x, y) ;

unsigned char x ;

unsigned char y ;

Rotates x to the left y times.

(c) unsigned int rorw (x, y) ;

unsigned int x ;

unsigned char y ;

Rotates x to the right y times.

(d) unsigned int rolw (x, y)

unsigned int x ;

unsigned char y ;

Rotates x to the left y times.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 393

Rotate Function #pragma rot

• Declare the use of the function for rotate by the #pragma rot directive of the module.

However, the following items can be described before #pragma rot.

• Comments

• Other #pragma directives

• Preprocessing directives that neither define nor reference variables or functions.

• Keywords following #pragma can be described in either uppercase or lowercase letters.

EXAMPLE

(C source)

#pragma rot

unsigned char a = 0x11;

unsigned char b = 2;

unsigned char c;

void main () {

c = rorb(a, b);

}

(Output assembler source) with large model

_main:

mov c,!!_b

mov a,!!_a

ror a,1

dbnz c,$$-2

mov !!_c,a

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM394

Rotate Function #pragma rot

RESTRICTIONS

• The function names for rotate cannot be used as the function names.

• The function names for rotate must be described in lowercase letters. If the functions for rotate are described

in uppercase letters, they are handled as ordinary functions.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not use the functions for rotate.

• When changing to functions for rotate, modify the program according to the method above.

From this C compiler to another C compiler

• Delete the #pragma rot statement or delimit it with #ifdef.

• When using as a function for rotate, modification is required according to the specification of each compiler

(#asm, #endasm or asm() ; , etc.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 395

(23) Multiplication function

Multiplication Function #pragma mul

FUNCTION

• Outputs the code that multiplies the value of an expression to an object with direct inline expansion instead of

function call and generates an object file.

• If there is not a #pragma directive, the multiplication function is regarded as an ordinary function.

EFFECT

• Codes utilizing the data size of the multiplication instruction I/O are generated. Therefore, codes with faster

execution speed and smaller size than the description of ordinary multiplication expressions can be

generated.

USAGE

• Describe in the same format as that of a function call in the source. There are the following three functions for

multiplication.

mulu, muluw, mulw

[List of multiplication functions]

(a) unsigned int mulu (x, y);

unsigned char x;

unsigned char y;

Performs unsigned multiplication of x and y.

(b) unsigned long muluw (x, y);

unsigned int x;

unsigned int y;

Performs unsigned multiplication of x and y.

(c) long mulw (x, y);

int x;

int y;

Performs signed multiplication of x and y.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM396

Multiplication Function #pragma mul

• Declare the use of functions for multiplication with the #pragma mul directive of the module.

However, the following items can be described before #pragma mul.

• Comments

• Other #pragma directives

• Preprocessing directives that neither define nor reference variables or functions.

• Keywords following #pragma can be described in either uppercase or lowercase letters.

RESTRICTIONS

• Multiplication functions are handled as ordinary function if the target device does not have multiplication

instructions.

• The function names for multiplication cannot be used as the function names (when #pragma mul is declared).

• The functions for multiplication must be described in lowercase letters. If they are described in uppercase

letters, they are handled as ordinary function.

EXAMPLE

(C source)

#pragma mul

unsigned char a = 0x11;

unsigned char b = 2;

unsigned int I;

void main()

{

i = mulu(a, b);

}

(Output object of compiler)

_main:

mov a,!!_b

mov b,!!_a

mulu b

movw !!_i,ax

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 397

Multiplication Function #pragma mul

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not use the functions for multiplication.

• When changing to functions for multiplication, modify the program according to the method above.

From this C compiler to another C compiler

• Delete the #pragma mul statement or delimit it with #ifdef. Function names for multiplication can be used

as the function names.

• When using as functions for multiplication, modification is required according to the specification of each

compiler (#asm, #endasm or asm() ;, etc.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM398

(24) Division function

Division Function #pragma div

FUNCTION

• Outputs the code that divides the value of an expression to an object with direct inline expansion instead of

function call and generates an object code file.

• If there is not a #pragma directive, the function for division is regarded as an ordinary function.

EFFECT

• Codes utilizing the data size of the division instruction I/O are generated. Therefore, codes with faster

execution speed and smaller size than the description of ordinary division expressions can be generated.

USAGE

• Describe in the same format as that of a function call in the source. There are the following two functions for

division.

divuw, moduw

[List of division functions]

(a) unsigned int divuw(x, y);

unsigned int x;

unsigned char y;

Performs unsigned division of x and y and returns the quotient.

(b) unsigned char moduw(x, y);

unsigned int x;

unsigned char y;

Performs unsigned division of x and y and returns the remainder.

• Declare the use of the functions for division with the #pragma div directive of the module.

However, the following items can be described before #pragma div.

• Comments

• Other #pragma directives

• Preprocessing directives that neither define nor reference variables or functions.

• Keywords following #pragma can be described in either uppercase or lowercase letters.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 399

Division Function #pragma div

RESTRICTIONS

• The division function is handled as an ordinary function if the target device does not have division instructions.

• The function names for division cannot be used as the function names.

• The function names for division must be described in lowercase letters. If they are described in uppercase

letters, they are handled as ordinary functions.

EXAMPLE

(C source)

#pragma div

unsigned int a = 0x1234;

unsigned char b = 0x12;

unsigned char c;

unsigned int I;

void main () {

i = divuw(a, b);

c = moduw(a, b);

}

 (Output object of compiler) With large model

_main:

mov b,!!_b

movw ax,!!_a

divuw b

movw !!_i,ax

mov b,!!_b

movw ax,!!_a

divuw b

mov !!_c,b

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not use the functions for division.

• When changing to functions for division, modify the program according to the method above.

From this C compiler to another C compiler

• Delete the #pragma div statement or delimit it with #ifdef. The function names for division can be used

as the function names.

• When using as a function for division, modification is required according to the specification of each

compiler (#asm, #endasm or asm() ; , etc.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM400

(25) Data insertion function

Data Insertion Function #pragma opc

FUNCTION

• Inserts constant data into the current address.

• When there is not a #pragma directive, the function for data insertion is regarded as an ordinary function.

EFFECT

• Specific data and instructions can be embedded in the code area without using the ASM statement.

When ASM is used, an object cannot be obtained without going through the assembler. On the other hand, if

the data insertion function is used, an object can be obtained without going through the assembler.

USAGE

• Describe using uppercase letters in the source in the same format as that of a function call.

• The function name for data insertion is _ _OPC.

[List of data insertion functions]

(a) void _ _OPC (unsigned char x,…);

Insert the value of the constant described in the argument to the current address.

Arguments can describe only constants.

• Declare the use of functions for data insertion with the #pragma opc directive.

However, the following items can be described before #pragma opc.

• Comments

• Other #pragma directives

• Preprocessing directives that neither define nor reference variables or functions.

• Keywords following #pragma can be described in either uppercase or lowercase letters.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 401

Data Insertion Function #pragma opc

RESTRICTIONS

• The function names for data insertion cannot be used as the function names (when #opc is specified).

• _ _OPC must be described in uppercase letters. If it is described in lowercase letters, it is handled as an

ordinary function.

EXAMPLE

(C source)

#pragma opc

void main () {

 _ _OPC(0xBF);

 _ _OPC(0xA1, 0x12);

 _ _OPC(0x10, 0x34, 0x12);

}

(Output object of compiler)

_main:

; line 4 : _ _OPC (0xBF);

DB 0BFH

; line 5 : _ _OPC (0xA1, 0x12);

DB 0A1H

DB 012H

; line 6 : _ _OPC (0x10, 0x34, 0x12);

DB 010H

DB 034H

DB 012H

ret

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not use the functions for data insertion.

• When changing to functions for data insertion, modify the program according to the method above.

From this C compiler to another C compiler

• Delete the #pragma opc statement or delimit it with #ifdef.

• Function names for data insertion can be used as function names. When using as a function for data

insertion, modification is required according to the specification of each compiler (#asm, #endasm or

asm() ; , etc.).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM402

(26) Interrupt handler for real-time OS (RTOS)

Interrupt Handler for RTOS #pragma rtos_interrupt ...

FUNCTION

• Interprets the function name specified by the #pragma rtos_interrupt directive as the interrupt handler for the

78K/IV Series RTOS (real-time OS) RX78K/IV.

• Registers the address of the described function name to the interrupt vector table for the specified interrupt

request name.

• When a stack change is specified, the stack pointer is changed to the location where the offset is added to the

array name symbol. The area of the array name is not secured by the #pragma directive. It needs to be

defined separately as a global unsigned char type array.

The two system call calling functions ret_int/ret_wup can be called in the interrupt handler for RTOS (for the

details of the system call calling function, refer to the List of RTOS System Call Calling Functions described

later).

If the prototype declaration or the entity definition of ret_int/ret_wup and ret_int/ret_wup are called outside

the interrupt handler for RTOS, an error occurs.

The two RTOS system call calling functions ret_int/ret_wup are called by an unconditional branch instruction.

If there is neither ret_int nor ret_wup in the interrupt handler for RTOS, an error occurs.

If the interrupt request name and thereafter is omitted, only the two functions ret_int/ret_wup are enabled.

The interrupt handler for RTOS generates codes in the following order.

(1) Saves all the registers

(2) Changes the stack pointer (only when stack change is specified)

(3) Secures the local variable area (only when there is a local variable)

(4) The function body

(5) Releases the local variable area (only when there is a local variable)

(6) Sets back the stack pointer (only when stack change is specified)

(7) Restores all the registers

(8) reti

For ret_int/ret_wup described in the middle of the function, the codes in (5) and (6) are generated immediately

before the unconditional branch instruction each time.

If a function ends with ret_int/ret_wup, the codes in (7) and (8) are not generated.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 403

Interrupt Handler for RTOS #pragma rtos_interrupt ...

EFFECT

• The interrupt handler for RTOS can be described at the C source level.

• Because the interrupt request name is identified, the address of the vector table does not need to be

identified.

USAGE

• The interrupt request name, function name, and stack change is specified by the #pragma directive.

• This #pragma directive is described at the start of the C source.

When #pragma PC (type) is described, the main #pragma directive is described after #pragma PC.

The following items can be described before #pragma directive.

• Comments

• Preprocessing directives that neither define nor reference variables or functions.

#pragma∆rtos_interrupt [∆ Interrupt request name ∆ function name ∆ [stack change specification]]

Remark Stack change specification: SP = array name [+ offset location]

• Of the keywords to be described following #pragma, the interrupt request name must be described in

uppercase letters. The other keywords can be described either in uppercase or lowercase letters.

[List of RTOS system call calling functions]

(1) void ret_int ();

Calls RTOS system call ret_int.

(2) void ret_wup (x);

char *x;

Calls RTOS system call ret_wup with x as an argument.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM404

Interrupt Handler for RTOS #pragma rtos_interrupt ...

RESTRICTIONS

• Interrupt request names are described in uppercase letters.

• Software interrupts and non-maskable interrupts cannot be specified for the interrupt request names. If

specified so, an error occurs.

• A duplication check on interrupt request names will be made within only one module.

• If an interrupt (the same or another interrupt) is generated in duplicate during vector interrupt processing due

to the contents of the priority specification flag register, interrupt mask flag register, etc., if the stack change is

specified, the contents of the stack are updated, which may cause problems. However, this cannot checked

by the compiler, so care must be taken.

• callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _interrupt/_ _interrupt_brk/_ _pascal/_ _flash cannot be

specified for the interrupt handler for RTOS.

The RTOS system call calling function names ret_int/ret_wup cannot be used for the function names.

If the functions that specified the stack change via the #pragma rtos_interrupt specification are not defined

in the same module, a warning is output and the stack change specification is ignored.

The interrupt handler for RTOS is not supported when the static model is specified.

EXAMPLE

(a) When stack change is not specified

(C source)

#pragma rtos_interrupt INTP0 intp

int I;

void intp () {

 int a;

 a = 1;

 if (i == 1) {

 ret_int();

 }

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 405

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(Output object of compiler)

When -ML, -QV is specified (default)

@@BASE CSEG BASE

_intp:

push whl ;Saves register

push tde

push uup

push vvp

push ax,bc,rp2,rp3

movw rp3,#01H ;Allocates RP3 to variable a Note

movw ax,!!_i

cmpw ax,rp3

bne $L0003

br !!_ret_int

L0003;

pop ax,bc,rp2,rp3 ;Restores register

pop vvp

pop uup

pop tde

pop whl

reti

@@VECT06 CSEG AT 0006H

_@vect06:

DW _intp

Note When the -QV option is not specified, the securing/releasing codes of the local variables are output after

saving the register/before restoring the register, respectively.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM406

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(b) When the stack change is specified

(C source)

#pragma rtos_interrupt INTP0 intp sp=buff+10

int I;

unsigned char buff[10];

extern unsigned short TaskID1;

void intp () {

int a;

a = 1;

if (i == 1) {

ret_wup (&TaskID1);

}

}

(Output object of compiler)

When -ML, -QV is specified (default)

@@BASE CSEG BASE

_intp :

push whl ;Saves register

push tde

push uup

push vvp

push ax,bc,rp2,rp3

movg whl,sp

movg sp,#_buff+10 ;Changes stack pointer

push whl

movw rp3,#01H ;Allocates RP3 to variable a Note

movw ax,!!_;

cmpw ax,rp3

bne $L0003

movg uup,#_TaskID1

Note When the -QV option is not specified, the securing/releasing codes of the local variable area are output.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 407

Interrupt Handler for RTOS #pragma rtos_interrupt ...

(Output object of compiler)

When -ML, -QV is specified (default)

pop whl ;Sets back stack pointer

movg sp,whl

br !!_ret_wup

L0003 :

pop whl ;Sets back stack pointer

movg sp,whl

pop ax,bc,rp2,rp3 ;Restores register

pop vvp

pop uup

pop tde

pop whl

reti

@@VECT06 CSEG AT 0006H

_@vect06:

DW _intp

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not support the interrupt handler for RTOS.

• When changing to the interrupt handler for RTOS, modify the program according to the method above.

From this C compiler to another C compiler

• Handled as an ordinary function if the #pragma rtos_interrupt specification is deleted.

• When using as an interrupt handler for RTOS, modification is required according to the specification of each

compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM408

(27) Interrupt handler qualifier for real-time OS (RTOS)

Interrupt Handler Qualifier for RTOS __rtos_interrupt

FUNCTION

• The function declared with the _ _rtos_interrupt qualifier is interpreted as an interrupt handler for RTOS.

• The two RTOS system call calling functions ret_int/ret_wup can be called in the function declared with the

keywords _ _rtos_interrupt (for details of the RTOS system call calling functions, refer to List of RTOS

System Call Calling Functions described later).

If the prototype declaration or the entity definition of ret_int/ret_wup and ret_int/ret_wup are called outside

the interrupt handler for RTOS, an error occurs.

• The functions to call the two RTOS system call calling functions ret_int/ret_wup are called by an

unconditional branch instruction.

• If there is neither ret_int nor ret_wup in the interrupt handler for RTOS, an error occurs.

EFFECT

• The setting of the vector table and the definition of the interrupt handler function for RTOS can be described in

separate files.

USAGE

• _ _rtos_interrupt is added to the qualifier of the interrupt handler for RTOS.

_ _rtos_interrupt void func () { Processing }

[List of the system call calling functions for RTOS]

(a) void ret_int () ;

Calls system call ret_int for RTOS.

(b) void ret_wup (x) ;

char *x ;

Calls system call ret_wup for RTOS with x as an argument.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 409

Interrupt Handler Qualifier for RTOS __rtos_interrupt

RESTRICTIONS

callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/ _ _interrupt/_ _interrupt_brk/ _ _ pascal/_ _ flash cannot be

specified for the interrupt handler for RTOS.

• The RTOS system call calling function names ret_int/ret_wup cannot be used for the function names.

CAUTIONS

• Vector addresses cannot be set only by declaring this qualifier.

The setting of the vector address must be performed separately by the #pragma directive, assembler

description, etc.

• When the interrupt handler for RTOS is defined in the same file as the one in which the #pragma

rtos_interrupt ··· is specified, the function name specified with #pragma rtos_interrupt is judged as an

interrupt handler for RTOS even if this qualifier is not described.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not support interrupt handler for RTOS.

• When changing to interrupt handler for RTOS, modify the program according to the method above.

From this C compiler to another C compiler

• Changes can be made by #define (for details, refer to 11.6 Modifications of C Source). By these

changes, interrupt handler qualifiers for RTOS are handled as ordinary variables.

• When using as an interrupt handler for RTOS, modification is required according to the specification of

each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM410

(28) Task function for real-time OS (RTOS)

Task Function for RTOS #pragma rtos_task

FUNCTION

• The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.

• If the function name is specified and the entity definition is not in the same file, an error occurs.

• The preprocessing of the task function for RTOS does not save the registers for frame pointer/register

variables. The postprocessing is not output.

• The following RTOS system call calling functions can be used.

[RTOS system call calling functions]

(a) void ext_tsk (void);

Calls RTOS system call ext_tsk.

However, when ext_tsk is called in the ext_tsk prototype declaration or entity definition, interrupt function, or

interrupt handler for RTOS, an error occurs.

• The RTOS system call calling function of ext_tsk is called by an unconditional branch instruction. If ext_tsk

is issued after the function, the postprocessing is not output.

• When there is no ext_tsk in the task function for RTOS and the -W2 option is specified, a warning message is

output.

EFFECT

• The task function for RTOS can be described at the C source level.

• The saving and postprocessing of the register frame pointer/register variable are not output, so the code

efficiency is improved.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 411

Task Function for RTOS #pragma rtos_task

USAGE

• Specifies the function name for the following #pragma directives.

• The #pragma directives are described at the start of the C source.

However, the following items can be described before the #pragma directive.

• Comments

• Preprocessing directives that neither define nor reference variables or functions.

• Keywords following #pragma can be described either in uppercase or lowercase letters.

#pragma∆rtos_task [∆task-function-name]

RESTRICTIONS

• callt/callf/noauto/norec/_ _callt/_ _callf/_ _leaf/_ _interrupt/_ _interrupt brk/_ _rtos_interrupt/ _ _ pascal/_ _

flash cannot be specified for the task function for RTOS.

• The task function for RTOS cannot be called in the same manner as ordinary functions.

The RTOS system call calling function name ext_tsk cannot be used for a function name.

The task function for RTOS is not supported when the medium model is specified.

EXAMPLE

(C source)

#pragma rtos_task func

void main () {

int a;

a = 1;

ext_tsk ();

}

void func () {

register int r;

int x;

x = 1;

r = 2;

ext_tsk ();

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM412

Task Function for RTOS #pragma rtos_task

(Output object of compiler)

When -ML, -QV is specified (default)

@@CODE CSEG

_main :

push rp3

movw rp3,#01H ;1

br !!_ext_tsk ;Epilogue is not output.

_func : ;Frame pointer is not saved.

movw up,#01H ;1

movw rp3,#02H ;2

br !!_ext_tsk ;Epilogue is not output.

END

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the compiler does not support the task function for RTOS.

• When changing to the task function for RTOS, modify the program according to the method above.

From this C compiler to another C compiler

If the #pragma rtos_task specification is deleted, the RTOS task function is used as an ordinary function.

To use as RTOS task function, modification is required according to the specification of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 413

(29) Changing function call interface

Changing Function Call Interface -ZO

FUNCTION

• Arguments are passed in accordance with the former function interface specifications (in CC78K4 V1.00

compatible products, only the stack is used). For details of the function interface, refer to 11.7 Function Call

Interface.

USAGE

• The -ZO option is specified during compilation.

RESTRICTION

• Modules to which the -ZO option is specified and modules to which the -ZO option is not specified cannot be

linked to one another.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM414

(30) Changing the method of calculating the offset of arrays and pointers

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

FUNCTIONS

• When calculating the offset of arrays and pointers (distance from the start of the array or pointer), if the index

is an int/short type variable, it is regarded as unsigned int/unsigned short, and if the index is a char type

variable, it is regarded as unsigned char.

• Calculates the offset as a positive 64 KB or less.

• However, the ordinary offset calculation is performed if the index is a long type variable or a constant.

EFFECT

• The code efficiency is improved by performing unsigned offset calculation.

USAGE

• The -QH option is specified during compilation.

RESTRICTIONS

• Access to an object by array elements and pointers can be performed only when the offset is 64 KB or less.

• The offset for the minus direction cannot be calculated.

COMPATIBILITY

From another C compiler to this C compiler

• When the index to arrays and pointers is a int/short type variable or char type variable and there is

access to a minus-direction object or access to an object of more than 64 KB, the index is changed to a

long type variable. Otherwise, the -QH option should not be specified.

From this C compiler to another C compiler

• Modification is not required.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 415

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

EXAMPLE

(C source)

int tabi [100];

char tabc [100];

int *iptr;

void main (void) {

 long I = 50;

 int i = 30;

 char c = 2;

 tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */

 tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */

 tabi [l] = 3; /* signed offset calculation */

 (iptr + i) = 4; / unsigned offset calculation, 64 KB or less */

 (iptr + (-i)) = 5; / offset calculation, positive 64 KB or less */

 (iptr - i) = 6; / signed offset calculation */

 (iptr -10) = 7; / signed offset calculation */

 (iptr + (-10)) = 8; / signed offset calculation */

}

(Output object of compiler)

When -ML, -QH is specified (1/3)

@@CODE CSEG

_main:

push uup

push rp3

push vvp

; line 6: long 1 = 50;

movw rp3,#032H ;50

subw vp,vp

; line 7: int i = 30;

movw up,#01EH ;30

; line 8: char c= 2;

mov c,#02H ;2

; line 9:

; line 10 : tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */

movw hl,up

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM416

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)

When -ML, -QH is specified (2/3)

Addw hl,hl ;Offset calculation only for the lower 2 bytes

Movw ax,#01H ;1

Movw _tabi[hl],ax

; line 11 : tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */

 mov a,c

 xch a,b

 mov a,c

 mov _tabc[b],a ;Offset calculation only for the least significant byte

; line 12 : tabi [l] = 3; /* signed offset calculation */

 movw hl,rp3

 mov a,r8

 mov w,a

 addg whl,whl ;Offset is 3 bytes, sign is considered

 addg whl,#_tabi

 movw ax,#03H ; 3

 movw [h],ax

; line 13 : *(iptr + i) = 4; /* unsigned offset calculation, 64 KB or less */

 movw hl,up

 movg tde,!!_iptr

 addw hl,hl ;Offset calculation only for the lower 2 bytes

 addg tde,whl

 incw ax

 movw [de],ax

; line 14 : *(iptr + (-i)) = 5; /* offset calculation, positive 64 KB or less */

 subw ax,ax

 subw ax,up

 movg whl,!!_iptr

 movw de,ax

 mov t,#00H ;0

 addw de,de ;Offset calculation only for the lower 2 bytes

 addg whl,tde

 movw ax,#05H ;5

 movw [hl],ax

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 417

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)

When -ML, -QH is specified (3/3)

; line 15 : *(iptr - i) = 6 ; /* signed offset calculation */

movw hl,up

mov a,h

cvtbw

mov w,a

movg tde,!!_iptr

addg whl,whl ; Offset is 3 bytes

subg tde,whl

movw ax,#06H ; 6

movw [de],ax

; line 16 : *(iptr - 10) = 7 ; /* signed offset calculation */

movg whl,!!_iptr

incw ax

addg whl,#0FFFFECH ; -20 ; Offset is a signed constant (−20)

movw [hl],ax

; line 17 ; *(iptr + (-10)) = 8 ; /* signed offset calculation */

movg whl,!!iptr

incw ax

addg whl,#0FFFFECH ; -20 ; Offset is a signed constant (−20)

movw [hl],ax

; line 18 ; }

pop vvp

pop rp3

pop uup

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM418

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)

When -ML, -QH is not specified (1/3)

@@CODE CSEG

_main :

push uup

push rp3

push vvp

; line 6: long I = 50;

movw rp3,#032H ;50

subw vp,vp

; line 7: int i = 30;

movw up,#01EH ;30

; line 8: char c= 2;

mov c,#02H ;2

; line 9:

; line 10 : tabi [i] = 1; /* unsigned offset calculation, 64 KB or less */

movw hl,up

mov a,h

cvtbw

mov w,a

addg whl,whl

addg whl,#_tabi

movw ax,#01H ; 1

movw [hl],ax

; line 11 : tabc [c] = 2; /* unsigned offset calculation, 64 KB or less */

mov a, c

cvtbw

movw hl,ax

mov w,a

addg whl,#_tabc

mov a, c

mov [hl],a

; line 12 : tabi [l] = 3; /* signed offset calculation */

movw hl,rp3

mov a,r8

mov w,a

addg whl,whl

addg whl,#_tabi

movw ax,#03H ;3

movw [hl],ax

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 419

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)

When -ML, -QH is not specified (2/3)

; line 13 : *(iptr + i) = 4; /* unsigned offset calculation, 64 KB or less */

movw hl,up

movg tde,!!_iptr

mov a,h

cvtbw

mov w,a

addg whl,whl

addg tde,whl

movw ax,#04H ; 4

movw [de],ax

; line 14 : *(iptr + (-i)) = 5; /* offset calculation positive 64 KB or less */

subw ax,ax

subw ax,up

movg whl,!!_iptr

movw de,ax

cvtbw

mov t,a

addg tde,tde

addg whl,tde

movw ax,#05H ; 5

movw [hl],ax

; line 15 : *(iptr - i) = 6; /* signed offset calculation */

movw hl,up

mov a,h

cvtbw

mov w,a

movg tde,!!_iptr

addg whl,whl

subg tde,whl

movw ax,#06H ; 6

movw [de],ax

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM420

Changing the Method of Calculating the Offset of Arrays and Pointers -QH

(Output object of compiler)

When -ML, -QH is not specified (3/3)

; line 16 : *(iptr - 10) = 7; /* signed offset calculation */

movg whl,!!_iptr

incw ax

addg whl,#0FFFFECH ;-20

movw [hl],ax

; line 17 : *(iptr + (-10)) = 8; /* signed offset calculation */

movg whl,!!_iptr

incw ax

addg whl,#0FFFFECH ;-20

movw [hl],ax

; line 18 : }

pop vvp

pop rp3

pop uup

ret

COMPATIBILITY

From another C compiler to this C compiler

• When the index to arrays and pointers is a int/short type variable or char type variable and there is

access to a minus-direction object or access to an object of more than 64 KB, the index is changed to a

long type variable. Otherwise, the -QH option should not be specified.

From this C compiler to another C compiler

• Modification is not required.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 421

(31) Pascal function

Pascal Function _ _pascal

FUNCTION

• Generates the code that corrects the stack used for placing of arguments when a function is called on the

called function side, not on the side calling the function.

EFFECT

• Object code can be shortened if a lot of function calls appear.

USAGE

• When a function is declared, a _ _pascal attribute is added to the beginning.

RESTRICTIONS

• The pascal function does not support variable length arguments. If a variable length argument is defined, a

warning is output and the _ _pascal keyword is disregarded.

• In a pascal function, the keywords norec/_ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash cannot be

specified. If they are specified, in the case of the norec keyword, the _ _pascal key word is disregarded and

in the case of the _ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash keywords, an error is output.

• The old specification function interface specification option (-ZO) does not support the pascal function. When

pascal functions are used, if -ZO is specified, a warning message is output at the first place where a

_ _pascal key word appears and the _ _pascal keywords in the input file are disregarded.

• If a prototype declaration is incomplete, it won’t operate normally, so a warning message is output when a

pascal function’s physical definition or prototype declaration is missing.

EXPLANATION

• The -ZR option enables the change of all functions to the pascal function. However, if the pascal function is

used to change functions that have few function calls, object code may increase.

EXAMPLE

(C source)

_ _pascal int func(int a, int b, int c);

void main()

{

int ret_val;

ret_val = func(5, 10, 15);

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM422

Pascal Function _ _pascal

(C source) (continued)

}

_ _pascal int func(int a, int b, int c)

{

return (a + b + c);

}

(Output object of compiler)

With large model

_main:

push rp3

movw ax,#0FH ;

push ax ;

mov x,#0AH ;

push ax ;

mov x,#05H ;With the argument, a 4-byte stack is consumed.

call $!_func

;Here stack correction is not performed.

movw rp3,bc

pop rp3

ret

_func:

push rp3

movw rp3,ax

movw ax,[sp+5]

addw ax,rp3

movw bc,ax

movw ax,[sp+7]

addw bc,ax

pop rp3

pop whl ;Obtain the return address.

pop ax,rp2 ; The 4-byte stack consumed on the calling side is corrected.

br whl ;Branch to the return address.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 423

Pascal Function _ _pascal

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the reserved word _ _ pascal is not used.

• When changing to the pascal function, modify the program according to the method above.

From this C compiler to another C compiler

• Compatibility is maintained by using #define.

• By this conversion, the pascal function is regarded as an ordinary function.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM424

(32) Automatic pascal functionization of the function call interface

Automatic Pascal Functionization of the Function Call Interface -ZR

FUNCTION

• With the exception of norec/_ _interrupt/_ _interrupt_brk/_ _rtos_interrupt/_ _flash and functions with

variable length arguments, _ _pascal attributes are added to all functions.

USAGE

• The -ZR option is specified during compilation.

RESTRICTIONS

• The old specification function interface specification option (-ZO) cannot be used at the same time. If this is

used, a warning message is output and the -ZR option is ignored.

• Modules in which the -ZR option is specified and modules in which the -ZR option is not specified cannot be

linked. If a link is executed, it results in a link error.

Remark For details of the pascal function call interface, refer to 11.7.5 Pascal function call interface.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 425

(33) Flash area allocation method

Flash Area Allocation Method -ZF

Caution Do not use this flash function for devices that have no flash area self-rewrite function.

Operation is not guaranteed if it is used.

This function enables the flash memory rewrite function of devices.

FUNCTIONS

• Generates an object file located in the flash area.

• External variables in the flash area cannot be referenced from the boot area.

• External variables in the boot area can be referenced from the flash area.

• The same external variables and the same global functions cannot be defined in a boot area program and a

flash area program.

EFFECT

• Enables locating a program in the flash area.

• Enables using function linking with a boot area object created without specifying the -ZF option.

USAGE

• The -ZF option is specified during compilation.

RESTRICTION

Use startup routines or library for the flash area.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM426

(34) Flash area branch table

Flash Area Branch Table #pragma ext_table

Caution Do not use this flash function for devices that have no flash area self-rewrite function.

Operation is not guaranteed if it is used.

This function enables the flash memory rewrite function of devices.

FUNCTIONS

• Determines the first address of the branch table for the startup routine, the interrupt function, or the function

call from the boot area to the flash area.

• The branch instruction, which is one of the branch table elements, occupies 4 bytes of area. 32 from the first

address of the branch table are reserved as dedicated interrupt functions. Ordinary functions are located after

the “first address of branch table +4 * 32.”

• The branch table occupies 4* (32 + ext_func ID max. value + 1) bytes of area. For the ext_func ID value,

refer to 11.5 (35) Function call function from the boot area to the flash area.

EFFECT

• A startup routine and interrupt function can be located in the flash area.

• A function call can be performed from the boot area to the flash area.

USAGE

• The following #pragma directive specifies the first address of the flash area branch table.

#pragma ∆ext_table ∆ branch-table-first-address

Describe the #pragma directive at the beginning of the C source.

• The following items can be described before the #pragma directive.

• Comments

• #pragma directive other than #pragma ext_func, #pragma vect with –ZF specification, #pragma

interrupt, or #pragma rtos_interrupt.

• Directives not to generate the definition/reference of variables or functions among the preprocessing

directives.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 427

Flash Area Branch Table #pragma ext_table

RESTRICTIONS

• The branch table is located at the first address of the flash area.

• If #pragma ext_table does not exist before #pragma ext_func, #pragma vect with –ZF specification,

#pragma interrupt, or #pragma rtos_interrupt, an error occurs.

• The first address of the branch table is assumed to be 0x80 to 0xff80. However, match the first address value

with the flash start address which is specified by the -ZB linker option. If the address does not match, it results

in a link error.

• It is necessary to reconfigure the library for interrupt vectors (_@vect100 to _@vect3e) in accordance with

the specified first address of the branch table. The default is 4000H in the interrupt vector library. To specify a

value other than 0x4000, reconfigure the library as shown below.

1. Change the place of H in ITBLTOP EQU 4000H of vect.inc in the \NECTools32\SRC\CC78K4\SRC directory

to the specified address.

2. Run \NECTools32\SRC\CC78K4\BAT/repvect.bat in DOS prompt, and update library using the assembler, etc.

Copy the updated library \NECTools32\SRC\CC78K4\LIB to \NECTools32\LIB78K4 to be used for linking.

Caution The above directory may differ depending on the installation method.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if #pragma ext_table is not used.

• When specifying the first address of the flash area branch table, change the address according to the

method above.

From this C compiler to another C compiler

• Delete the #pragma ext_table instruction or delimit it with #ifdef.

• When specifying the first address of the flash area branch table, the following modification is required.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM428

Flash Area Branch Table #pragma ext_table

EXAMPLE

To generate the branch table after the address 4000H and allocate the interrupt function.

(C source)

#pragma ext_table 0x4000

#pragma interrupt INTP0 intp

void intp()

{

}

(Output object of compiler)

(a) To allocate the interrupt function to the boot area (no -ZF specification).

PUBLIC _@vect06

PUBLIC _intp

@@BASE CSEG BASE

_intp:

reti

@@VECT06 CSEG AT 0006H

_@vect06:

DW _intp

• Set the first address of the interrupt function in the interrupt vector table.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 429

Flash Area Branch Table #pragma ext_table

(b) To allocate the interrupt vector table to the flash area (-ZF specified).

PUBLIC _intp

@ECODE CSEG

_intp:

reti

@EVECT06 CSEG AT 0400CH

br !!_intp

(Library for interrupt vector 06)

 PUBLIC _@vect06

@@VECT06 CSEG AT 0006H

_vect06:

 DW 400CH

• Set the first address of the interrupt function in the branch table.

• The first address of the branch table is 4000H and the interrupt vector address (2 bytes) is

0006H, so the address of the branch table becomes 4000H + 4*(0006H/2).

• Setting the 400CH address in the interrupt vector table is performed by the interrupt vector

library.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM430

(35) Function call function from the boot area to the flash area

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

Caution Do not use this flash function for devices that have no flash area self-rewrite function.

Operation is not guaranteed if it is used.

This function enables the flash memory rewrite function of devices.

FUNCTIONS

• Function calls from the boot area to the flash area are executed via the flash area branch table.

• Functions in the boot area can be called directly from the flash area.

EFFECT

• It becomes possible to call a function in the flash area from the boot area.

USAGE

• The following #pragma directive specifies the function name and ID value in the flash area called from the

boot area.

#pragma ∆ ext_func ∆ function-name ∆ ID value

This #pragma directive is described at the beginning of the C source. The following items can be described before

this #pragma directive.

• Comments

• Directives that do not generate the definition/reference of variables or functions among the preprocessing

directives.

RESTRICTIONS

• The ID value is set to 0 to 255 (0xFF).

• If #pragma ext_table does not exist before #pragma ext_func, it results in an error.

• If the same function has a different ID value or a different function has the same ID value, an error occurs. (a)

and (b) below are errors.

(a) #pragma ext_func f1 3

#pragma ext_func f1 4

(b) #pragma ext_func f1 3

#pragma ext_func f2 3

• If a function is called from the boot area to the flash area and there is no corresponding function definition in

the flash area, the linker cannot conduct a check. This is the user’s responsibility.

• The callt and callf functions can only be located in the boot area. If the callt and callf functions are defined in

the flash area (when the -ZF option is specified), it results in an error.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 431

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

COMPATIBLITY

From another C compiler to this C compiler

• Modification is not required if the #pragma ext_func is not used.

• When performing the function call from the boot area to the flash area, modify the program according to

the method above.

From this C compiler to another C compiler

• Delete the #pragma ext_func instruction or delimit it with #ifdef.

• When performing the function call from the boot area to the flash area, the following modification is

required.

EXAMPLE

In the case that the branch table is generated after address 4000H and functions f1 and f2 in the flash area are called

from the boot area.

(C source)

(1) Boot area side

#pragma ext_table 0x4000

#pragma ext_func f1 3

#pragma ext_func f2 4

extern void f1(void);

extern void f2(void);

void func()

{

 f1();

 f2();

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM432

Function Call Function from the Boot Area to the Flash Area #pragma ext_func

(2) Flash area side

#pragma ext_table 0x4000

#pragma ext_func f1 3

#pragma ext_func f2 4

void f1()

{

}

void f2()

{

}

• #pragma ext_func f1 3 means that the branch destination to function f1 is located in branch table address

4000H + 4*32 + 4*3.

• #pragma ext_func f2 4 means that the branch destination to function f2 is located in branch table address

4000H + 4*32 + 4*4.

• 4*32 bytes from the beginning of the branch table is exclusively for interrupt functions (including the startup

routine).

(Output object of compiler)

(1) Boot area side (without -ZF specification)

@@CODE CSEG

_func:

call !0408CH

call !04090H

ret

(2) Flash area side (with -ZF specification)

@ECODE CSEG

_f1:

ret

_f2:

ret

@EXT03 CSEG AT 0408CH

br !!_f1

br !!_f2

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 433

(36) Firmware ROM function

Firmware ROM Function _ _flash

Caution Do not use this flash function for devices that have no flash area self-rewrite function.

Operation is not guaranteed if it is used.

This function enables the flash memory rewrite function of devices.

FUNCTIONS

• This calls a firmware ROM function that self-writes to the flash memory via the interface library positioned

between the firmware ROM function and the C language function.

• In the interface library call interface, the first argument is passed via the register and the second and

subsequent arguments are transferred to the stack. The first argument’s register is as follows.

1, 2-byte integer AX

3-byte integer WHL

4-byte integer AX (lower integer), RP2 (higher integer)

• The size of the pointer passed to the stack after the second argument is three bytes.

EFFECT

• Operations related to the firmware ROM function can be described at the C source level.

USAGE

• _ _flash attributes are added to the top during an interface library prototype declaration.

RESTRICTIONS

• Function calls by a function pointer are not supported.

• When the old specification function interface specification option (-ZO) is specified, it results in an error.

• When a function with _ _flash is defined, it results in an error.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the reserved word _ _flash is not used.

• When changing the firmware ROM function, modify the program according to the method above.

From this C compiler to another C compiler

• Possible using #define (refer to 11.6 Modifications of C Source).

• In a CPU with a firmware ROM function or substitute function, it is necessary for the user to create an

exclusive library to access that area.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM434

(37) Method of int expansion limitation of argument/return value

Method of int Expansion Limitation of Argument/Return Value -ZB

FUNCTION

• When the type definition of the function return value is char/unsigned char, the int expansion code of the

return value is not generated.

• When the prototype of the function argument is defined and the argument definition of the prototype is

char/unsigned char, the int expansion code of the argument is not generated.

EFFECT

• The object code is reduced and the execution speed improved since the int expansion codes are not

generated.

USAGE

• The -ZB option is specified during compilation.

EXAMPLE

(C source)

unsigned char func1 (unsigned char x, unsigned char y);

unsigned char c, d, e;

void main ()

{

c = func1 (d, e);

c = func2 (d, e);

}

unsigned char func1 (unsigned char x, unsigned char y)

{

return x + y;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 435

Method of int Expansion Limitation of Argument/Return Value -ZB

(Output object of compiler)

When -ZB is specified

_main:

; line 5: c = func1 (d, e);

mov x, !!_e ;Do not execute int expansion
push ax ;Do not execute int expansion

mov x, !!_d

call $!_func1

pop ax

mov !!_c,c

; line 6 c = func2 (d, e);

mov x, !!_e

mov a, #00H ; 0 ;Execute int expansion since there is no prototype declaration

push ax

mov x, !!_d

call !!_func2

pop ax

mov !!_c,c

; line 7: }
ret

RESTRICTIONS

• If the files are different between the definition of the function body and the prototype declaration to this

function, the program may operate incorrectly.

COMPATIBILITY

From another C compiler to this C compiler

• If the prototype declarations for all definitions of function bodies are not correctly performed, perform

correct prototype declaration. Alternatively, do not specify the -ZB option.

From this C compiler to another C compiler

• No modification is required.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM436

(38) Memory manipulation function

Memory Manipulation Function #pragma inline

FUNCTION

• An object file is generated by the output of the standard library memory manipulation functions memcpy,

memset, memchr, and memcmp with direct inline expansion instead of function call.

• When there is no #pragma directive, the code that calls the standard library functions is generated.

EFFECT

• Compared with when a standard library function is called, the execution speed is improved.

• Object code is reduced if a constant is specified for the specified character number.

USAGE

• The function is described in the source in the same format as a function call.

• The following items can be described before #pragma inline.

• Comments

• Other #pragma directives

• Preprocessing directives that do not generate variable definitions/references or function

definitions/references

EXAMPLE

(C source)

#pragma inline

char ary1[100], ary2[100];

void main()

{

memset(ary1, ‘A’, 50);

memcpy(ary1, ary2, 50);

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 437

Memory Manipulation Function #pragma inline

(Output object of compiler)

When -MS is specified

_main:

; line 7 : memset(ary1, 'A', 50);

 movw de,#_ary1

 mov c,#032H ; 50

 mov a,#041H ; 65

 mov [de+],a

 dbnz c,$$-1

; line 8 : memcpy(ary1, ary2, 50);

 movw de,#_ary1

 mov c,#032H ; 50

 movw hl,#_ary2

 mov a,[hl+]

 mov [de+],a

 dbnz c,$$-2

; line 9 :

; line 10 : p = memchr(ary1, 'B', 50);

 mov c,#032H ; 50

 movw de,#_ary1

 mov a,#042H ; 66

 cmp a,[de]

 bz $L0006

 incw de

 dbnz c,$$-5

 subw de,de

L0006:

 movw !_p,de

; line 11 : i = memcmp(ary1, ary2, 100);

 mov c,#064H ; 100

 movw de,#_ary1

 movw hl,#_ary2

 mov a,[de+]

 sub a,[hl+]

 bnz $L0008

 dbnz c,$$-5

L0008:

 subc x,x

 xch a,x

 movw !_i,ax

; line 12 : }

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM438

Memory Manipulation Function #pragma inline

(Output object of compiler)

When -MM is specified

_main:

; line 7 : memset(ary1, 'A', 50);

 movw de,#LOWW _ary1

 mov c,#032H ; 50

 mov a,#041H ; 65

 mov [de+],a

 dbnz c,$$-1

; line 8 : memcpy(ary1, ary2, 50);

 movw de,#LOWW _ary1

 mov c,#032H ; 50

 movw hl,#LOWW _ary2

 mov w,#0FH ; 15

 mov a,[hl+]

 mov [de+],a

 dbnz c,$$-2

; line 9 :

; line 10 : p = memchr(ary1, 'B', 50);

 mov c,#032H ; 50

 movw de,#LOWW _ary1

 mov a,#042H ; 66

 cmp a,[de]

 bz $L0006

 incw de

 dbnz c,$$-5

 subw de,de

L0006:

 movw !!_p,de

; line 11 : i = memcmp(ary1, ary2, 100);

 mov c,#064H ; 100

 movw de,#LOWW _ary1

 movw hl,#LOWW _ary2

 mov w,#0FH ; 15

 mov a,[de+]

 sub a,[hl+]

 bnz $L0008

 dbnz c,$$-5

L0008:

 subc x,x

 xch a,x

 movw !!_i,ax

; line 12 : }

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 439

Memory Manipulation Function #pragma inline

(Output object of compiler)

When -ML is specified

_main:

; line 7 : memset(ary1, 'A', 50);

 movg tde,#_ary1

 mov c,#032H ; 50

 mov a,#041H ; 65

 mov [de+],a

 dbnz c,$$-1

; line 8 : memcpy(ary1, ary2, 50);

 movg tde,#_ary1

 mov c,#032H ; 50

 movg whl,#_ary2

 mov a,[hl+]

 mov [de+],a

 dbnz c,$$-2

; line 9 :

; line 10 : p = memchr(ary1, 'B', 50);

 mov c,#032H ; 50

 movg tde,#_ary1

 mov a,#042H ; 66

 cmp a,[de]

 bz $L0006

 incg tde

 dbnz c,$$-6

 subg tde,tde

L0006:

 movg !!_p,tde

; line 11 : i = memcmp(ary1, ary2, 100);

 mov c,#064H ; 100

 movg tde,#_ary1

 movg whl,#_ary2

 mov a,[de+]

 sub a,[hl+]

 bnz $L0008

 dbnz c,$$-5

L0008:

 subc x,x

 xch a,x

 movw !!_i,ax

; line 12 : }

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM440

Memory Manipulation Function #pragma inline

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the memory manipulation function is not used.

• When changing the memory manipulation function, modify the program according to the method above.

From this C compiler to another C compiler

• Delete the #pragma inline directive or delimit it with #ifdef.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 441

(39) callf two-step branch function

callf Two-Step Branch Function -ZG

FUNCTION

• A function body to which the callf/_ _callf attribute is added is not allocated to the callf area from 800H to

0FFFH, a branch instruction to the function body is allocated to the callf area, and the code to call the branch

instruction using the callf instruction is generated.

EFFECT

• Compared to the case when allocating a function body to the callf area, the callf/_ _callf attribute can be

added to many more functions. Therefore, this function can shorten the object code if many functions that

include call functions are frequently used.

USAGE

• The -ZG option is specified during compilation.

RESTRICTIONS

• Modules in which the -ZG option is specified and modules in which the -ZG option is not specified cannot be

linked.

• The two-step branch table consumes 4 bytes per function when the -MM/ML option is specified, and 3 bytes

when the -MS option is specified. The maximum number of callf functions that can be allocated when the

-ZG option is specified per load module and the total number of callf functions per linked module are as

follows.

- When the -MM/ML option is specified: 512

- When the -MS option is specified: 682

EXAMPLE

(C source 1)

_ _callf extern int fsub();

void main()

{

 int ret_val;

 ret_val = fsub();

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM442

callf Two-Step Branch Function -ZG

 (C source 2)

_ _callf int fsub()

 {

 int val = 1;

 return val;

}

(Output object of compiler)

With large or medium model

(C source 1)

 EXTRN ?fsub ; Declaration

 callf !?fsub ; Call

(C source 2)

 PUBLIC _fsub ; Declaration

 PUBLIC ?fsub ; Declaration

@@CALF CSEG FIXED

?fsub: br !!_fsub ; Branch table

@@CODE CSEG

_fsub: ; Function definition

.

.

 Function body

.

.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 443

callf Two-Step Branch Function -ZG

(Output object of compiler)

With small model

(C source 1)

 EXTRN ?fsub ; Declaration

 Callf !?fsub ; Call

(C source 2)

 PUBLIC _fsub ; Declaration

 PUBLIC ?fsub ; Declaration

@@CALFS CSEG FIXEDA

?fsub: br !_fsub ; Branch table

@@CODES CSEG BASE ; Function definition

_fsub:

 .

 .

 Function body

 .

 .

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM444

(40) Automatic callf functionization of function call interface

Automatic Callf Functionization of Function Call Interface -ZH

FUNCTION

• The _ _callf attribute is added to all functions except for the callt/_ _callt/_ _interrupt/_ _interrupt_brk/_

_rtos_interrupt functions.

USAGE

• The -ZH option is specified during compilation.

RESTRICTIONS

• The -ZF option for the flash area allocation specification cannot be specified at the same time.

If specified, a warning message is output and the -ZH option is ignored.

• The standard library that supports the -ZF option is not available. Sources that include the standard library

cannot be linked using the -ZF option during compilation.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 445

(41) Three-byte address reference/generation function

Three-Byte Address Reference/Generation Function #pragma addraccess

FUNCTION

• A code that references the highest byte and the lower 2 bytes of a 3-byte address, and a code that generates

a 3-byte address from the value of the highest byte and the lower 2 bytes are output to an object directly with

inline expansion and an object file is created.

• If the #pragma directive is not added, the three-byte address reference/generation function is regarded as an

ordinary function.

EFFECT

• Three-byte address reference/generation can be performed with a short code without using a complex cast

description.

USAGE

• Describe the #pragma addraccess directive at the beginning of the C source.

• Describe the #pragma addraccess directive in the C source in the same manner as a function call.

• The following items can be described before the #pragma addraccess directive.

(1) Comments

(2) Other #pragma directives

(3) Among the preprocessing directives, those that do not generate a variable definition/reference or

function definition/reference.

• The keywords following #pragma addraccess can be described in either uppercase or lowercase letters.

The following three names can be used for the three-byte address reference/generation function name.

• FP_SEG

• FP_OFF

• MK_FP

[List of function names for three-byte address reference/generation]

(1) unsigned char FP_SEG(void *addr);

The value of the most significant byte of a three-byte address pointed by addr is obtained.

(2) unsigned int FP_OFF(void *addr);

The values of the lower 2 bytes of a three-byte address pointed by addr are obtained.

(3) void *MK_FP(unsigned char seg, unsigned int offset);

The address value of the three-byte address having the value pointed by seg as the most significant byte, and

the value pointed by offset as the lower 2 bytes.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM446

Three-Byte Address Reference/Generation Function #pragma addraccess

RESTRICTIONS

• The function names for three-byte address reference/generation cannot be used as the function names.

• Describe the three-byte address reference/generation function in uppercase letters. If lowercase letters are

used, it is regarded as an ordinary function.

• When the small or medium model is specified, #pragma addraccess is ignored and the three-byte address

reference/generation function is not supported.

EXAMPLE

#pragma addraccess

unsigned char seg;

unsigned int offset;

unsigned char ary[10];

unsigned char *p;

void main()

{

 seg = FP_SEG(ary); /* Most significant byte value */

 offset = FP_OFF(ary); /* Value of lower 2 bytes */

 p = MK_FP(seg, offset); /* Generates 3-byte address */

}

(Output object of compiler)

@@CODE CSEG

_main:

; line 8 : seg = FP_SEG(ary); /* Most significant byte value */

 mov a,#HIGHW _ary

 mov !!_seg,a

; line 9 : offset = FP_OFF(ary); /* Value of lower 2 bytes */

 movw ax,#LOWW _ary

 movw !!_offset,ax

; line 10 :

; line 11 : p = MK_FP(seg, offset); /* Generates 3-byte address */

 mov a,!!_seg

 mov w,a

 movw hl,!!_offset

 movg !!_p,whl

; line 12 : }

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 447

Three-Byte Address Reference/Generation Function #pragma addraccess

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the three-byte address reference/generation function is not used.

• When specifying the three-byte address reference/generation function, modify the function according to

the method above.

From this C compiler to another C compiler

• Delete the #pragma addraccess statement or delimit it with #ifdef.

The three-byte address reference/generation function name can be used as the function name.

• When specifying the three-byte address reference/generation function, modify the function conforming to

the specification of the C compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM448

(42) Absolute address allocation specification

Absolute Address Allocation Specification _ _directmap

FUNCTION

• The initial value of an external variable declared by _ _directmap and a static variable in a function is

regarded as the allocation address specification, and variables are allocated to the specified addresses.

• The _ _directmap variable in the C source is treated as an ordinary variable.

• Because the initial value is regarded as the allocation address specification, the initial value cannot be

defined and remains an undefined value.

• The specifiable address specification range, secured area range linked by the module for securing the area

for the specified addresses, and variable duplication check range are shown below.

With small model

Address Specification Range Secured Area Range Duplication Check Range

0x80 to 0xFFFF 0xFD00 to 0xFEFF 0xF000 to 0xFEFF

With large model (-CS0 specified)

Address Specification Range Secured Area Range Duplication Check Range

0x80 to 0xFFFFFF 0xFD00 to 0xFEFF 0xF000 to 0xFEFF

With large model (-CS15 specified)

Address Specification Range Secured Area Range Duplication Check Range

0x80 to 0xFFFFFF 0xFFD00 to 0xFFEFF 0xFF000 to 0xFFEFF

With medium model (-CS0 specified)

Address Specification Range Secured Area Range Duplication Check Range

0xF000 to 0xFFFF 0xFD00 to 0xFEFF 0xF000 to 0xFEFF

With medium model (-CS15 specified)

Address Specification Range Secured Area Range Duplication Check Range

0xFF000 to 0xFFFFF 0xFFD00 to 0xFFEFF 0xFF000 to 0xFFEFF

• If the address specification is outside the address specification range, an F799 error is output.

• If the allocation address of a variable declared by _ _directmap is duplicated and is within the duplication

check range, a W762 warning message is output and the name of the duplicated variable is displayed.

• If the address specification range is inside the saddr1 area, the _ _sreg1 declaration is made automatically

and the saddr1 instruction is generated. If the address specification range is inside the saddr2 area, the _

_sreg declaration is made automatically and the saddr2 instruction is generated.

• When the -CSA option is specified, a W338 warning message is output and the _ _directmap declaration in

the file is ignored.

EFFECT

One or more variables can be allocated to the same arbitrary address.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 449

Absolute Address Allocation Specification _ _directmap

USAGE

• Declare _ _directmap in the module in which the variable to be allocated in an absolute address is to be

defined.

_ _directmap Type name Variable name = Allocation address specification;

_ _directmap static Type name Variable name = Allocation address specification;

_ _directmap _ _sreg Type name Variable name = Allocation address specification;

_ _directmap _ _sreg static Type name Variable name = Allocation address specification;

_ _directmap _ _sreg1 Type name Variable name = Allocation address specification;

_ _directmap _ _sreg1 static Type name Variable name = Allocation address specification;

• If _ _directmap is declared for a structure/union/array, specify the address in braces {}.

• _ _directmap does not have to be declared in a module in which a _ _directmap external variable is

referenced, so only declare extern.

extern Type name Variable name;

extern _ _sreg Type name Variable name;

extern _ _sreg1 Type name Variable name;

• To generate the saddr2 instruction in a module in which a _ _directmap external variable allocated inside the

saddr2 area is referenced, _ _sreg must be used together to make extern_ _sreg Type name Variable

name;.

• To generate the saddr1 instruction in a module in which a _ _directmap external variable allocated inside the

saddr1 area is referenced, _ _sreg1 must be used together to make extern_ _sreg1 Type name Variable

name;.

EXAMPLE

(C source)

_ _directmap char c = 0xff000;

_ _directmap _ _sreg char d = 0xffd20;

_ _directmap _ _sreg char e = 0xffd21;

_ _directmap struct x

 char a;

 char b;

 char c;

} xx = {0xffe30};

void main()

{

 c = 1;

 d = 0x12;

 e.5 = 1;

 xx.a = 5;

 xx.c = 10;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM450

Absolute Address Allocation Specification _ _directmap

(Output object)

 PUBLIC _c

 PUBLIC _d

 PUBLIC _e

 PUBLIC _xx

 PUBLIC _main

_c EQU 0FF000H ; Addresses for variables declared by _ _directmap

_d EQU 0FFD20H ; are defined by EQU

_e EQU 0FFD21H ;

_xx EQU 0FFE30H ;

 EXTRN _ _mffd20 ; EXTRN output for linking secured area modules

 EXTRN _ _mffd21 ;

 EXTRN _ _mffe30 ;

 EXTRN _ _mffe31 ;

 EXTRN _ _mffe32 ;

@@CODE CSEG

_main:

; line 11 : c = 1 ;

 mov !_c,#01H ; 1

; line 12 : d = 0x12 ;

 mov _d,#012H ; saddr2 instruction output because address

; line 13 : e.5 = 1 ; specified in saddr2 area

 set1 _e.5 ; Bit manipulation possible because _ _sreg also used

; line 14 : xx.a = 5 ;

 mov _xx,#05H ; saddr1 instruction output because address specified

; line 15 : xx.c = 10 ; in saddr1 area

 mov _xx+2,#0AH ; saddr1 instruction output because address specified

 ; in saddr1 area

; line 16 : }

 ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 451

Absolute Address Allocation Specification _ _directmap

RESTRICTIONS

• _ _directmap cannot be specified for function arguments, return values, or automatic variables. If it is

specified in these cases, an error occurs.

• If an address outside the secured area range is specified, the variable area will not be secured, making it

necessary to either describe a directive file or create a separate module for securing the area.

COMPATIBILITY

From another C compiler to this C compiler

• Modification is not required if the keyword _ _directmap is not used.

• When changing to the _ _directmap variable, modify the program according to the method above.

From this C compiler to another C compiler

• Compatibility can be attained using #define (refer to 11.6 Modifications of C Source for details).

• When _ _directmap is being used as the absolute address allocation specification, modify the program

according to the specifications of each compiler.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM452

11.6 Modifications of C Source

By using the extended functions of this C compiler, efficient object generation can be realized. However, these

extended functions are intended to cope with the 78K/IV Series. So, to use them for other devices, the C source may

need to be modified. Here, how to make the C source portable from another C compiler to this C compiler and vice

versa is explained.

From another C compiler to this C compiler

• #pragmaNote

If the other C compiler supports the #pragma preprocessing directive, the C source must be modified. The

method and extent of modifications to the C source depend on the specifications of the other C compiler.

• Extended specifications

If the other C compiler has extended specifications such as addition of keywords, the C source must be

modified. The method and extent of modifications to the C source depend on the specifications of the other C

compiler.

Note #pragma is one of the preprocessing directives supported by ANSI. The character string following

#pragma is identified as a directive to the compiler. If the compiler does not support this directive, the

#pragma directive is ignored and compilation will continue until it properly ends.

From this C compiler to another C compiler

Because this C compiler has added keywords as the extended functions, the C source must be made portable to

the other C compiler by deleting such keywords or delimiting them with #ifdef.

EXAMPLE

<1> To invalidate a keyword (same applies to callf, sreg, noauto, and norec etc.)

#ifndef _ _K4_ _

#define callt /* makes callt an ordinary function */

#endif

<2> To change from one type to another

#ifndef _ _K4_ _

#define bit char /* changes bit type to char type variable */

#endif

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 453

11.7 Function Call Interface

The following items will be explained concerning the interface between functions when a function is called.

1. Return value (common in all the functions)

2. Ordinary function call interface

• Passing arguments

• Location and order of storing arguments

• Location and order of storing automatic variables

3. noauto function call interface

• Passing arguments

• Location and order of storing arguments

• Location and order of storing automatic variables

4. norec function call interface

• Passing arguments

• Location and order of storing arguments

• Location and order of storing automatic variables

5. Pascal function call interface

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM454

11.7.1 Return value

The function called stores the return value in the registers and carry flags as shown in Table 11-27.

Table 11-27. Storage Location of Return Values

 Model

Type
Small Model Medium Model Large Model

1-byte integer

2-byte integer

BC BC BC

4-byte integer BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

Pointer BC BC (data pointer)

WHL (function pointer)

TDE

Structure, union BC (structure copied to the

area specific to the function,

the start address of the union)

BC (structure copied to the

area specific to the function,

the start address of the union)

TDE (structure copied to the

area specific to the function,

the start address of the union)

1 bit CY (carry flag) CY (carry flag) CY (carry flag)

Floating-point number

(float type)

BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

Floating-point number

(double type)

BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

BC (Lower)

RP2 (Higher)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 455

11.7.2 Ordinary function call interface

When all the arguments are allocated to registers and there is no automatic variable, the ordinary function call

interface is the same as noauto function call interface.

(1) Passing arguments

(a) When the -ZO option is not specified (default)

• On the function call side, both the arguments declared with registers and the ordinary arguments are

passed in the same manner. The second and subsequent arguments are passed via a stack, and the first

argument is passed via a register or stack.

• The location where the first argument is passed is shown in Table 11-28.

Table 11-28. Location Where First Argument Is Passed (On Function Call Side)

 Option

Type
When -ZO Is Not Specified When -ZO Is Specified

1-byte integerNote

2-byte integer

AX Passed via a stack

3-byte integer WHL

Small model is passed via a stack

Passed via a stack

4-byte integer Note AX, RP2 Passed via a stack

Floating-point number (float type) AX, RP2 Passed via a stack

Floating-point number (double type) AX, RP2 Passed via a stack

Other Passed via a stack Passed via a stack

Note 1- to 4-byte data includes structures, unions, and pointers.

(b) When the -ZO option is specified

• On the function call side, arguments declared with a register are passed via a register, and ordinary

arguments are passed via a stack. For the registers used for passing, refer to Table 11-30.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM456

(2) Location and order of storing arguments

• There are two types of arguments: arguments allocated to registers and ordinary arguments. Arguments

allocated to registers are the arguments declared with registers and the arguments when -QV is specified.

• The arguments not allocated to registers are allocated to stacks. The arguments allocated to stacks are

placed on the stack sequentially from the last argument.

(a) When the -ZO option is not specified

• Saving and restoring registers to which arguments are allocated is performed on the function definition

side.

• When -QV option is specified, the ordinary arguments are also allocated to registers regarding they are

declared with registers.

• The ordinary arguments are allocated to a stack. When the arguments are passed via stacks, the area

where the arguments are passed (stack) is used as the area to which arguments are allocated.

• On the function definition side, the arguments that are passed via a register or stack are stored in the area

to which arguments are allocated.

• Arguments with more references together with register variables are allocated to registers. When the -QF

and -ML options are specified, however, a second or subsequent argument whose size is less than 4-bytes

and number of references is two or less is not always allocated to a register.

Table 11-29. List of Storing Arguments (On Function Definition Side, When -ZO Is Not Specified)

 Model

Option
Small Model, Medium ModelNote Large Model

When -QF is specified RP3, VP, UP RP3, VVP, UUP

When -QF is not specified RP3, VP RP3, VVP

Note With the medium model, the function pointer (3 bytes) cannot be used as a register argument.

(Order of allocation)

• With small model, medium model, when -QF is specified

char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP

char, int, short, enum type: If there is no long, float, double type argument, in the order of RP3, UP,

VP

Pointer type: In the order of UP, VP, RP3

long, float, double type: RP3 (lower), VP (higher)

• With small model, medium model, when -QF is not specified

char, int, short, enum type: In the order of RP3, VP

Pointer type: In the order of VP, RP3

long, float, double type: RP3 (lower), VP (higher)

• With large model, when -QF is specified

char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP

char, int, short, enum type: If there is no long, float, double type argument, in the order of RP3, UP,

VP

Pointer type: In the order of UUP, VVP

long, float, double type: RP3 (lower), VP (higher)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 457

• With large model, when -QF is not specified

char, int, short, enum type: In the order of RP3, VP

Pointer type: In the order of VVP

long, float, double type: RP3 (lower), VP (higher)

(b) When the -ZO option is specified

• The locations where arguments are passed on the function call side and the function definition side are the

location where arguments are allocated.

• As long as there are allocable registers, the arguments declared with registers are allocated to registers.

• The saving and restoring of registers to which arguments are allocated is performed before and after the

function call.

Table 11-30. List of Storing Arguments (On Function Definition Side, When -ZO Is Specified)

 Model

Option
Small Model Large Model

When -QF is specified RP3, VP, UP RP3, VVP

When -QF is not specified RP3, VP RP3, VVP

(Order of allocation)

• With small model, when -QF is specified

char, int, short, enum type: in the order of RP3, VP, UP

Pointer type: In the order of VP, UP , RP3

long, float, double type: RP3 (lower), VP (higher)

• With small model, when -QF is not specified

char, int, short, enum type: In the order of RP3, VP

Pointer type: In the order of VP, RP3

long, float, double type: RP3 (lower), VP (higher)

• With large model

char, int, short, enum type: In the order of RP3, VP

Pointer type: In the order of VVP

long, float, double type: RP3 (lower), VP (higher)

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM458

(3) Location and order of storing automatic variables

• There are two types of automatic variables: automatic variables to be allocated to registers and ordinary

automatic variables. The automatic variables to be allocated to registers are the ones that are declared with

registers and the automatic variables when -QV is specified. They are allocated to register _@KREGXX as

long as there are allocable registers and _@KREGXX. However, the automatic variables are allocated to

_@KREGXX only when -QR is specified.

The automatic variables allocated to registers and _@KREGXX are called register variables hereafter.

• For _@KREGXX, refer to APPENDIX A LIST OF LABELS FOR saddr AREA.

• The register variables are allocated after register arguments are allocated. Therefore, the register variables

are allocated to registers when there are excess registers after the allocation of register arguments.

• The automatic variables not allocated to registers are allocated to stacks.

• The saving and restoring of registers and _@KREGXX to allocate automatic variables is performed on the

function definition side.

(Order of allocating automatic variables)

• The order of allocating automatic variables to registers are the same as the order of allocating arguments.

For the details, refer to the order of allocating arguments.

• The automatic variables allocated to _@KREGXX are allocated in the order of declaration.

• The automatic variables allocated to stacks are placed on the stack in the order of declaration.

The following shows an example of the interface above.

EXAMPLE 1

(C source)

void func0 (register int, int);

void main () {

func0 (0x1234, 0x5678);

}

void func0 (register int p1, int p2) {

register int r;

int a;

r = p2;

a = p1;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 459

(Output code) With large model, when -QF is specified and -ZO is not specified

@@CODE CSEG

_main:

movw ax,#05678H ;22136

push ax ;Arguments passed via stack

movw ax,#01234H ;4660 ;The first argument is passed via register

call $!_func0 ;Function call

pop ax ;Arguments passed via stack

ret

_func0:

push uup ;Save registers for register variables/arguments

push rp3 ;

push vvp ;

movw rp3,ax ;Allocate register arguments to rp3

movw ax,[sp+11] ;p2 ;Argument p2 to be passed via a stack

movw up,ax ;Register variable r (up)

movw vp,rp3 ;Register argument p1 (rp3) variable a (vp)

pop vvp ;Restores register for register variables/arguments

pop rp3

pop uup

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM460

11.7.3 noauto function call interface

(1) Passing arguments

(a) When the -ZO option is not specified (default)

• On the function call side, the arguments declared with registers and the ordinary arguments are passed in

the same manner. The second and subsequent arguments are passed via a stack. The first argument is

passed via a register or a stack (in the same manner as ordinary functions).

• For the location where the first argument is passed, refer to Table 11-28.

(b) When the -ZO option is specified

• Arguments are passed via registers. For the registers to be used, refer to Table 11-13.

(2) Location and order of storing arguments

• On the function definition side, all the arguments are allocated to registers.

• If there is an argument that cannot be allocated to a register, an error occurs.

(a) When the -ZO option is not specified (default)

• On the function definition side, the arguments passed via registers or stacks are copied to registers. Even

when the arguments are passed via registers, the processing to copy the register is output because the

register on the function call side (passing side) and the function definition side (receiving side) are different.

For the registers allocated on the function definition side, refer to Table 11-14.

• The saving and restoring of the register to which arguments are allocated is performed on the function

definition side.

(Order of allocation)

• The order is the same as an ordinary function with -QF specified.

(b) When the -ZO option is specified

• The locations where arguments are passed on the function call side and the function definition side are the

same as the locations where arguments are allocated.

• The saving and restoring of registers to which arguments are allocated is performed before and after the

function call.

(Order of allocation)

• The order is the same as for ordinary functions.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 461

(3) Location and order of storing automatic variables

(a) When the -ZO option is not specified (default)

Automatic variables are allocated to registers and _@KREGXX. However, the automatic variables are

allocated to _@KREGXX only when -QR is specified. For _@KREGXX, refer to APPENDIX A LIST OF

LABELS FOR saddr AREA.

Automatic variables are allocated to registers when there are excess registers after the allocation of

arguments. When -QR is specified, automatic variables are allocated also to _@KREGXX.

If an automatic variable cannot be allocated to registers and _@KREGXX, an error occurs.

The saving and restoring of the register and _@KREGXX to which automatic variables is allocated are

performed in the function definition side.

(Order of allocation)

• The order of allocating automatic variables to registers are the same as the order of allocating arguments.

• The automatic variables allocated to _@KREGXX are allocated in the order of declaration.

(b) When the -ZO option is specified.

• Allocation cannot be performed because the automatic variables cannot be described.

The following shows an example of the interface above.

EXAMPLE

(C source)

noauto void func2 (int, int);

void main () {

func2 (0x1234, 0x5678);

}

noauto void func2 (int p1, int p2) {

/* function body */

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM462

(Output code) With small model, when -ZO is specified

@@CODES CSEG BASE

_main:

push rp3,vp ;Save registers for arguments

movw rp3,#01234H ;4660 ;Allocate arguments to rp3

movw vp,#05678H ;22136 ;Allocate arguments to vp

call !_func2 ;Function call

pop rp3,vp ;Restore registers for arguments

ret

_func2:

ret

(Output code) With small model, when -ZO is not specified

@@CODES CSEG BASE

_main:

movw ax,#05678H ; 22136

push ax ;Arguments passed via stack

movw ax,#01234H ; 4660 ;The first argument is passed via register

call !_func2 ;Function call

pop ax ;Arguments passed via stack

ret

_func2:

push rp3,up ;Save registers for arguments

movw rp3,ax ;Allocate arguments to rp3

movw ax,[sp+7] ;Argument passed via stack received by register

movw up,ax ;Allocate arguments to up

pop rp3, up ;Restore registers for arguments

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 463

11.7.4 norec function call interface

(1) Passing arguments

(a) When the -ZO option is not specified (default)

On the function call side, arguments are passed via registers and _@NRARGX. For the registers, refer to

Table 11-17 Registers Used for norec Function Arguments: Passing Side (Without -ZO).

(b) When the -ZO option is specified

On the function call side, arguments are passed via a register and _@NRARGX. If the arguments cannot be

passed via registers any more, they are passed only via _@NRARGX instead of via registers. Arguments are

never passed via registers and _@NRARGX together.

(2) Location and order of storing arguments

• On the function definition side, all the arguments are allocated to registers and _@NRARGX. However,

arguments are allocated to _@NRARGX only when -QR is specified. For _@NRARGX, refer to APPENDIX A

LIST OF LABELS FOR saddr AREA.

• If there is an argument that cannot be allocated to registers and _@NRARGX, an error occurs.

(a) When the -ZO option is not specified (default)

• On the function definition side, the arguments passed via registers are copied to registers. Even when the

arguments are passed via registers, copying the register is necessary because the register on the function

call side (passing side) and the function definition side (receiving side) are different.

When the arguments are passed via _@NRARGX, the locations where arguments are passed are the same

as the locations where arguments are allocated.

If the arguments cannot be passed via registers any more, they are passed also via _@NRARGX. Arguments

are passed via registers and _@NRARGX together.

The saving and restoring of the register to which arguments are allocated is performed in the function

definition side. For the location of storing arguments, refer to Table 11-18 Registers Used for norec

Function Arguments: Receiving Side (Without -ZO).

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM464

Table 11-31. List of Registers Passing/Receiving norec Arguments (When -ZO Is Not Specified)

 Model

Type
Small Model, Medium ModelNote 1 Large Model Note 2

The first argument is char type Passed via C, DE, RP2

Received via R6, R7, VP, UP

Passed via C, TDE, RP2

Received via R6, R7, VVP, UP

The first arguments is not char type Passed via AX, DE, RP2

Received via RP3, VP, UP

Passed via AX, TDE, RP2

Received via RP3, VVP, UP

Notes 1. With the medium model, the function pointer (3 bytes) cannot be used via a register. When -QR is

specified, however, it can be passed via _@NRARGX.

2. With the large model, only one pointer (3 bytes) can be passed/received via a register. When -QR is

specified, however, it can be passed/received also via _@NRARGX.

(Order of allocation)

• With small model, medium model

char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP

If there is no long, float, double type argument, in the order of RP3, UP,

VP

Pointer type: In the order of UP, VP, RP3

long, float, double type: RP3 (lower), VP (higher)

• With large mode

char, int, short, enum type: If there is long, float, double type argument, in the order of UP, RP3, VP

If there is no long, float, double type argument, in the order of RP3, UP,

VP

Pointer type: VVP

long, float, double type: RP3 (lower), VP (higher)

(b) When the -ZO option is specified

• The same as the noauto function call interface

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 465

(3) Location and order of storing automatic variables

(a) When the -ZO option is not specified

The automatic variables are allocated to registers and _@NRARGX as long as there are allocable registers

and _@NRARGX. If there is no allocable register any more, they are allocated to _@NRATXX.

However, automatic variables are allocated to _@NRARGX and _@NRATXX only when -QR is specified.

For _@NRATXX, refer to APPENDIX A LIST OF LABELS FOR saddr AREA

If there is an automatic variable that cannot be allocated to registers, _@NRARGX and _@NRATXX, an error

occurs.

The saving and restoring of registers to which automatic variables are allocated is performed on the function

definition side.

(Order of allocating automatic variables)

• The order of allocating automatic variables to registers is the same as the order of allocating noauto

function arguments. For details, refer to 11.7.3 noauto function call interface.

• The automatic variables allocated to _@NRATXX are allocated in the order of declaration.

(b) When the -ZO option is specified

• The automatic variables are allocated to registers as long as there are allocable registers. If there are no

more allocable registers, they are allocated to _@NRATXX.

• Automatic variables are allocated to _@NRATXX only when -QR is specified. For _@NRATXX, refer to

APPENDIX A LIST OF LABELS FOR saddr AREA.

• The automatic variables are allocated after arguments are allocated. Therefore, the automatic variables

are allocated to registers when there are excess registers after the allocation of arguments.

• If there is an automatic variable that cannot be allocated to a register and _@NRATXX, an error occurs.

• The saving and restoring of registers to allocate automatic variables is performed on the function definition

side.

(Order of allocating automatic variables)

• The order of allocating registers to automatic variables is the same as the order of allocating noauto

function arguments. For details, refer to 11.7.3 noauto function call interface.

• The automatic variables allocated to _@NRARGX and _@NRATXX are allocated in the order of

declaration.

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM466

EXAMPLE

(C source)

norec void func (int);

void main (void) {

func (0x34);

}

norec void func (int p1) {

int a;

a = p1;

}

(Output code) With small model, when -QX2 and -ZO are specified

@@CODES CSEG

_main:

push rp3 ;Save registers for arguments

movw rp3,#034H; 52 ;Allocate arguments to RP3

call $!_func3 ;Function call

pop rp3 ;Restore registers for arguments

ret

_func:

push vvp ;Save the automatic variable register

movw vp,rp3 ;a = p1

pop vvp ;Restore the automatic variable register

ret

(Output code) With small model, when -QX2 and -ZO is not specified

@@CODE CSEG

_main:

movw ax,#034H ;52 ;Transfers the argument at AX

call $!_func ;Function call

ret

_func:

push uup ;Save the automatic variable register

push rp3 ;Save registers for arguments

movw rp3,ax ;Store argument in RP3

movw up,rp3 ;a = p1

pop rp3 ;Restore registers for arguments

pop uup ;Restore the automatic variable register

ret

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 467

11.7.5 Pascal function call interface

The difference between this function interface and other function interfaces is that the correction of stacks used for

loading of arguments when a function is called is done by the function side that was called, rather than the function

caller. All other points are the same as the function attributes specified at the same time.

[Area to which arguments are allocated]

[Sequence in which arguments are allocated]

[Area to which automatic variables are allocated]

[Sequence in which automatic variables are allocated]

• If the noauto attribute is specified at the same time, the features are the same as when a noauto function is

called (Refer to 11.7.3 noauto function call interface).

• If the noauto attribute is not specified at the same time, the features are the same when an ordinary function is

called (Refer to 11.7.2 Ordinary function call interface).

(C source)

_ _pascal void func0 (register int, int);

void main ()

{

func0 (0x1234, 0x5678);

}

_ _pascal void func0 (register int p1, int p2)

{

register int r;

int a;

r = p2;

a = p1;

}

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM468

(Output code)

With small model (when -QF option is specified)

_main:

; line 4 : func0(0x1234, 0x5678);

 movw ax,#05678H ; 22136

 push ax ; Argument is passed via a stack

 movw ax,#01234H ; 4660 ; The first argument is passed via a register

 call !_func0 ; Function call

 ; Stack is not corrected here

 ret

; line 6 : _ _pascal void func0(register int p1, int p2)

; line 7 : {

_func0:

 push rp3,up ; Saves the register for register variables

 ; or register arguments

 movw rp3,ax ; Allocates a register argument to rp3

 push ax ; Reserves the area for automatic variable a

; line 8 : register int r;

; line 9 : int a;

; line 10 : r = p2;

 movw ax,[sp+9]; p2 ; Argument p2 is passed via stack

 movw up,ax ; Register variable up

; line 11 : a = p1;

 movw ax,rp3 ; Register argument rp3

 movw [sp+0],ax ; a ; Automatic variable a

 pop ax ; Releases the area for automatic variable a

 pop rp3,up ; Restores the register for register variables

 ; or register arguments

 pop hl ; Obtains the return address

 incg sp ;

 pop ax ; The stack consumed by arguments passed via a

 ; stack is corrected

 br hl ; Branch to the return address

CHAPTER 11 EXTENDED FUNCTIONS

User’s Manual U15556EJ1V0UM 469

(C source)

With large model

_ _pascal noauto void func2(int, int);

void main ()

{

func2(0x1234, 0x5678);

}

_ _pascal noauto void func2(int p1, int p2)

{

 ...

}

(Output code)

With large model

_main:

; line 4 : func2(0x1234, 0x5678);

 movw ax,#05678H ; 22136

 push ax ; Argument is passed via a stack

 movw ax,#01234H ; 4660 ; The first argument is passed via a register

 call $!_func2 ; Function call

 ; Stack is not corrected here

ret

; line 6 : _ _pascal noauto void func2(int p1, int p2)

; line 7 : {

_func2:

 push uup ; Saves the register for arguments

 push rp3 ; Saves the register for arguments

 movw rp3,ax ; Allocates a register argument to rp3

 movw ax,[sp+8] ; Argument passed via a stack and received by a register

 movw up,ax ; Allocates an argument to up

 ...

 pop rp3 ; Restores the register for arguments

 pop uup ; Restores the register for arguments

 pop whl ; Obtains the return address

 pop ax ; The stack consumed by arguments passed via a stack is corrected

br whl ; Branch to the return address

User’s Manual U15556EJ1V0UM470

CHAPTER 12 REFERENCING THE ASSEMBLER

This chapter describes how to link a program written in assembly language.

If a function called from a C source program is written in another language, both object modules are linked by the

linker. This chapter describes the procedure for calling a program written in another language from a program written

in the C language and the procedure for calling a program written in the C language from a program written in

another language.

How to interface with another language by using the RA78K4 assembler package and this C compiler is described

in the following order.

(1) Calling assembly language routines from C language

(2) Calling C language functions from assembly language

(3) Referencing variables defined in C language

(4) Referencing variables defined in assembly language on the C language side

(5) Cautions

 CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U15556EJ1V0UM 471

12.1 Accessing Arguments/Automatic Variables

The procedure for accessing arguments and automatic variables of this C compiler is described below.

• On the function call side, register arguments are passed in the same way as ordinary arguments.

The first argument uses the following registers and stacks, and subsequent arguments are passed via

stacks.

Table 12-1. Passing Arguments (Function Call Side)

Type Passing Location (First Argument) Passing Location (Second and Later Arguments)

1-byte, 2-byte integer AX Stack passing

3-byte integer WHL

(Stack passing in case of small model)

Stack passing

4-byte integer AX, RP2 Stack passing

Floating-point number AX, RP2 Stack passing

Others Stack passing Stack passing

Remark 1- to 4-byte data includes structures and unions.

• On the function definition side, arguments passed via a register or stack are stored in the argument allocation

location.

Register arguments are copied to a register or saddr area (_@KREGxx).

Even when passing is done via a register, the registers on the function call side (passing side) and the

function definition side (receiving side) differ, and therefore register copying is performed.

Ordinary arguments passed via a register are placed on a stack on the function definition side.

If passing is done via a stack, the passing location simply becomes the argument allocation location.

Saving and restoring of registers that allocate arguments is performed on the function definition side.

• The arguments of functions and the values of automatic variables declared inside functions are stored in the

following registers, saddr areas, or stack frames using an option.

The base pointer used when storing in a stack frame uses the UP register.

 CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U15556EJ1V0UM472

Table 12-2. List of Storing Arguments/Automatic Variables (Inside Called Function)

Option Argument/auto Variable Storage Location Priority Level

-QV

(register allocation

option)

Declared argument or

automatic variable

• With small or medium

model RP3, VP, UP (only

when -QF is specified)

• With large model

RP3, VVP, UUP (only

when -QF is specified)

-QR register declared

automatic variable

• With small or medium

model RP3, VP, UP (only

when -QF is specified)

• With large model

RP3, VVP, UUP (only

when -QF is specified)

• Automatic variable

_@KREGxx

-QRV Declared argument or

automatic variable

• With small or medium

model RP3, VP, UP (only

when -QF is specified)

• With large model

RP3, VVP, UUP (only

when -QF is specified)

• Automatic variable

_@KREGxx

Although the allocation order may vary

depending on the number of references, the

priority level is determined basically by the

following rules.

<1> With small or medium model

• When -QF is specified

char, int, short, enum type: In the order of

UP, RP3, VP (if a long, float, or double type

argument exists)

In the order of RP3, UP, VP (if a long, float,

or double type argument does not exist)

Pointer type: In the order of UP, VP, RP3

long, float, or double type: RP3 (lower), VP

(higher)

• When -QF is not specified

char, int, short, enum type: In the order of

RP3, VP

Pointer type: In the order of VP, RP3

long, float, or double type: RP3 (lower), VP

(higher)

<2> With large model

• When -QF is specified

char, int, short, enum type: In the order of

UP, RP3, VP (if the long, float, or double

type argument exists)

In the order of RP3, UP, VP (if the long,

float, or double type argument does not

exist)

Pointer type: In the order of UUP, VVP,

long, float, or double type: RP3 (lower), VP

(higher)

• When -QF is not specified

char, int, short, enum type: In the order of

RP3, VP

Pointer type: In the order of VVP

long, float, or double type: RP3 (lower), VP

(higher)

Default Declared argument,

automatic variable

Stack frame Order of appearance

 CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U15556EJ1V0UM 473

The following example shows the function call.

(C source: Large model with -QRF)

void func0(register int, int);

void main()

{

 func0(0x1234, 0x5678);

}

void func0(register int p1, int p2)

{

 register int r;

 int a;

 r = p2;

 a = p1;

}

 (Output assembler source)

PUBLIC _func0

PUBLIC _main

@@CODE CSEG

_main:

 movw ax,#05678H ; 22136
push ax ; Argument is passed via a stack

 movw ax,#01234H ; 4660 ; The first argument is passed via a register
 call $!_func0 ; Function call
 pop ax ; Argument is passed via a stack
 ret

_func0:
 push uup ; Saves the register for arguments
 push rp3
 movw rp3,ax ; Allocates register arguments p1 to rp3.
 push ax
 movw ax,[sp+10] ; p2 ; Argument p2 passed via a stack is allocated to up
 movw up,ax
 movw ax,rp3 ; Register argument p1 is assigned
 movw [sp+0],ax ; a ; to automatic variable a
 pop ax
 pop rp3 ; Restores the register for arguments
 pop uup

 ret

 END

 CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U15556EJ1V0UM474

12.2 Storing Return Values

Return values during function calls are stored in registers and carry flags.

The storage locations of return values are shown in the table below.

Table 12-3. Storage Location of Return Values

Type Small Model Medium Model Large Model

1-byte integer

2-byte integer

BC BC BC

4-byte integer BC (lower), RP2 (higher) BC (lower), RP2 (higher) BC (lower), RP2 (higher)

Pointer BC BC (data pointer)

WHL (function pointer)

TDE

Structure, union BC (start address of structure or

union copied to function-specific

area)

BC (start address of structure

or union copied to function-

specific area)

TDE (start address of structure

or union copied to function-

specific area)

1 bit CY CY Y

Floating-point number BC (lower), RP2 (higher) BC (lower), RP2 (higher) C (lower), RP2 (higher)

����������	
�����������
������������������

���������	
������

�������� ���

	
�� ���������������� �!�����"�����#"$����%&#���

�������
��� ����	� '()� ���	������������� � ���� ��������!
"�	�� ����������#�������!������ ������� ����� ���		'
*� ��#+�$�#�

,-�&����&�$��&�"���$�
�������.�/)���"�+$�#���������.�0�$��%��	�'()������������� �����������!
"�	��������������#��

����&�$� '���� �(�"���� ������ �� ����� �	� ������ '()� ��� 	��� ���������� �	�� ���� ����
��� ����"�)����	� �����	

�'1���2�3,��������������$

*������������	�����"+�����	!
�!����
��	�����"�,�����(����	����	������������	!������$

- ,����	!��	�����"+�����	!
�!����
��	���
	����	��,���
����

- .�#�	!��	���������	!������	���"����	�����	�����"+�����	!
�!����
��	���/���"+������
����

/	0 ���������������� �!�����"����&#"$����%"�+$�#��/���#"&+�0

/	��(�"���������,���	!
�!�����!��"����������	�����"+�����	!
�!����
��	���������	�+����$

extern int FUNC (int, long); 01��
	����	�����������10

void main () {

int i, j;

long l;

i = 1;

l = 0x54321;

j = FUNC (i, l); 01��
	����	������10

}

2	� ����� ���!��"� �(�"��� � ���� ���� ���� ���!��"�� �	�������� ����� ����� ������ ��� �(��
���	� ��"�� �	�� ���� ����� ��

��	�����+�����	��������������(����	���+����$

3�4 '�����!
"�	�����������������"�����������
	����	���������4����
	����	$

'�����"����������!	���	���!
"�	�����������!����������
��
���������������+����������	���������&$

354 ,�	�����������	����������������4����
	����	�+������������	���
����	$

'�����"�������
��
�������������	���
����	$

'�������&������ �""��������������� ���� ���	����������	����� ��� �����4��� �
	����	� �	� �����+�#���(�"���� ���&�� ��&�

����$

���"&��	
'	����$�+5��&����%$�&�����

Return address to main

l (Lower word)

l (Higher word)

Low address

Stack pointer

Stack area

Arguments to be
passed to FUNC

i

High address

����������	
�����������
������������������

���������	
������

����������6

/
0 ��7������.�&��$#&����$-����%#&��$�#��#%������ �!�����"����&#"$�����/����� ��&��#"&+�0

'����4����
	����	�����������"�������(��
���������������	!����������$

3�4 �.�#�	!�����+�������	�����#$�

354 .�#�	!��������&���!������

364 �,����	!�������	��	��������������&����	�����.7���������+�������	�������70�7���#$�

�%�������!��"����������	!������7 �������"���0"���
"�"����������	!�����7�

384 7�������	!�����+��������4��

3
4 .����	!��������
�	�#��
�

3�4 9������	!�������#�����!������

3:4 9��
�	�	!���	������������

�#$� .�	���������(�"������������������	���������������
�������"�)����	������	����
��� �.7� ���
���� ���

��������&�"�	��
�����	$��'�������� �������������	!��	�3�4��	��364����	���	��������$��%��	�����'1�

�����	����	������������ �����#�� �������������	!��	�3�4��	��364����	��������$

/	��(�"��������	�����"+�����	!
�!�����!��"��������	�+����$

@@DATA DSEG

_DT1: DS (2)

_DT2: DS (4)

@@CODE CSEG

_FUNC:

 push uup ;save work registers $$$$$$$$$�354

 push rp3

 push vvp

 movw up,ax ;arg1

 movw ax,[sp+11] ;arg2

 movw rp3,ax

 movw ax,[sp+13] ;arg2

 movw vp,ax

 movw !!_DT1,up ;move 1st argument(i)

 movw !!_DT2,rp3 ;move 2nd argument(l)

 movw !!_DT2+2,vp

 movw bc,#0AH ; 10 ;set return value $$$$$$$$$�3
4

 pop vvp ;restore work registers

 pop rp3

 pop uup

 ret

����������	
�����������
������������������

���������	
������

�������� ���

/���+�������� ;<�������(�����������
	����	�	�"��������+����	�����,���
�������������+��$� ���������	������	�����&

��!�������������#��������������"��	�"������
	����	�	�"���������+����	���������,���
���$

3�4 .�#�	!�����+�������	���

2	�������(�"��� �.7����
����+���
�����������	�����������'1�������	���������������������	$

'�������� �������#�	!��������+�������	�������	���������"��$

354 .�#�	!��������&���!������

2	������!��"���������+������,���"����� ��������
	����	������������������
����#�	!�������!����������������	!

#����+���$��=�������������	 ��������#��
������������#����+�����������+�����	!���+�������
	����	����+��������

������!������#��
���"
���+����#���+�������	�$

2��	����!������#����+������
����+������������ �������	��	�������������&���!�������	����	���+����#��$

364 ,����	!�������	��	��������������&����	�����.7���������+�������	�������70�7�

'���#��
�������������&����	�����.7�������+�����	!���+����7�.*����7>7��	���
����	��	����������
	����	$��=��

����� �����	 � ���� ����&� ���	���� "
��� +�� ��#��� ��� ���� ��!������ ;��7� ����!�� "������� ��� ;�7� ��"���0"���
"

"����������
�������������+�������	�������������!
"�	��$

.7����
�����	�������(�"���$��'�������� ������	!��������+�������	�������	���	��������$

384 7�������	!�����+��������4��

>	���"������	�����������3�4������
!���364���+�#� �����+���������������	���	�������"�	������� �����4��

�
	����	�������������$

3
4 .����	!��������
�	�#��
�

2�� �4��� ���� �	�� #��
�� ��� ���
�	 � ���� ���
�	� #��
�� ��� ���� �	� ���� �,� ��!������ ��� 975� �	�� �,� ��!������?

��������� � 	����	!� ��� ���� �	� ������ ��!������$� � =��� ��!������ ��� ������ ���� ���
�	� #��
� � ������ ����� ��� 		'
�

�#+�$�#��#%��$#&������$"&��3��"�$

Word

BC register

Return value
16 bits or less

Higher word

RP2 register

Return value
17 bits or more

Lower word

BC register

 CHAPTER 12 REFERENCING THE ASSEMBLER

User’s Manual U15556EJ1V0UM478

<6> Restoring the saved registers

The saved contents of the base pointer and work registers are restored.

<7> Returning control to main

Figure 12-2. Stack Area After Return

Higher word

Return address to main

l (Lower word)

l (Upper word)

Low address

Stack pointer

Stack area
High address

Word

Return value
BC register

or
RP2 register BC register

Lower word

The procedure for calling an assembly language from C and the processing of the assembly language routine

are illustrated in Figure 12-3.

Figure 12-3. Calling Assembly Language Routine from C

Return address to main

l (Lower word)

l (Higher word)

Low address

Stack pointer

Stack area

Arguments to be passed to FUNC
AX register

High address

Higher word

Return address to main

l (Lower word)

l (Higher word)

Low address

Stack pointer

Stack area
High address

Word

Return value
BC register

or
RP2 register BC register

Lower word

Processing

[FUNC function]

Saving register

(U)UP, RP3, (V)VP*

Storing return value
in BC or RP2, bc
Restoring registers

[Function main]

i

����������	
�����������
������������������

���������	
������

�������� ��8

	
�� ��������������"�����#"$����%&#������� �!�����"�����#"$���

/	0 ����������������"����%"�+$�#��%&#������� �!�����"����/����� ��&��#"&+�0

/��
	����	�������	��	�,���	!
�!����	�+������������"��	�����"+�����	!
�!����
��	��+�������������	!�������
��$

3�4 ,����������������!
"�	���������!�������	��������������"��	�	!���!
"�	�����������
	����	��	���������&$

�9���������� ���		'
*��#+�$�#��,-�&����&�$��&�"���$�
�������.�/)���"�+$�#���������.�0�$

354 ,��������,���	!
�!���
	����	$

364 ,��	!������#��
�������������&����	�����.7����������	
"+������+��������������!
"�	��

��(���������	
"+������+��������������������!
"�	��$

384 9�����	����������
�	�#��
���������,���	!
�!���
	����	����������	������,����975��	���,���!�������$

/	��(�"��������	�����"+�����	!
�!�����!��"��������	�+����$

NAME FUNC2

EXTRN _CSUB

PUBLIC _FUNC2

CODE2 CSEG

_FUNC2:

movw ax, #20H ; .���5	����!
"�	���@�

push ax ;

movw ax, #21H ; .���������!
"�	�����

call !_CSUB ; ,����A,.����� �@�B

pop ax

ret

END

����������	
�����������
������������������

���������	
������

���������*9

3�4 7����	!�������!
"�	����	���������&

2�������������������"������!
"�	�� ���������	���	���
+��C
�	����!
"�	���������������	���������&$��'��

��!
"�	���������������������	��	��� ���	
'�$� �%��	�����'()������	���������������	�����,���
��������

����#�� �����������!
"�	���������������	���������&$

���"&��	
'�������+�����&�"���$��#%��$�+5

354 ,����	!�����,���	!
�!���
	����	

'���������	���
����	�"
���+��
��������������,���	!
�!���
	����	$

364 ,��	!�	!�����#��
�������������&����	�����.7�

'���#��
�������������&����	�����.7��"
���+�����	!�����������	
"+������+��������������!
"�	�����������	

��������&$��2	�������(�"��� �+���
�����!
"�	������5�+������������+�������� �5�����������������#��
��������

����&����	���$���7>7�����	������(�"����

384 9������	!�����������
�	�#��
����,����975��	���,�

'������
�	�#��
����	������,���!���������975��	���,���!����������"�,���	!
�!���
	����	���������������������$

2nd argument

Stack area

Low address

High address

CSUB(i, j)

1st argument

Word

BC register

Return value
16 bits or less

Higher word

RP2 register

Return value
17 bits or more

Lower word

BC register

����������	
�����������
������������������

���������	
������

�������� �*	

	
������%�&��+����3�&�� ����:�%���.� !�)$-�&�����"����

/	0 �#;�$#�&�%�&�$#��'.�%���.�7�&�� ���

'������������(���	���#����+�����������#��+��	�����	����	���,���	!
�!�����!��"��	��	�����"+�����	!
�!����
��	�

����#����+����"
���+���������������<$�&����(���	�����	�����,���	!
�!�����!��"$

=�<��>���#%�>&#�&��?��%�������!��"����

�,���
����

extern void subf () ;

char c = 0 ;

int i = 0 ;

void main () {

subf () ;

}

2	�����9/:DE8�����"+��� �����,F����	���#����+����"
���+��������+�������������$

�/���"+������
����

 PUBLIC _subf

 EXTRN _c

 EXTRN _I

@@CODE CSEG

_subf:

 MOV A, #04H

 MOV !!_c, A

 MOVW AX, #07H

 MOVW !!_i, AX

 RET

 END

����������	
�����������
������������������

���������	
������

���������*

/
0 �#;�$#�&�%�&�$#������ ��&'.�%���.�7�&�� ����%&#���

'�����������#����+�����������#��+��	�����	����	�����"+�����	!
�!�����"�, �����#����+����"
���+��������+����	����

,���	!
�!�����!��"�����������$

=�<��>���#%�������"����>&#�&��?�%�������!��"����

�,���
����

extern char c ;

extern int i ;

void subf ()

{

c = ‘A’ ;

i = 4 ;

}

2	�����9/:DE8�����"+��� ���������"+���F����	���#����+����"
���+��������+�������������$

NAME ASMSUB

PUBLIC _c

PUBLIC _i

ABC CSEG

_c: DB 0

_I: DW 0

END

����������	
�����������
������������������

���������	
������

�������� �*�

	
�6��)$-�&�
�>#&$��$����$�

/	0 @AB�/"�.�&�+#&�0

%���������,���"����� �A<B��
	��������G�/.,22������A
=*B����������(������������(���	���#����+������������	���	�"�$

2	������������	!�,����!��"��(�"��� �A@�H�=�I,�� ���?B�����	���������������������	�����������(���	���	�"��A<=�I,B$

extern int FUNC(int, long); 0�1��
	����	�����������10

void main () {

int i, j;

long l;

i = 1;

l = 0x54321;

j = FUNC (i, l); 0�1��
	����	������10

}

2	�����9/:DE8 �������
��	��	�"��"
���+��������+������A<=�I,B$

/
0 ���+����$�#%��&�"���$��#��$-���$�+5

/�!
"�	���������������	���������&��	���C
�	������"�������������������������!
"�	���	�������������	����"�������!���

��������������������$��%��	�'()����	��������������	�����,���
�������� �������������!
"�	������������#�������!�����$

���"&��	
'�������+����$�#%��&�"���$��#���$�+5

Return address to main

l (Lower word)

l (Higher word)

Low address

j = FUNC (i, I);

Stack area
High address

Stack pointer

AX register

i

User’s Manual U15556EJ1V0UM484

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

This chapter introduces how to effectively use this C compiler.

13.1 Efficient Coding

When developing 78K/IV Series microcontroller-applied products, efficient object generation may be realized with

this C compiler by utilizing the saddr1/2 area, callt table, or callf area of the device.

Use of external variables

if (saddr2 area can be used) Use sreg/_ _sreg variables/use compiler option (-RD).

if (saddr1 area can be used) Use _ _sreg1 variables.

Use of bit type (one bit) data

if (saddr2 area can be used) Use bit/boolean/_ _boolean type variables.

if (saddr1 area can be used) Use _ _boolean1 type variables.

Definition of function

if (the function is to be called frequently)

if (callt table can be used)

Declare it as _ _callt/callt function.

(Effective to shorten the code size)

if (callf area can be used)

Declare it as _ _callf/callf function.

(Effective to improve the execution speed)

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U15556EJ1V0UM 485

(1) Using external variables

When defining an external variable, specify the external variable to be defined as a sreg/_ _sreg variable if the

saddr2 area can be used. Instructions to sreg/_ _sreg variables are shorter in code length than instructions to

memory. This helps shorten object code and improve program execution speed. (The same can be also

performed by specifying the -RD option, instead of using the sreg variable.)

When saddr1 area as well as saddr2 area can be used, the similar effect can be achieved by specifying the

external variable to be defined as _ _sreg1 variable.

Definition of sreg/_ _sreg variable:extern sreg int variable-name ;

extern_ _sreg int variable-name ;

Remark Refer to 11.5 (3) How to use the saddr area.

(2) 1-bit data

A data object which only uses 1-bit data should be declared as a bit type variable (or boolean/_ _boolean type

variable). A bit manipulation instruction will be generated for an operation on a bit/boolean/_ _boolean type

variable. Because saddr area is used as well as the sreg variable, the codes can be shortened and the

execution speed can be improved.

When saddr1 area as well as saddr2 area can be used, the similar effect can be achieved by specifying the

external variable to be defined as a _ _boolean1 type variable.

Declaration of bit/boolean type variable: bit variable-name ;

boolean variable-name ;

_ _boolean variable-name ;

Remark Refer to 11.5 (7) bit type variables.

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U15556EJ1V0UM486

(3) Function definitions

For a function to be called over and over again, object code should be shortened or a structure which allows

calling at high speeds should be provided. If the callt table can be used for functions to be called frequently,

such functions should be defined as callt functions. Likewise, if the callf area can be used for functions to be

called frequently, such functions should be defined as callf functions. The callf functions can be called faster

than ordinary function calls with shorter codes because the callf functions are called using the callf area of the

device. The callt functions are effective when codes needs to be shortened because the callt functions use the

callt area of the device and are called with shorter code than callf.

Definition of callt function: callt int tsub() {

 :

 }

Definition of callf function: callf int tsub()

 :

 }

Remark Refer to 11.5 (1) callt function and 11.5 (15) callf function.

In addition to the use of the areas shown above, objects that do not need modification of the C source by

compiling with the optimization option can be generated. For the effect of each -Q suboption, refer to the

CC78K4 C Compiler Operation User’s Manual (U15557E).

(4) Optimization option

The optimization options that emphasize the object code size the most is as follows.

[Object code is emphasized the most]

-QX3

Further shortening of the code size and improvement of the execution speed is possible by adding _ _sreg or _

_sreg1 to variables. However, this is restricted to the cases when saddr2 area or saddr1 area can be used.

When the areas have no more space and cannot be used, a compilation error occurs.

If execution speed is also highly emphasized, specify the -QX2 default.

If the code size is smaller than -QX3, -QX4 can be specified. However, there are restrictions during debugging.

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U15556EJ1V0UM 487

In addition, the object efficiency can be improved by adding the extended functions supported by this compiler to

the C source.

(5) Using extended functions

• Definition of function

if (the function is to be called frequently)

if (the function is not to be used recursively)

Declare it as _ _leaf/norec functions.

if (the function does not use automatic variables)

Declare it as noauto function.

if (the function uses automatic variables and && register/saddr area can be used)

Declare it with register storage class.

if (use internal static variables) && (saddr2 area can be used)

Declare with _ _sreg/specify -RS option

• Functions not used recursively

Of the functions to be called over and over again, the ones which are not used recursively should be defined

as _ _leaf/norec functions. norec functions become functions that do not have preprocessing/

postprocessing (stack frame). Therefore, the object code can be shortened and the execution speed can be

improved compared to the ordinary functions.

Remark For the definition of the norec function (norec int rout ()...), refer to 11.5 (6) norec

function and 11.7.4 norec function call interface.

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U15556EJ1V0UM488

• Functions that do not use automatic variables

Functions that do not use automatic variables should be defined as noauto functions. These functions will

not output code for stack frame generation and their arguments will be passed to registers as much as

possible. These functions help shorten object code and improve program execution speed.

Remark For the definition of the noauto function (noauto int sub1 (int i)...), refer to 11.5 (5)

noauto functions and 11.7.3 noauto function call interface.

• Functions that use automatic variables

If the saddr2 area can be used for a function that uses automatic variables, declare the function with the

register storage class specifier. By this register declaration, the object declared as register will be allocated

to a register. A program using registers operates faster than one using memory, and object code can be

shortened as well.

Remark For the definition of the register variable (register int i; ...), refer to 11.5 (2) Register

variables.

• Functions that use internal static variables

If the saddr2 area can be used for a function that uses internal static variables, declare the function with

_ _sreg or specify the -RS option. In the same way as with sreg variables, the object code can be shortened

and the execution speed can be improved.

When saddr1 area can be used as well as saddr2 area, the same effect can be achieved by declaring the

function with _ _sreg1.

Remark Refer to 11.5 (3) How to use saddr area.

CHAPTER 13 EFFECTIVE UTILIZATION OF COMPILER

User’s Manual U15556EJ1V0UM 489

In addition, the code efficiency and the execution speed can be improved by the following methods.

• Use of SFR name (or SFR bit name).

#pragma sfr

• Use of _ _sreg/_ _sreg1 declaration for bit fields that consist only of 1-bit members (unsigned char type can

be used for members).

_ _sreg struct bf {

unsigned char a:1;

unsigned char b:1;

unsigned char c:1;

unsigned char d:1;

unsigned char e:1;

unsigned char f:1;

} bf_1;

• Use of the register bank change for interrupt processing.

#pragma interrupt INTP0 inter RB1

• Use of multiplication and division embedded function.

#pragma mul

#pragma div

• Description of only the modules whose speed needs to be improved in the assembly language.

User’s Manual U15556EJ1V0UM490

APPENDIX A LIST OF LABELS FOR saddr AREA

With the CC78K4, addresses in the saddr2 area are referenced by the following label names. For this reason, the

same names as these label names cannot be used in the C source program or assembler source program.

For the areas of Section A.1 to A.3, any consecutive 32-byte area of saddr2 area (F) FD20H to (F) FDFFH is

used. The allocation addresses are determined at linking.

Remark (F)FDXXH indicates the address where _@NRARG0 is allocated, and F is added to the higher 4 bits at

the location 1024K (0FH: Compiler option -CS15).

A.1 Arguments of norec Functions

Label Name Address

_@NRARG0 (F)FDXXH

_@NRARG1 _@NRARG0 + 1H

_@NRARG2 _@NRARG0 + 2H

_@NRARG3 _@NRARG0 + 3H

_@NRARG4 _@NRARG0 + 4H

_@NRARG5 _@NRARG0 + 5H

_@NRARG6 _@NRARG0 + 6H

_@NRARG7 _@NRARG0 + 7H

APPENDIX A LIST OF LABELS FOR saddr AREA

User’s Manual U15556EJ1V0UM 491

A.2 Automatic variables of norec Functions

Label Name Address

_@NRAT00 _@NRARG0 + 8H

_@NRAT01 _@NRARG0 + 9H

_@NRAT02 _@NRARG0 + AH

_@NRAT03 _@NRARG0 + BH

_@NRAT04 _@NRARG0 + CH

_@NRAT05 _@NRARG0 + DH

_@NRAT06 _@NRARG0 + EH

_@NRAT07 _@NRARG0 + FH

A.3 Register Variables

Label Name Address

_@KREG00 _@NRARG0 + 10H

_@KREG01 _@NRARG0 + 11H

_@KREG02 _@NRARG0 + 12H

_@KREG03 _@NRARG0 + 13H

_@KREG04 _@NRARG0 + 14H

_@KREG05 _@NRARG0 + 15H

_@KREG06 _@NRARG0 + 16H

_@KREG07 _@NRARG0 + 17H

_@KREG08 _@NRARG0 + 18H

_@KREG09 _@NRARG0 + 19H

_@KREG10 _@NRARG0 + 1AH

_@KREG11 _@NRARG0 + 1BH

_@KREG12 _@NRARG0 + 1CH

_@KREG13 _@NRARG0 + 1DH

_@KREG14 _@NRARG0 + 1EH

_@KREG15 _@NRARG0 + 1FH

User’s Manual U15556EJ1V0UM492

APPENDIX B LIST OF SEGMENT NAMES

This chapter explains all the segments that the compiler outputs and their locations.

(1) to (3) shows the options and re-allocation attributes used in the table.

(1) Option

−−−−MS: Small model

−−−−MM: Medium model

−−−−ML: Large model

−−−−CS0: Location 00H

−−−−CS15: Location 0FH

(2) Relocation attribute of CSEG

CALLT0: Allocates the specified segment in the address 40H to 7FH with the start address

of a multiple of 2.

BASE: Allocates the specified segment in the address 80H to 0FCFFH.

AT absolute expression: Allocates the specified segment in an absolute address (within 0H to 0FCFFH,

10000H to 0FFFFFH)Note.

FIXED: Allocates the start address of the specified segment in the address 800H to

0FFFH.

FIXEDA: Allocates the start address of the specified segment in the address 800H to

0FFFH and the end within 0FCFFH.

PAGE: Allocates the specified segment in the address xxx00H to xxxFFH (within

0FFFFFH).

PAGE64K: Allocates the specified segment not to extend over the 64 KB boundary (within

0H to 0FCFFH, 10000H to 0FFFFFH)Note.

UNIT/without specification: Allocates the specified segment to a given location (within 80H to 0FCFFH,

10000H to 0FFFFFH)Note.

UNITP: Allocates the specified segment to a given location with the start address in an

even address (80H to 0FCFFH, 10000H to 0FFFFFH)Note.

Note The range can be changed by specifying the −−−−CS option.

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 493

(3) Re-allocation attributes of DSEG

SADDR: Allocates the specified segment to saddr1 area (saddr1 area: 0FE00H to

0FEFFH)Note

SADDR2: Allocates the specified segment to saddr2 area (saddr2 area: 0FD20H to

0FDFFH)Note

SADDRP: Allocates the specified segment starting from an even address in saddr1 area.

SADDRP2: Allocates the specified segment starting from an even address in saddr2 area.

SADDRA: Allocates the specified segment to a given area in saddr area (saddr area:

saddr1 area/saddr2 area).

AT absolute expression: Allocates the specified segment to an absolute address.

UNIT/without specification: Allocates the specified segment to a given location (within the memory area

name “RAM”)Note.

UNITP: Allocates the specified segment to a given location starting from an even

address (within the memory area name ‘RAM’)Note.

PAGE: Allocates the specified segment to a given location between XXXX00H to

XXXXFFH (within 0FFFFFH)Note.

PAGE64K: Allocates the specified segment not to extend over the 64 KB boundary (within

0H to 0FCFFH, 10000H to FFFFFH)Note.

Note The range can be changed by specifying the −−−−CS option (the address may differ depending on the

target device. For details, refer to the user's manual of the target device used).

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM494

B.1 List of Segment Names

B.1.1 Program area and data area

(1) With small model (when −−−−MS is specified)

Section Name Segment Type Relocation Attribute Description

@@BASE CSEG BASE Segment for callt function and interrupt function

@@VECTnn CSEG AT nnH Segment for interrupt vector table

@@CODES CSEG BASE Segment for ordinary function codes

@@CNSTS CSEG BASE Segment for const variables

@@CALFS CSEG FIXEDA Segment for callf function

@@CALT CSEG CALLT0 Segment for table for callt function

@@RSINIT CSEG BASE Segment for initialization data (with initial value)

@@RSINIS CSEG BASE Segment for initialization data (sreg variable with initial value)

@@RSINS1 CSEG BASE Segment for initialization data (sreg1 variable with initial value)

@@INIT DSEG Segment for data area (with initial value)

@@DATA DSEG Segment for data area (without initial value)

@@INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@@INIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@@DATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@@BITS BSEG SADDR2 Segment for boolean type and bit type variables

@@BITS1 BSEG SADDR Segment for _ _boolean 1 type variable

@EXT00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is

specified)Note

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer

to B.1.2 Flash memory area (@@INIS→@EINIS, etc.).

Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For @@VECTnn, nn is determined when the interrupt source is specified by #pragma vect (interrupt)

(nn: Number of interrupt vector address).

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 495

(2) With large model (when −−−−ML is specified)

Section Name Segment Type Relocation Attribute Description

@@BASE CSEG BASE Segment for callt function and interrupt function

@@VECTnn CSEG AT nnH Segment for interrupt vector table

@@CODE CSEG Segment for ordinary function codes

@@CNST CSEG Segment for const variables

@@CALF CSEG FIXED Segment for callf function

@@CALT CSEG CALLT0 Segment for table for callt function

@@R_INIT CSEG Segment for initialization data (with initial value)

@@R_INIS CSEG Segment for initialization data (sreg variable with initial value)

@@R_INS1 CSEG Segment for initialization data (sreg1 variable with initial

value)

@@INIT DSEG Segment for data area (with initial value)

@@DATA DSEG Segment for data area (without initial value)

@@INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@@INIS1 DSEG SADDR Segment for data area (sreg1 with initial value)

@@DATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@@BITS BSEG SADDR2 Segment for boolean type and bit type variables

@@BITS1 BSEG SADDR Segment for _ _boolean1 type variable

@EXT00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is

specified)Note

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer

to B.1.2 Flash memory area (@@INIS→@EINIS, etc.).

Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @@VECTnn, nn is determined when the interrupt source is specified by #pragma vect

(interrupt) (nn: Number of interrupt vector address).

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM496

(3) With medium model and location 00H (when −−−−MM and −−−−CS0 are specified)

Section Name Segment Type Relocation Attribute Description

@@BASE CSEG BASE Segment for callt function and interrupt function

@@VECTnn CSEG AT nnH Segment for interrupt vector table

@@CODE CSEG Segment for ordinary function codes

@@CNSTS CSEG BASE Segment for const variables

@@CALF CSEG FIXED Segment for callf function

@@CALT CSEG CALLT0 Segment for table for callt function

@@R_INIT CSEG Segment for initialization data (with initial value)

@@R_INIS CSEG Segment for initialization data (sreg variable with initial value)

@@R_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@@INIT DSEG Segment for data area (with initial value)

@@DATA DSEG Segment for data area (without initial value)

@@INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@@INIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@@DATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@@BITS BSEG SADDR2 Segment for boolean type and bit type variables

@@BITS1 BSEG SADDR Segment for _ _boolean1 type variable

@EXT00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is

specified)Note

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer

to B.1.2 Flash memory area (@@INIS→@EINIS, etc.).

Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @@VECTnn, nn is determined when the interrupt source is specified by #pragma vect

(interrupt) (nn: Number of interrupt vector address).

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 497

(4) With medium model and location 0FH (when −−−−MM and −−−−CS15 are specified)

Section Name Segment Type Relocation Attribute Description

@@BASE CSEG BASE Segment for callt function and interrupt function

@@VECTnn CSEG AT nnH Segment for interrupt vector table

@@CODE CSEG Segment for ordinary function codes

@@CNSTM CSEG PAGE64K Segment for const variables

@@CALF CSEG FIXED Segment for callf function

@@CALT CSEG CALLT0 Segment for table for callt function

@@R_INIT CSEG Segment for initialization data (with initial value)

@@R_INIS CSEG Segment for initialization data (sreg variable with initial value)

@@R_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@@INITM DSEG PAGE64K Segment for data area (with initial value)

@@DATAM DSEG PAGE64K Segment for data area (without initial value)

@@INIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@@INIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@@DATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@@BITS BSEG SADDR2 Segment for boolean type and bit type variables

@@BITS1 BSEG SADDR Segment for _ _boolean1 type variable

@EXT00 CSEG AT04080H Segment for the flash area branch table (only when -ZF is

specified)Note

Note When -ZF is specified, the second “@” from the top is changed to “E” in the section name. For details, refer

to B.1.2 Flash memory area (@@INIS→@EINIS, etc.).

Also, it is possible to change the address of the relocation attribute using #pragma ext_table.

Remark For the @@VECTnn, nn is determined when the interrupt source is specified by #pragma vect

(interrupt) (nn: Number of interrupt vector address).

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM498

B.1.2 Flash memory area

(1) With small model (when −−−−MS is specified)

Section Name Segment Type Relocation Attribute Description

@ECODES CSEG BASE Segment for normal function codes

@ECNSTS CSEG BASE Segment for const variables

@ERSINIT CSEG BASE Segment for initialization data (with initial value)

@ERSINIS CSEG BASE Segment for initialization data (sreg variable with initial value)

@ERSINS1 CSEG BASE Segment for initialization data (sreg1 variable with initial value)

@EINIT DSEG Segment for data area (with initial value)

@EDATA DSEG Segment for data area (without initial value)

@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@EDATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@EBITS BSEG SADDR2 Segment for boolean type and bit type variables

@EBITS1 BSEG SADDR Segment for _ _boolean 1 type variable

(2) With large model (when −−−−ML is specified without 2-byte alignment)

Section Name Segment Type Relocation Attribute Description

@ECODE CSEG Segment for normal function codes

@ECNST CSEG Segment for const variables

@ER_INIT CSEG Segment for initialization data (with initial value)

@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)

@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@EINIT DSEG Segment for data area (with initial value)

@EDATA DSEG Segment for data area (without initial value)

@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@EINIS1 DSEG SADDR Segment for data area (sreg1 with initial value)

@EDATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@EBITS BSEG SADDR2 Segment for boolean type and bit type variables

@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 499

(3) With large model (when −−−−ML is specified with 2-byte alignment)

Section Name Segment Type Relocation Attribute Description

@ECODE CSEG Segment for normal function codes

@ECNST CSEG UNITP Segment for const variables

@ER_INIT CSEG UNITP Segment for initialization data (with initial value)

@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)

@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@EINIT DSEG UNITP Segment for data area (with initial value)

@EDATA DSEG UNITP Segment for data area (without initial value)

@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@EINIS1 DSEG SADDR Segment for data area (sreg1 with initial value)

@EDATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@EBITS BSEG SADDR2 Segment for boolean type and bit type variables

@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

(4) With medium model and location 00H (when −−−−MM and −−−−CS0 are specified)

Section Name Segment Type Relocation Attribute Description

@ECODE CSEG Segment for normal function codes

@ECNSTS CSEG BASE Segment for const variables

@ER_INIT CSEG Segment for initialization data (with initial value)

@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)

@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@EINIT DSEG Segment for data area (variable with initial value)

@EDATA DSEG Segment for data area (without initial value)

@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@EDATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@EBITS BSEG SADDR2 Segment for boolean type and bit type variables

@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM500

(5) With medium model and location 0FH (when −−−−MM and −−−−CS15 are specified)

Section Name Segment Type Relocation Attribute Description

@ECODE CSEG Segment for normal function codes

@ECNSTM CSEG PAGE64K Segment for const variables

@ER_INIT CSEG Segment for initialization data (with initial value)

@ER_INIS CSEG Segment for initialization data (sreg variable with initial value)

@ER_INS1 CSEG Segment for initialization data (sreg1 variable with initial value)

@EINITM DSEG PAGE64K Segment for data area (with initial value)

@EDATAM DSEG PAGE64K Segment for data area (without initial value)

@EINIS DSEG SADDR2 Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDR2 Segment for data area (sreg variable without initial value)

@EINIS1 DSEG SADDR Segment for data area (sreg1 variable with initial value)

@EDATS1 DSEG SADDR Segment for data area (sreg1 variable without initial value)

@EBITS BSEG SADDR2 Segment for boolean type and bit type variables

@EBITS1 BSEG SADDR Segment for _ _boolean1 type variable

B.2 Location of Segment

Segment Type Destination of Allocation (Default)

CSEG ROM

BSEG saddr area of RAM

DSEG RAM

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 501

B.3 Example of C Source

#pragma INTERRUPT INTP0 inter rb1 /* interrupt vector */

void inter(void); /* interrupt function prototype declaration */

const int i_cnst = 1; /* const variable */

callt void f_clt(void); /* callt function prototype declaration */

callf void f_clf(void); /* callf function prototype declaration */

boolean b_bit; /* boolean type variable */

long l_init = 2; /* external variable with initial value */

int i_data; /* external variable without initial value */

sreg int sr_inis = 3; /* sreg variable with initial value */

sreg int sr_dats; /* sreg variable without initial value */

void main() /* function definition */

{

int i;

i = 100;

}

void inter() /* interrupt function definition */

{

unsigned char uc = 0;

uc++;

if(b_bit)

b_bit = 0;

}

callt void f_clt() /* callt function definition */

{

}

callf void f_clf() /* callf function definition */

{

}

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM502

B.4 Example of Output Assembler Module

Quasi-directives and instruction sets in an assembler source vary depending on the device.

Refer to the RA78K4 Online Help for details.

; 78K/IV Series C Compiler V2.30 Assembler Source

; Date:XX XXX XXXX Time:xx:xx:xx

; Command : -c4026 sample.c -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file :

$CHGSFR(15)

$PROCESSOR(4026)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0230H, 00H, 08021H, 00H

 PUBLIC _inter

 PUBLIC _i_cnst

 PUBLIC ?f_clt

 PUBLIC _f_clf

 PUBLIC _b_bit

 PUBLIC _l_init

 PUBLIC _i_data

 PUBLIC _sr_inis

 PUBLIC _sr_dats

 PUBLIC _main

 PUBLIC _f_clt

 PUBLIC _@vect06

@@BITS BSEG SADDR2 ; Segment for boolean type variable

_b_bit DBIT

@@CNST CSEG ; Segment for const variable

_i_cnst: DW 01H ; 1

@@R_INIT CSEG ; Segment for initialization data (external variable

 DW 00002H,00000H ; 2 with initial value)

@@INIT DSEG ; Segment for data area (external variable with initial

_l_init: DS (4) value)

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM 503

@@DATA DSEG ; Segment for data area (external variable without

_i_data: DS (2) initial value)

@@R_INIS CSEG ; Segment for initialization data (sreg variable with

DW 03H ; 3 initial value)

@@INIS DSEG SADDR2 ; Segment for data area (sreg variable with initial

_sr_inis: DS (2) value)

@@DATS DSEG SADDR2 ; Segment for data area (sreg variable without initial

_sr_dats: DS (2) value)

@@CALT CSEG CALLT0 ; Segment for callt function

?f_clt: DW _f_clt

; line 1 : #pragma INTERRUPT INTP0 inter rb1 /* interrupt vector */

; line 2 :

; line 3 : void inter(void); /* interrupt function prototype declaration */

; line 4 : const int i_cnst = 1; /* const variable */

; line 5 : callt void f_clt(void); /* callt function prototype declaration */

; line 6 : callf void f_clf(void); /* callf function prototype declaration */

; line 7 : boolean b_bit; /* boolean type variable */

; line 8 : long l_init = 2; /* external variable with initial value */

; line 9 : int i_data; /* external variable without initial value */

; line 10 : sreg int sr_inis = 3; /* sreg variable with initial value */

; line 11 : sreg int sr_dats; /* sreg variable without initial value */

; line 12 :

; line 13 : void main() /* function definition */

; line 14 : {

@@CODE CSEG ; Segment for code portion

_main:

 push rp3

; line 15 : int i;

; line 16 : i = 100;

 movw rp3,#064H ; 100

; line 17 : }

 pop rp3

 ret

; line 18 :

; line 19 : void inter() /* interrupt function definition */

; line 20 : {

@@BASE CSEG BASE ; Segment for callf/interrupt function

_inter:

 sel RB1

APPENDIX B LIST OF SEGMENT NAMES

User’s Manual U15556EJ1V0UM504

 push rp3

; line 21 : unsigned char uc = 0;

 mov r6,#00H ; 0

; line 22 : uc++;

 inc r6

; line 23 : if(b_bit)

 bf _b_bit,$L0005

; line 24 : b_bit = 0;

 clr1 _b_bit

L0005:

; line 25 : }

 pop rp3

 reti

; line 26 :

; line 27 : callt void f_clt() /* callt function definition */

; line 28 : {

_f_clt:

; line 29 : }

 ret

; line 30 :

; line 31 : callf void f_clf() /* callf function definition */

; line 32 : {

@@CALF CSEG FIXED ; Segment for callf function

_f_clf:

; line 33 : }

 ret

@@VECT06 CSEG AT 0006H ; Segment for interrupt vector table

_@vect06:

 DW _inter

 END

; Target chip : uPD784026

; Device file : Vx.xx

User’s Manual U15556EJ1V0UM 505

APPENDIX C LIST OF RUNTIME LIBRARIES

Table C-1 shows the runtime library list.

These operational instructions are called in the format where @@, etc. are attached at the beginning of the

function name.

However, cstart and cstarte are called in the format with _@ attached to the top.

All runtime libraries except hdwinit and boot_main are supported when the -ZF option is specified.

No library support is available for operations not in Table C-1. The compiler executes inline expansion.

long addition and subtraction, and/or/xor and shift may be expanded inline.

Table C-1. List of Runtime Libraries (1/5)

Classification Function Name Function

Increment lsinc Increments signed long.

luinc Increments unsigned long.

finc Increments float.

Decrement lsdec Decrements signed long.

ludec Decrements unsigned long.

fdec Decrements float.

Sign reverse lsrev Reverses the sign of signed long.

lurev Reverses the sign of unsigned long.

frev Reverses float.

Complement lscom Obtains one’s complement of signed long.

lucom Obtains one’s complement of unsigned long.

NOT lsnot Negates signed long.

lunot Negates unsigned long.

fnot Negates float.

Multiply lsmul Performs multiplication between two signed long data.

lumul Performs multiplication between two unsigned long data.

fmul Performs multiplication between two float data.

Divide csdiv Performs division between two signed char data.

isdiv Performs division between two signed int data.

lsdiv Performs division between two signed long data.

ludiv Performs division between two unsigned long data.

fdiv Performs division between two float data.

Remainder csrem Obtains remainder after division between two signed char data.

isrem Obtains remainder after division between two signed int data.

lsrem Obtains remainder after division between two signed long data.

lurem Obtains remainder after division between two unsigned long data.

 APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U15556EJ1V0UM506

Table C-1. List of Runtime Libraries (2/5)

Classification Function Name Function

Add lsadd Performs addition between two signed long data.

luadd Performs addition between two unsigned long data.

fadd Performs addition between two float data.

Subtract lssub Performs subtraction between two signed long data.

lusub Performs subtraction between two unsigned long data.

fsub Performs subtraction between two float data.

Shift Left lslsh Shifts signed long to the left.

lulsh Shifts unsigned long to the left.

Shift Right lsrsh Shifts signed long to the right.

lursh Shifts unsigned long to the right.

Compare lscmp Compares two signed long data.

lucmp Compares two unsigned long data.

fcmp Compares two float data.

Bitwise AND lsband Performs bitwise AND operation between two signed long data.

luband Performs bitwise AND operation between two unsigned long data.

Bitwise OR lsbor Performs bitwise OR operation between two signed long data.

lubor Performs bitwise OR operation between two unsigned long data.

Bitwise XOR lsbxor Performs bitwise XOR operation between two signed long data.

lubxor Performs bitwise XOR operation between two unsigned long data.

Logical AND fand Performs logical AND operation between two float data.

Logical OR for Performs logical OR operation between two float data.

ftols Converts from float to signed long.

ftolu Converts from float to unsigned long.

lstof Converts from signed long to float.

lutof Converts from unsigned long to float.

Type

conversion

from bit

btol Converts bit to long.

Preprocess/

postprocess

hdwinit Initializes peripheral units (sfr) immediately after CPU has been reset.

Conversion from
floating point
number

Conversion to
floating point
number

APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U15556EJ1V0UM 507

Table C-1. List of Runtime Libraries (3/5)

Classification Function Name Function

Startup routine cstart Startup module (including the startup module for booting)

In the case of a startup module for booting,

library.inc, in which a library name EXTERN declaration is described in the

comments is included.

If the library name’s EXTERN declaration comment is removed, it is used

in the flash area.

The library can be used in the boot area.

EXTERN declarations _@vect00 to @vect3e are executed and are located

in the flash area.

Set an interrupt vector table for interrupt functions.

Secure an area (2 x 32 bytes, 3 x 32 bytes for the medium model and large

model) to register functions by the atexit function, and let the top label

name be _@FNCTBL.

Secure a break area (32 bytes, 64 bytes in the large model) and let the top

label name be _@MEMTOP, then let the area’s next address label name

be _@MEMBTM.

Define the reset vector table’s segment as follows and specify the top

address of the startup module.

@@VECT00 CSEG AT 0000H

DW _@cstart

Specify LOCATION.

Set the V, U, T and W registers to 0 (small model only).

Set the V, U, T and W registers to 0 (LOCATION 0) and 0FH (LOCATION

15) (medium model only).

Set the register bank to RB0.

Set variable _errno input in the error No to 0.

Set the variable _@FNCENT which inputs the number of functions

registered by the atexit function to.

Set the address of _@MEMTOP in variable _@BRAKADR as the initial

break value.

Set 1 as the initial value in the variable _@SEED which is the source of

pseudo random numbers for the rand function.

Execute 0 clearing of data from initialization data copy processing and

external data without initialization values.

 APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U15556EJ1V0UM508

Table C-1. List of Runtime Libraries (4/5)

Classification Function Name Function

Startup routine cstart Startup module (including startup modules for booting)

In the case of a startup module for booting (for flash)

Call the boot_main function (user program).

Branch to the flash area’s branch table top (ITBLTOP) and move

processing to the startup module for flash memory.

Declare the following labels and variables (distinguish between upper case

and lower case letters).

The user is prohibited to define these symbols.

_@FNCTBL (3 bytes: Medium model, large model)

_@MEMTOP (3 bytes: Large model)

_@MEMBTM (3 bytes: Large model)

_errno (2 bytes)

_@FNCENT (2 bytes)

_@BRKADR (2 bytes/3 bytes: Large model)

_@SEED (4 bytes) _@DIVR (4 bytes)

_@LDIVR (8 bytes)

_@TOKPRT (2 bytes/3 bytes: Large model)

In the case of a startup module for booting

Call the main function (user program).

Call the exit function by parameter 0.

cstarte Startup module for flash memory

Define the flash area branch table for branching to the startup module for

flash memory (ITBLTOP is the top address for the flash area branch table).

@EVECT00 CSEG AT ITBLTOP

BR _@cstarte

Set the final address of the stack area + 1 in the stack pointer (SP).

Execute 0 clearing of data from initialization data copy processing and

external data without initialization values.

Call the main function.

Call the exit function by parameter 0.

Flash

compatibility

boot_main Execute boot area main function processing (function prototype: void

boot_main (void);). This function returns without doing anything. However,

as necessary, the user, by creating it, can execute processing which suit’s

the user’s purpose.

Example: In cases where update processing of the flash area program is

executed by referring to SFR, etc.

vect00 to 3e Create an interrupt vector table when the -ZF option is specified

(function prototype: void vect00(void);, ..., void vect3e (void)).

Specify the top address value of the interrupt function located in the flash

area in the interrupt vector table.

APPENDIX C LIST OF RUNTIME LIBRARIES

User’s Manual U15556EJ1V0UM 509

Table C-1. List of Runtime Libraries (5/5)

Classification Function Name Function

addwc

anda0

aX3de

aX3whl

aXxwhl

clrhw

cmpa0

cmpax0

cmpaxf

cmpbc0

cmpbcf

eX2de

eX4de

mova0

movax1

movaxs

movbcf

movdes

movs0

movsax

muluwt

muluww

mulwde

mulwhl

sladd

slsdiv

slsmul

slsrem

slsub

sludiv

slumul

slurem

For replacing the fixed-type instruction patternAuxiliary

swtbla Converts switch branch table to 2-byte table.

User’s Manual U15556EJ1V0UM510

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

Table D-1 shows the number of stacks consumed from the standard libraries.

Table D-1. List of Standard Library Stack Consumption (1/4)

Classification Function Name Small Model Medium Model Large Model

isalnum 0 0 0

salpha 0 0 0

iscntrl 0 0 0

isdigit 0 0 0

isgraph 0 0 0

islower 0 0 0

isprint 0 0 0

ispunct 0 0 0

isspace 0 0 0

isupper 0 0 0

isxdigit 0 0 0

tolower 0 0 0

toupper 0 0 0

isascii 0 0 0

toascii 0 0 0

_tolower 0 0 0

_toupper 0 0 0

tolow 0 0 0

ctype.h

toup 0 0 0

setjmp 6 6 0setjmp.h

longjmp 0 0 0

va_arg 0 0 0

va_start 0 0 0

stdarg.h

va_end 0 0 0

sprintf 56 (115) 56 (116) 55 (119)Note

sscanf 293 (334) 293 (335) 293 (341)Note

printf 65 (116) 67 (118) 71 (121)Note

scanf 304 (336) 308 (338) 308 (344)Note

vprintf 65 (116) 67 (118) 71 (121)Note

vsprintf 56 (115) 56 (116) 55 (119)Note

getchar 0 0 0

gets 7 7 9

putchar 0 0 0

stdio.h

puts 5 5 6

Note Values in parentheses are for when the version that supports floating-point numbers is used.

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM 511

Table D-1. List of Standard Library Stack Consumption (2/4)

Classification Function Name Small Model Medium Model Large Model

atoi 11 11 1

atol 11 11 1

strtol 14 17 21

strtoul 14 17 21

calloc 11 11 18

free 9 9 12

malloc 9 9 12

realloc 14 14 20

abort 0 0 0

atexit 0 0 3

exit n+3 n+3 n+3Note 1

abs 0 0 0

div 6 6 6

labs 0 0 0

ldiv 8 8 11

brk 3 3 6

sbrk 3 3 6

atof 39 39 40

strtod 39 39 40

itoa 6 6 8

ltoa 10 10 12

ultoa 10 10 11

rand 5 5 5

srand 0 0 0

bsearch 25+n 26+n 29+nNote 2

qsort 36+n 43+n 44+nNote 3

strbrk 3 3 6

strsbrk 3 3 6

stritoa 6 6 8

strltoa 10 10 13

stdlib.h

strultoa 10 10 11

Notes 1. n is the total stack consumption among external functions registered by the atexit function.

2. n is the stack consumption of external functions called from bsearch.

3. n is (20 + stack consumption of external functions called from qsort) × (1 + number of times recursive

calls occurred).

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM512

Table D-1. List of Standard Library Stack Consumption (3/4)

Classification Function Name Small Model Medium Model Large Model

memcpy 0 0 3

memmove 0 0 6

strcpy 0 0 3

strncpy 0 0 3

strcat 0 0 3

strncat 0 0 3

memcmp 0 0 0

strcmp 0 0 0

strncmp 0 0 0

memchr 0 0 0

strchr 0 0 0

strcspn 0 0 3

strpbrk 0 0 3

strrchr 0 0 0

strspn 0 0 3

strstr 2 2 3

strtok 0 0 6

memset 0 0 0

strerror 3 6 6

strlen 0 0 0

strcoll 0 0 0

string.h

strxfrm 2 2 3

acos 31 31 31

asin 31 31 31

atan 28 28 28

atan2 28 28 28

cos 26 26 26

sin 26 26 26

tan 33 33 33

cosh 31 31 31

sinh 31 31 31

tanh 37 37 37

exp 28 28 28

frexp 0 (14) 0 (14) 0 (15)Note

ldexp 0 (11) 0 (11) 0 (12)Note

log 30 30 30

log10 30 30 30

math.h

modf 7 (11) 7 (11) 7 (12)Note

Note Values in parentheses are for when an operation exception occurs.

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM 513

Table D-1. List of Standard Library Stack Consumption (4/4)

Classification Function Name Small Model Medium Model Large Model

pow 30 30 30

sqrt 12 12 12

ceil 7 (11) 7 (11) 7 (12)Note 1

fabs 0 0 0

floor 7 (11) 7 (11) 7 (12)Note 1

fmod 6 (11) 6 (11) 6 (12)Note 1

matherr 0 0 0

asinf 31 31 31

atanf 28 28 28

atan2f 28 28 28

cosf 26 26 26

sinf 26 26 26

tanf 33 33 33

coshf 31 31 31

sinhf 31 31 31

tanhf 37 37 37

expf 28 28 28

rexpf 0 (14) 0 (14) 0 (15)Note 1

ldexpf 0 (11) 0 (11) 0 (12)Note 1

logf 30 30 30

log10f 30 30 30

modff 7 (11) 7 (11) 7 (12)Note 1

powf 30 30 30

sqrtf 12 12 12

ceilf 7 (11) 7 (11) 7 (12)Note 1

fabsf 0 0 0

floorf 7 (11) 7 (11) 7 (12)Note 1

math.h

fmodf 6 (11) 6 (11) 6 (12)Note 1

assert.h _ _assertfail 76 (127) 78 (129) 85 (135)Note 2

Notes 1. Values in parentheses are for when an operation exception occurs.

2. Values in parentheses are for when the printf version that supports floating-point numbers is used.

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM514

Table D-2 shows the number of stacks consumed from the runtime libraries.

Table D-2. List of Runtime Library Stack Consumption (1/3)

Classification Function Name Small Model Medium Model Large Model

lsinc 0 0 0

luinc 0 0 0

Increment

finc 15 (24) 15 (24) 16 (26)Note

lsdec 0 0 0

ludec 0 0 0

Decrement

fdec 15 (24) 15 (24) 16 (26)Note

lsrev 2 2 2

lurev 2 2 2

Sign reverse

frev 0 0 0

lscom 0 0 01’s complement

lucom 0 0 0

lsnot 0 0 0

lunot 0 0 0

Logical NOT

fnot 0 0 0

lsmul 2 2 2

lumul 2 2 2

Multiply

fmul 8 (17) 8 (17) 9 (19)Note

csdiv 4 4 4

isdiv 6 6 6

lsdiv 13 13 13

ludiv 6 6 6

Divide

fdiv 8 (17) 8 (17) 9 (19)Note

csrem 4 4 4

isrem 6 6 6

lsrem 13 13 13

Remainder

lurem 6 6 6

lsadd 0 0 0

luadd 0 0 0

Add

fadd 8 (17) 8 (17) 9 (19)Note

lssub 0 0 0

lusub 0 0 0

Subtract

fsub 8 (17) 8 (17) 9 (19)Note

Note Values in parentheses are for when an operation exception occurs (when the matherr function included

with the compiler is used).

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM 515

Table D-2. List of Runtime Library Stack Consumption (2/3)

Classification Function Name Small Model Medium Model Large Model

lslsh 0 0 0Shift left

lulsh 0 0 0

lsrsh 0 0 0Shift right

lursh 0 0 0

lscmp 0 0 0

lucmp 0 0 0

Compare

fcmp 2 (17) 2 (17) 2 (19)Note

lsband 0 0 0Bit AND

luband 0 0 0

lsbor 0 0 0Bit OR

lubor 0 0 0

lsbxor 0 0 0Bit XOR

lubxor 0 0 0

Logical AND fand 0 0 0

Logical OR for 0 0 0

ftols 2 2 2Conversion from

floating-point number
ftolu 2 2 2

lstof 2 2 2Conversion to

floating-point number
lutof 2 2 2

Conversion from bit btol 2 2 2

Startup routine cstart 3 3 3

Note Values in parentheses are for when an operation exception occurs (when the matherr function included

with the compiler is used).

APPENDIX D LIST OF LIBRARY STACK CONSUMPTION

User’s Manual U15556EJ1V0UM516

Table D-2. List of Runtime Library Stack Consumption (3/3)

Classification Function Name Small Model Medium Model Large Model

addwc 0 5 5

anda0 0 0 0

aX3de 0 0 0

aX3whl 0 0 0

aXxwhl 0 0 0

clrhw 0 0 0

cmpa0 0 0 0

cmpax0 0 0 0

cmpaxf 0 0 0

cmpbc0 0 0 0

cmpbcf 0 0 0

eX2de 0 0 0

eX4de 0 0 0

mova0 0 0 0

movax1 0 0 0

movaxs 2 3 5

movbcf 0 0 0

movdes 4 5 5

movs0 4 7 5

movsax 4 7 5

muluwt   0

muluww   0

mulwde   0

mulwhl   0

sladd 3 3 3Note

slsdiv 3 3 3Note

slsmul 9 9 9Note

slsrem 25 25 25Note

slsub 5 5 5Note

sludiv 9 9 9Note

slumul 9 9 9Note

slurem 13 11 11Note

Auxiliary

swtbla   0Note

Note Stack correction for the 4 bytes used for placing an argument when a function is called is performed on the

side of called function.

User’s Manual U15556EJ1V0UM 517

APPENDIX E INDEX

\a...35

\b...35

\f..35

\n...35

\r..35

\t..35

\v ...39

#asm - #endasm ...336

#define directive..150

#include ..50

#include directive............................144, 145, 146, 147

#operator ..148

##operator ..148

#pragma directive ...155, 289

#undef directive ..152

_ _ assertfail ...278

_ _asm..336

_ _boolean ..28, 29, 326

_ _boolean type variables...........................28, 29, 326

_ _boolean1 type variable...........................28, 29, 331

_ _callf ..356

_ _callt...292

_ _DATA_ _ ..156

_ _FILE_ _ ..156

_ _interrupt..346

_ _interrupt_brk...346

_ _LINE_ _..156

_ _OPC ...400

_ _pascal_ _ ...29, 31, 421

_ _rtos_interrupt qualifier ..408

_ _STDC_ _ ..156

_ _TIME_ _ ...156

_toupper..174

-QH option ..414

-ZF option ...425

-ZO option...413

-ZR option ...424

??..35

A

abort..203

abs ..205

absolute address access function28, 30, 363

acos ..233

acosf ...256

aggregate type ... 45

allocation function 30, 287, 361

ANSI... 283

arithmetic operators ... 85

arrays ... 128

array type ... 45

array declarators .. 59

asin... 234

asinf.. 257

ASM statements ... 28, 29, 336

Assembly language.. 19

assignment operators... 101

atan .. 235

atan2 .. 236

atan2f ... 259

atanf ... 258

atexit... 204

atof ... 208

atoi ... 194

atol ... 194

auto .. 52

B

binary constant... 30, 389

bit field.. 56, 127, 367

bit field declaration 28, 30, 367

bit type variables .. 28, 29, 326

bitwise AND operators.. 94

bitwise inclusive OR operators................................. 96

bitwise XOR operators ... 95

block scope .. 38

boolean type variables 28, 29, 326

boolean1 type variables 28, 29, 326

branch statements.. 120

break statements.. 123

brk .. 207

BRK.. 352

bsearch .. 212

C

C language... 19

callf/_ _callf function... 28

callf function ... 28, 29, 356

calloc .. 199

APPENDIX E INDEX

User’s Manual U15556EJ1V0UM518

callt function ... 28, 292

cast operators .. 84

ceil.. 251

ceilf... 274

changing compiler output section name 375

changing function call interface........................ 31, 413

char type .. 40

character constant ... 48

character type .. 44

comma operator ... 104

comment .. 50

compatible type.. 46

composite type... 46

compound assignment operators........................... 103

compound statement ... 112

conditional operators.. 100

conditional control statements 113

const .. 58

constants.. 46

constant expressions ... 105

continue statement... 122

cos ... 237

cosf .. 260

cosh ... 240

coshf .. 263

CPU control instruction 30, 352

D

data insertion function................................ 28, 31, 400

decimal constant .. 47

delimiters.. 49

DI ... 349

div .. 206

device type... 156

division function ... 28, 30, 398

do statement .. 118

E

EI ... 349

enumeration constant .. 48

enumeration specifiers... 56

enumeration type ... 41

equality operators .. 91

escape sequence... 35

exit ... 204

exp ... 243

expf .. 266

expression statements ...112

ext_tsk ..410

extern ...52, 134

external object definitions.......................................136

external linkage ..39

external definitions ...133

F

fabs...252

fabsf..275

file scope ..38

firmware ROM function...433

flash area branch table...426

floating point constant ..47

floating point type ...41

floor ..253

floorf ...276

fmod..254

fmodf...277

for statement...119

free ...200

frexp ...244

frexpf ..267

function...23

function call function from the boot area430

function declarators ..60

function definition ...134

function prototype scope ..38

function scope ..38

function to change compiler output section name30

function type ...45

G

general integral promotion..67

getchar ...190

gets...191

goto statement..121

H

HALT ..352

header file...163

header name ..50

hexadecimal constant...47

I

identifiers ..37

APPENDIX E INDEX

User’s Manual U15556EJ1V0UM 519

if...else statement..114

incomplete type...45

integer type ...67

integral type ..41

internal linkage..39

interrupt function qualifier347

interrupt functions ...29, 340

interrupt handler for RTOS31, 402

interrupt handler qualifier for RTOS..................31, 408

isalnum ...171

isalpha ..171

isascii ..171

iscntrl ..171

isdigit...171

isgraph ..171

islower...171

isprint ..171

ispunct ..171

isspace..171

isupper ..171

isxdigit...171

iteration statement ..116

itoa ..210

K

key words..36

L

labeled statements..109

labs ...205

ldexp ...245

ldexpf ..268

ldiv ..206

log ...246

log10 ...247

log10f ..270

logf ..269

logical AND operators...98

logical OR operators ...99

longjmp ...175

ltoa ..210

M

machine language ..19

macro name..156

macro replacement directives.................................150

malloc ...201

matherr ... 255

memchr .. 222

memcmp... 220

memcpy.. 217

memmove... 217

memset... 228

medium model.. 287, 358

modf ... 248

modff .. 271

module name changing function 30, 391

multiplication function................................. 28, 30, 395

N

noauto functions... 28, 29, 312

no linkage... 39

NOP.. 352

norec functions... 28, 29, 318

O

octal constant ... 47

P

pascal function ... 31, 421

pascal function call interface 424

peekb ... 363

peekw... 363

pintf .. 186

pointer .. 69

pointer declarator ... 59

pokeb ... 363

pokew... 363

postfix operators... 73

pow... 249

powf.. 272

preprocessing directives .. 137

putchar ... 192

puts .. 193

Q

qsort ... 213

R

rand .. 211

realloc... 202

re-entrantability .. 169

register ... 52

APPENDIX E INDEX

User’s Manual U15556EJ1V0UM520

register bank .. 287

register bank specification 341

register variables.. 28

relational operators .. 90

return statement... 124

rolb ... 392

rolw .. 392

ROMization-related section name.......................... 383

rorb... 392

rorw .. 392

rotate function .. 28, 30, 392

RTOS ... 283

S

scalar type... 45

sbrk .. 207

scanf .. 187

setjmp .. 175

sfr area... 29

sfr variable ... 309

shift operators .. 88

signed integral type.. 41

simple assignment operators 102

sin .. 238

sinf ... 261

sinh .. 241

sinhf ... 264

small model.. 287, 358

sprintf ... 178

sqrt ... 250

sqrtf .. 273

srand .. 211

sreg declaration ... 301

sreg variable .. 28, 301

sreg1 variable .. 306

sscanf... 182

stack change specification..................................... 342

startup routine .. 384

static... 52, 134

STOP ... 352

storage class specifiers.. 52

strbrk .. 214

strcat .. 219

strchr .. 223

strcmp .. 221

strcoll.. 231

strcpy ... 218

strcspn ... 224

strerror ..229

string literals ...49

stritoa..216

strlen...230

strltoa..216

strncat...219

strncmp...221

strncpy..218

strpbrk ..225

strrchr ...223

strsbrk...215

strspn..224

strstr ...226

strtod ..208

strtol..227

strtoul..196

struct...126

structures..126

structure pointer ...126

structure specifier ...55

structure type..45

structure variable..126

strultoa..216

strxfrm...232

switch statement...115

T

tags...57

tan ..239

tanf ...262

tanh ..242

tanhf ...265

task...410

task function for RTOS31, 410

toascii ...173

tolow ...174

tolower..172

toup ..174

toupper ...172

trigraph sequences...35

type conversions ..65

type names...60

type qualifiers ...58

typedef..52

U

ultoa..210

APPENDIX E INDEX

User’s Manual U15556EJ1V0UM 521

unary operators...79

union ...130

union specifier...55

union type ...45

unsigned integral type...41

usage of saddr area..301

V

va_arg...176

va_end..176

va_start ...176

va_starttop ..176

void ...69

void pointer ...69

volatile...58

vprintf ..188

vsprintf ..189

W

while statement...117

522

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.11

Name

Company

From:

Tel. FAX

Facsimile Message

